База знаний студента. Реферат, курсовая, контрольная, диплом на заказ

курсовые,контрольные,дипломы,рефераты

Примеры задач оптимизации, связанных с фундаментальными понятиями теории связи — Радиоэлектроника

Министерство образования и науки

Республики Казахстан

Казахско - Американский Университет

Факультет «Прикладных наук»

СРС

Тема:  Примеры задач оптимизации, связанных с фундаментальными понятиями теории связи.

 

 

 

 

Студент:

Группа: ФПН (РРТ)-5с

Проверил:.

Дата:

Подпись:

Алматы, 2005

Примеры задач оптимизации, связанных с фундаментальными понятиями теории связи.

Приводимые ниже две задачи оптимизации типичны; такого вида проблемы часто возникают при разработке новых систем и устройств связи. Первая из них связана с вопросом о наиболее эффективном  использовании   заданного  частотного  диапазона

при наличии шума с неравномерным спектром; вторая -с выбором формы импульсного сигнала, обладающего мини­мально возможной полосой частот и потому наиболее адекват­ного работе по полосно-ограниченному каналу связи. Обе эти задачи имеют самостоятельный интерес; вместе с тем они могут рассматриваться как достаточно простые упражнения по практическому применению  вариационного исчисления.

Экстремальная   задача,   связанная   с  пропускной   способностью

канала связи   [24]

Максимальное количество информации, которое может быть передано за единицу времени по каналу связи с полосой частот  f1

                            (3.17)

где s(f) и n(f) — функции спектральной плотности мощности полезного  сигнала и  шума  соответственно   [24,  25].

Если спектральные плотности мощности сигнала и шума являются частотно-независимыми в полосе [f1, f2), то получа­ется  еще  более  известное  выражение

где  полная  мощность сигнала;

                (3.18)

—      полная  мощность шума.

Поставим задачу об отыскании спектра плотности мощности полезного сигнала s{f), при котором (при фиксированной полной мощности сигнала РС = Р и заданной спектральной плотности мощности шума n(f) скорость передачи ин­формации была бы максимальной. Таким образом, максимум функционала

                    (3.19)

При дополнительном условии

                      (3.20)

Используя терминологию предыдущего раздела, можно говорить что поставленная задача является изопериметрической со свободными концами, причем подынтегральные выражения в  (3.19)  и  (3.20)  не  содержат  функции  s'(f).

Составив в соответствии с методом множителей Лагранжа вспомогательный  функционал  типа

                (3.21)

выпишем для  него  уравнение  Эйлера

откуда

       (3.22)

Подставляя  (3.22)  в  (3.20) и учитывая  обозначение (3.18),

находим  значение

Окончательно   оптимальная   форма   спектра   плотности   мощ­ности сигнала  определяется из  выражения

         (3.23)

Как видно, оптимальный спектр плотности мощности сигнала дополняет спектр плотности мощности шума до константы. Другими словами, энергию передатчика целесообразно распреде­лять в рабочем диапазоне частот неравномерно, направляя ее в  основном  в  те участки,  где  мощность  шума  мала.

Этот вывод представляет несомненный практический инте­рес, однако он, может быть, сделан поспешно, ведь не доказано, что на экстремали (3.23) действительно достигается минимум. Впрочем, из замечания (3.4) о функционалах, не содержащих производной неизвестной функции (см. § 3.3), немедленно вытекает обоснование того факта, что на функции (3.22) в самом деле реализуется экстремум функционала (3.21), а вместе с ним и функционала (3.19) при условии (3.20). Этот экстремум может быть только максимумом, ибо, при­ближая s(f) в произвольно малом, но конечном подынтервале интервала (f1,f2) к функции n(f), взятой с обратным знаком (s(f) n(f)), можно сделать значение функционала (3.19) меньшим  любого  наперед  заданного  числа.

