. , , ,

,,,

1. ............................................................................................ ....2

2. ..................................................... 3

3.

3.1 օ..11

3.2 ........ -

4. ..............................................12

5. ......... 13

3. ....................................................................15

4. .......................................................................................16

5.

5.1 ....................................17

5.2 蠠  ..23

6. ..........................................................................24

. - () , , .

, , - , , .. , , -, . , , .

, ( - ).

, , . , . , - .

Ƞ .

, (.. , ) - , .

1 , ( ) r (.1), , r. , - ,

/2 (1.1)

.1. ,

/2 (1.2)

/. (1.3)

120p .

(1.2) (1.3),

/2. (1.4)

(1.1) (1.4) ,

/. (1.5)

. 2. , () ().

, , , , .

, . . 2 . , ,

1, , , , , . , , . D1, , , , , , [1].

, , D1 . , , :

/. (1.6)

/. (1.7)

/, (1.8)

, (1.5) - (1.7), , /, - . , - , - /,

/; (1.9)

/젠 (1.10)

.

, . , , , , . D ( ) . , , , . D2. , D1 . , , , , . . D1= D2= 1.


z

q

P(r,q,j)

y

j

x

. 3.


, ( , ) . (j) (q) , . 3. ( ) r , . .

f(j,q). . - , f(j) f(q) .

, , F(j,q). :

F(j,q) = f(j,q)/fmax(j,q). (1.12)

, . 4

= 0 sin q, (1.13)

0 - (.. q = 90); q - , .

. 5, . .

. 5, ,

= 0 cosec q, (1.13)

0 - ; q - , . , . , , .

, . 2q0,5 ( ) , , , . 2q0 ( ), .

, (). , , ( ):

(1.14)

; .

90


q

180 0


360

ࠠ ᠠ

. 4. :

- , ; - , .




q

. 5.


. , , .

, , , , . ...:

. (1.15)

(1.12),

. (1.16)

, , ( ) , , , , . , ( , ) , .

a

H R

H

h

r

. 6.

[2] , . , . (1.6),

(1.17)

, ; R h , ; F(a) () , a = arctg[(Hh)/r] , r h, R = r/sin a; F(j) = 1 . (. 6.)

F(a) (" ")

(1.18)

b 2p 1998 ., 1,3p [3].

" " F(a)

(1.19)

, (. 7.),

(1.20)

- () . .

48,4

88,4

192

300

, /

5,0

4,0

3,0

2,5

[2] S :

(1.21)

k 1 7, S<1.

q

a

. 7.

.

1.

- 2 1- 4. :

*     1 = 2 = 5 3 = 4 = 3 ;

*    f 1 = 80 , f 2 = 96 , f 3 f4 70 ;

*    D 1 = D 2 = 6.56,

D 3 = D 4 = 9.84;

1= 2= 161 ,

3 = 4 = 155 ;

5 - 7:

*     5 = 6 = 7 = 1 ;

*     f 5 474 , f 6 506 , f 7 570 ;

*     D5 = 4, D6 = D7 = 3.2;

*    

5 = 6 = 7 = 180 .

2.2.4 / 2.1.8.056 - 96 () : f1 f2 1 = 2 = 4 /, f3 f4 3 = 4 = 5 /, f5 - f7 5 = 6 = 7 = 6 /.

2.

1. :

*     = 0.1 ;

*     f = 66 ;

*     D = 8 ;

*     = 127 ;

2.2.4 / 2.1.8.056 - 96 () : = 4.5 /.

, , , TURBO PASCAL 7.0. , : b, 2p; b, 1.3p; ; F(a) . : P ; D; ; R- h , , . , , /, , . , , , . ࠠ , , , r < 300 . .

8 , .

, TURBO PASCAL 7.0. : - b, 2p; - b, 1.3p; - ; - F(a) . 3- , .

. ɠ

ɠ


. -


..9

.9 - . . , / R, , . 10. , . 18 .

.10

.

1.

,

, /

2

4741,5

4466

2,4

3209,2

19952

2,5

2992

12590

4

1237,1

12045

5

767,9

3183

5,5

648

3980

6

537,8

2089

7

397,5

1351

8

305,6

1995

9

242,2

2339

11

162,9

229,5

15

93,6

890

, , . , . , , . , .

 

:

1)    ;

2)    , , , ;

3)    , , ;

4)    .

1 .

uses crt,graph,omenu;

const f_fi= 1;

NBg = {blue}1;

NFg = {white}15;

HBg = {white}15;

HFg = {black}0;

BC = {black}0;

SC = {lightcyan}11;

col = 200;

delta_rm =90;

var

vf :text;

VMenu :OVMenu;

HMenu :OHMenu;

HVMenu :OHVMenu;

p,d,hb,em :real;

i,j,choice,errc,

a,x,Hmenu_choice,len :integer;

rm :longint;

ord :array[1..col] of real;

del :array[1..10] of real;

delstr,si,AStr,vstr :string;

ch,rk :char;

input_is :boolean;

{ }

procedure input_value(xi,yi:integer; var zn:real);

begin

vstr:='';

while rk<>#13 DO begin

rk:=readkey;

if (((rk>#47)and(rk<#58))or(rk=#46))and(len<10) then begin

vstr:=vstr+rk;

len:=length(vstr);

gwritexy(xi+len,yi+1,rk,3,2);

end;

end;

val(vstr,zn,errc);

end;

procedure input;

begin

gwritexy(1,5,': ',3,2); input_value(11,4,p); readln;

gwritexy(1,6,'. . : ',3,2); input_value(1,6,d); readln;

gwritexy(1,7,' : ',3,2); input_value(1,7,hb); readln;

end;

{ . }

Function ddt:integer;

begin

HVMenu.init;

gwritexy(0,1,'',0,0);

HVMenu.SetHorItems(00,00,80,01,NBg, NFg,HBg,HFg,BC,SC,1,1,BorderOn,ShadowOff,' File | ');

HVMenu.SetVerItems(01,00,01,10,03,NBg,NFg,HBg,HFg,BC,SC,4,1,BorderOn,ShadowOff,' | ');

HVMenu.SetVerItems(2,6,01,29,04,NBg,NFg,HBg,HFg,BC,Sc,

4,1,BorderOn,ShadowOff,

' . 1 - 1,3 | . 2 - 2 | ');

HMenu.EraseOK:=False;

X:=HVMenu.MenuResult(false,true);

ddt:=x;

end;

{ }

function f_alfa:real;

begin

case choice of

1: f_alfa:=(1+2*cos(1.3*pi*sin(arctan((hb)/rm))))/3;

2: f_alfa:=(1+2*cos(2*pi*sin(arctan((hb)/rm))))/3;

3: f_alfa:=(cos(pi/2*sin(arctan((hb)/rm)))/cos(arctan((hb)/rm)));

end;

end;

function Rb:real;

begin

rb:=rm/sin(arctan(hb/rm));

end;

function E2:real;

begin

E2:=30*p*d*sqr(f_alfa)*sqr(f_fi)/sqr(Rb);

end;

{ }

procedure ordinates;

begin

rm:=1;

for i:=1 to col do

begin

rm:=rm+delta_rm;

ord[i]:=1000*SQRT(E2); {1000, .. . . - /}

end;

end;

{ }

procedure E_maximum;

var i:integer;

max:real;

begin

Max:=ord[1];

if col>1 then

for i:=2 to col do

if ord[i]>Max then Max:=ord[i];

if max=0 then max:=1;

Em:=max;

end;

{ "results.txt"}

procedure ToFile;

begin

assign(vf,'results.txt');

rewrite(vf);

rm:=0;

for i:=1 to col do begin

rm:=rm+delta_rm;

writeln(vf,rm,' m',' - ',ord[i]:0:5,' mV/m');

end;

end;

{ }

procedure grinit;

var

grDriver: Integer;

grMode: Integer;

ErrCode: Integer;

begin

grDriver := Detect;

InitGraph(grDriver, grMode,'c:bpbgi');

ErrCode := GraphResult;

if ErrCode <> 0 then

Writeln('Graphics error:', GraphErrorMsg(ErrCode));

end;

procedure drawcoords; { }

begin

setcolor(darkgray);

{Oy} line(100,445,100,30); line(99,445,99,30);

line(99,30,96,35); line(100,30,103,35);

outtextxy(25,23,' , /');

{Ox} line(95,440,515,440); line(95,441,515,441);

line(515,440,510,437);line(515,441,510,444);

outtextxy(525,445,'R, ');

end;

procedure drawgrid;{}

begin

setcolor(lightgray);

{}

j:=40;

for i:=1 to 10 do

begin

line(100,440-j,500,440-j);

j:=j+40

end;