В связи с записью приближенного равенства (s(f) -n(f)), целесообразно напомнить, что по физическому смыслу функции s(f) и n(f) неотрицательны. Решая поставленную задачу формально, мы нигде не вводили условия s(f)≥ 0, поэтому формула (3.23) действительно дает решение поставленной задачи с учетом физических ограничений, если во всех точках интервала  (f1,f2) выполняется  неравенство

           (3.24)

Однако неравенство (3.24) может оказаться нарушенным: это обстоятельство сигнализирует о том, что математическая задача максимизации пропускной способности канала R[s(f)] была поставлена некорректно и, чтобы исправить положение, следует  к  условию  (3.20)  присоединить условие

S(f)>0.     (3.25)

На решениях задач подобного типа мы останавливаться не будем, хотя описанным в [3] методом односторонней вариации  успешно  решают  и такие  задачи.

Задача   об   отыскании   импульса   с  минимальной   эффективной

шириной  спектра

Как правило, передача информации по каналам связи осуществляется в строго ограниченном частотном диапазоне: вне этого диапазона так называемые «внеполосные» излучения не должны превышать некоторую заданную существующими нормами величину. При передаче данных занимаемая полоса частот определяется во многом формой сигнала-переносчика, поэтому представляет существенный интерес отыскание формы сигналов конечной продолжительности, обладающих мини­мально  возможной  полосой частот   [15].

Сказанное,   однако,   нуждается   в   некотором   разъяснении. Обозначим интересующий нас сигнал-переносчик длительности Т через y(t),0≤t≤T Тогда  его  спектр

(3.26)

Преобразование Фурье сигнала конечной продолжитель­ности (3.26) определяет спектр Y(ω), который является функцией комплексного

переменного ω =плоскости целыми).

Известно, что целые функции могут обращаться в 0 лишь в изолированных точках и никогда на множествах точек, у которых, как говорят математики, «мера больше нуля». Примером таких множеств могут служить отрезок действи­тельной или мнимой оси комплексной плоскости, круг или совокупность фигур на этой плоскости, действительная полуось

                                        0       

                                                    рис.3.11

и т. д. Практически это означает, что спектры сигналов конечной продолжительности обладают бесконечной протяжен­ностью и, следовательно, принципиально неустранимыми внеполосными излучениями. Спектр прямоугольного импульса y(t)=1,0≤t≤T, является в достаточной степени типичным (рис. 3.11). Другими словами, не существует частотного диапазона, внутри которого поместился бы целиком спектр прямоу­гольного (да и любого другого) импульса. Вместе с тем ясно, что внеполосные излучения в зависимости от формы импульса могут  обладать  большей или  меньшей  интенсивностью.

Существуют различные способы оценки внеполосных излучений. Пожалуй, наиболее распространенный из них — энергетический, при котором интенсивность внеполосных излучений характеризуется величиной низкочастотного рабочего диапазона частот критерий ( за­пишем  в виде

 (3.27)

Задаче минимизации величины   посвящена значительная литература [26]. Отметим, что для минимизации отношения (3.27) переходят обычно к иной, эквивалентной, задаче. Полагая

(3.28)

решают вопрос о максимизации энергии импульса y(t) в ра­бочей полосе  частот  


 (3.29)

Напомним,   что   в  силу  теоремы   Рэлея     Парсеваля   спра­ведливо  следующее  равенство  для  энергии  сигнала:

                            3.30

поэтому  условие  (3.28)  эквивалентно  следующему:

3.31

Вариационную задачу максимизации (3.29) при условии (3.31) сводят к решению так называемого интегрального уравнения [22] относительно неизвестной функции y{t). Изложение достигнутых здесь интересных и важных ре­зультатов требует, однако, использования достаточно сложного математического аппарата. В связи с этим используем другой подход к минимизации внеполосных излучений, для чего введем понятие об эффективной ширине спектра, аналогичное дисперсии распределения вероятностей. Попы­таемся перенести характеристики законов распределения ве­роятностей случайных величин на спектры сигналов. Пред­полагая, что выполняется условие (3.28), будем рассматривать неотрицательную  функцию

как плотность распределения вероятностей p(случайной величины. Так как модуль спектра произвольного вещественного сигнала является четной функцией частоты (см. § 1.2,  свойство 1),  т. е.