{}

j:=round(80/ln(1.91));

for i:=1 to 6 do

begin

line(100+round(j),440,100+round(j),40);

j:=j+round(80/ln(i+1.8))

end;

end;

procedure values;{ }

begin

{ }

del[1]:=em/10; { }

for i:=2 to 10 do

del[i]:=del[1]+del[i-1];

setcolor(darkgray);

outtextxy(90,445,'0');

j:=40;

for i:=1 to 10 do

begin

str(del[i]:0:1,delstr);

outtextxy(90-length(delstr)*8,438-j*i,delstr)

end;

{ }

j:=95+round(80/ln(1.91));

outtextxy(j,445,'3');

j:=j+round(80/ln(2.8));

outtextxy(j,445,'6');

j:=j+round(80/ln(3.8));

outtextxy(j,445,'9');

j:=j+round(80/ln(4.8));

outtextxy(j,445,'12');

j:=j+round(80/ln(5.8));

outtextxy(j,445,'15');

j:=j+round(80/ln(6.8));

outtextxy(j,445,'18');

end;

{ }

procedure drawgrafic;

var dlt:integer;

x1,x2,y1,y2:integer;

begin

setcolor(choice+1);

x1:=100-round(2/ln(1.91));;

for i:=1 to col do

begin

y1:=440-round(400*ord[i]/em);

y2:=440-round(400*ord[i+1]/em);

if (i>=1)and(i<40) then begin

x1:=x1+round(2/ln(1.91));

x2:=x1+round(2/ln(1.91));

end;

if (i>=40)and(i<80) then begin

x1:=x1+round(2/ln(3.71));

x2:=x1+round(2/ln(3.71));

end;

if (i>=80)and(i<120) then begin

x1:=x1+round(2/ln(5.51));

x2:=x1+round(2/ln(5.51));

end;

if (i>=120)and(i<160) then begin

x1:=x1+round(3/ln(7.31));

x2:=x1+round(3/ln(7.31));

end;

if (i>=160)and(i<=200) then begin

x1:=x1+round(4/ln(9.11));

x2:=x1+round(4/ln(9.11));

end;

line(x1,y1,x2,y2);

line(x1,y1-1,x2,y2-1);

line(x1,y1-2,x2,y2-2);

delay(20);

end;

end;

{ }

procedure drawing1st; { , }

begin

grinit;

setbkcolor(15);

cleardevice;

setcolor(darkgray);

rectangle(10,10,getmaxx-10,getmaxy-10);

drawgrid;

drawcoords;

end;

procedure drawing2nd; { }

begin

drawgrafic;

readln;

closegraph;

end;

begin

ClrScr;

{ Input;}p:=100; d:=8; hb:=127;

grinit;

repeat

cleardevice;

i:=2;

repeat

a:=ddt;

until a<>0;

Hmenu_choice:=a div 100;

Case Hmenu_choice of

1: begin

choice:=a mod 100;

if choice=2 then break else begin

input;

input_is:=true;

end;

end;

2: if not(input_is) then begin

gwritexy(17,10,'! !',5,1);

ch:=readkey;

continue;

{end else begin

choice:=a mod 100;

Drawing1st;

Ordinates;

E_Maximum;

ToFile;

Values;

Drawing2nd; }

end;

end;

until false;

HVMenu.Done;

cleardevice;

closegraph;

write(p:1:2,' ',d:1:2,' ',hb:1:2);

end.

2 蠠 .

(), /

(), /

(), /

(), /

1.

11

178

112

316

200

2.

11

280

126

708

354

3.

6

630

354

1412

708

4.

7

707

446

1258

708

5.

2

4466

1995

25118

7080

6. . .

4

17780

5010

2512

1412

7. . .

2,5

12590

4466

5012

1122

8.- .

5,5

3980

1258

2238

1258

9.-. .

6

3548

1122

1778

890

10. - . .

5

3548

1412

2623

1238

11. - . /.

2,4

19952

7080

5623

2238

12. - .

4

6310

1995

2512

1122

13. - . -

5

2818

708

1778

890

14. - . -

7

1995

708

708

400

15. - . -

8

1995

794

890

446

16. - . .

9

2339

630

708

500

17. , .

15

890

354

446

224



[1] , . , 100 %.

1. ............................................................................................ ....2 2. ..................................................... 3 3. 3

 

 

 

! , , , .
. , :