то среднее значение этой случайной  величины  равно  нулю:

а  ее дисперсия

                  3.23

Положительную величину  назовем эффективной шириной
спектра сигнала y(t),0≤t≤T, и поставим вопрос о минимизации , или, что эквивалентно, минимизации
в        качестве      дополнительного условия      примем

равенство (3.28), которое отражает известное свойство интег­рала от плотности распределения вероятностей (он равен единице). В дальнейшем, однако, будет удобнее использовать эквивалентное  (3.28)  равенство  (3.31).

Здесь уместно напомнить, что дисперсия характеризует степень сосредоточенности плотности p(Чем меньше дисперсия, тем более «узким» является график функции p(. В принципе эта функция в пределе при переходит в 5-функцию (для сигналов y(t) конечной продол­жительности последнее невозможно). Это обстоятельство и обо­сновывает применение теоретико-вероятностного критерия — дисперсии к оценке ширины полосы частот, занимаемой сигналом y(t).

Выражение (3.32) преобразуем таким образом, чтобы пред­ставить его как функционал от y(t). Для этого проведем следующие вспомогательные рассуждения, относящиеся к фор­муле  обратного  преобразования  Фурье:

                     (3.33)

                        

Продифференцируем  обе  части  равенства  (3.33)  по  t:


    (3.34)

Применим теперь теорему Рэлея—Парсеваля к сигналу y’(t),0≤t≤T,.  С  учетом  (3.34)  получим

 (3.35)

Сравнив равенства  (3.32) и  (3.35),  запишем

Для минимизации функционала (3.36) при ограничении (3.31) составим  вспомогательный функционал

    (3.37)

Сделаем упрощающее предположение (оно облегчит, как мы увидим, проверку достаточных условий минимизации): импульс y(t) обладает четной симметрией относительно середины отрезка    [О, T] — точки   t=T/2.   Тогда   задачу   минимизации

функционала   (3.37)   можно   заменить   задачей    минимизации функционала

 

при  условии

 (3.39)

Правый конец отрезка [О, Т/2 ] будем считать свободным, т. е. предполагать, что у{Т/2) может принимать любые зна­чения. Что касается левого края интервала — точки t = 0 (равно как и симметричной относительно центра точки t=T), то здесь  определенно  можно  сказать,  что y(0)=0, (3.40) хотя в самой постановке задачи нет никаких указаний отно­сительно поведения y(t) на концах. Однако одно важное обстоятельство с необходимостью приводит к условию (3.40). Дело  в том,  что  для  сходимости  интеграла

а значит, и существования конечной величины  (см. (3.32)) требуется, чтобы функция приy(t), , имеет разрывы, его спектр убывает на бесконечности какна бесконечности какнепрерывную первую производную, то характер убывания спектра при  т. д. [22]. В нашем случае для сходимости интеграла (3.31) достаточно потребовать, чтобы квадрат модуля спектра как   1/|4 при       1/|).  Это означает, что импульс  должен быть непрерывным.

Но из непрерывности функции следует равенство пределов слева и справа в любой точке ее области определения. Например, на левом краю области определения для непрерывного сигнала y(t)  справедливо  равенство

y(t-0) = y(t + 0),  t = 0.

Так как вне отрезка  функция y(t) считается равной 0, справедливость условия (3.40) очевидна. Что касается свободного конца t=T/2, то в силу теоремы 3.3 о подвижных концах (см. § 3.2) применительно к функционалу (3.38) можем записать  соответствующее  ограничение

,   

или

                                                                                               (3.42)

Уравнение Эйлера для функционала (3.38) фактически уже рассматривалось нами в близкой задаче примера 3.1, оно имеет  вид

y”+λy=0, а  его  решение,  содержащее  две  произвольные  постоянные,-

 Воспользовавшись  (3.40),   запишем

.

Таким образом, 

Для определения  восполь­зуемся  условием   (3.42)  (с  учетом  того,  что  с1 = 0):

откуда

        (3.43) Следовательно,

               (3.44)

где с2 и целое число k пока не определены. Отыскание амплитуды с2  не представляет труда и может быть легко осуществлено с помощью подстановки (3.44) в условие норми­ровки  энергии  импульса y{t)  (3.39).

Несколько сложнее найти число k. Чтобы выделить из семейства экстремалей (3.44) кривую, которая действительно соответствует минимуму функционала (3.38), обратимся к до­статочным условиям сильного минимума, приведенным в § 3.3. Условие «а» выполнено, ибо все кривые семейства (3.44) — экстремали. Для проверки условия «б» составим дифферен­циальное уравнение Якоби (3.16), которое в данном случае принимает вид

т. е. совпадает по форме с уравнением Эйлера рассматриваемой задачи. Его  общее  решение

а  решение,   обращающееся   в  0  на  левом   конце,

                        (3.45)

                                                                                

Для выполнения условия  ”б” необходимо, чтобы функция  не обращалась в ноль ни в одной точке отрезка (0,Т/2), кроме точки t=0. легко проверить, что среди всех значений  удовлетворяющих (3,43), только случаи k=0 и k= -1 

  удовлетворяют  этому условию.    Более    «высокочастотные»

 (k=1,   ±2,   ±3,   ...)  синусоиды   (3.45)

обладают дополнительными нулями на   

отрезке (0, T/2). Подставив k=0 в (3.44), получим единственную
кривую, на которой может быть реализован минимум (3.38),
(3.46)

— полуволну синуса1. Чтобы доказать, что (3.46) действительно является решением нашей задачи, покажем, что выполняется и последний (третий) пункт «в» достаточных условий. Дейст­вительно,

Определение константы с2, как уже говорилось, не вызывает затруднений, она равна. График импульса с минималь­ной  эффективной  шириной  спектра  показан  на  рис. 3.12.

В заключение разъясним, в чем трудность исследования функционала (3.37), в котором y(t) рассматривается на всем отрезке [0, Т ]. Разумеется, уравнения Эйлера и Якоби, а также их решения имели бы тот же самый вид, который описан выше. Но добиться успеха с помощью пункта «б» достаточных условий, которыми мы воспользовались, по-видимому, оказа­лось бы невозможным. Действительно, условие Якоби не выполняется, так как решение уравнения Якоби (3.45) в точке t=T равно 0 в случае k = 0: ио = 0 при k = 0. Значит, не существует ни одного целого числа k, при котором пункт «б» был бы выполнен. И хотя при этом не нарушается необходимое условие Якоби (см. замечание 3.3 в конце § 3.3), вопрос о том, реализуется ли минимум функционала (3.37) на какой-либо  из  кривых  (3.44),  остается  открытым.

Замечание 3.5. Задача минимизации полосы частот, занимаемой импульсным сигналом при использовании энерге­тического критерия (I (формула (3.27)), также приводит к им­пульсу округлой формы, напоминающему сигнал рис. 3.12. Однако в этом случае форма оптимальной функции y(t)  оказывается зависящей не только от длительности Г, но и от ширины интервала концентрации энергии (0,  T   [26].

Министерство образования и науки Республики Казахстан Казахско - Американский Университет Факультет «Прикладных наук» СРС Тема:  Примеры задач оптимизации, связанных с фундаментальными понятиями теории связи.

 

 

 

Внимание! Представленный Доклад находится в открытом доступе в сети Интернет, и уже неоднократно сдавался, возможно, даже в твоем учебном заведении.
Советуем не рисковать. Узнай, сколько стоит абсолютно уникальный Доклад по твоей теме:

Новости образования и науки

Заказать уникальную работу

Свои сданные студенческие работы

присылайте нам на e-mail

Client@Stud-Baza.ru