База знаний студента. Реферат, курсовая, контрольная, диплом на заказ

курсовые,контрольные,дипломы,рефераты

Свойства многомерного нормального распределения — Математика

Посмотреть видео по теме Лабораторной

Свойства многомерного нормального распределения

Все одномерные плотности вероятности - это плотности вероятности одномерной нормальной случайной величины с параметрами, определяемыми координатами вектора X и главной диагональю ковариационной матрицы B. Кроме того, подвектор вектора

Если все коэффициенты корреляционной или ковариационной матрицы B (все ее недиагональные элементы) равны нулю, то показать самим, что компоненты случайной величины являются независимыми.

если  независимы.

Теорема.

Проводим линейное преобразование Y=AX. A - квадратная невырожденная матрица, тогда вектор Y также имеет n-мерное нормальное распределение вида

Следствие: Из доказательства теоремы вытекает, что ковариационная матрица

Оператор A переводит произвольную область из арифметического пространства Rn в некоторую область того же пространства.

Рассмотрим произвольную область S, принадлежащую пространству элементарных событий случайной многомерной величины X. Ей соответствует область D в пространстве элементарных событий случайного вектора Y. При этом

Запишем эти вероятности

где |I| - якобиан перехода

Т.к. область S и соответственно D произвольны, то плотность вероятности случайного вектора x равна

n-мерная плотность вероятности случайного вектора Y равна

Преобразуем показатель степени e

Можно показать, что если нормальное распределение имеет данный вид, то B - ее ковариационная матрица

Следствие.

 Тогда Y=AX имеет нормальное распределение вида

Y - m-мерный вектор.

Для определенности положим, что матрица A имеет вид

A = (A1 A2)

A1 - квадратная матрица размером

A2 - матрица размерности

Рассмотрим матрицу размерности

  равен определителю полученной квадратной матрицы и не равен нулю.

E - единственная квадратная матрица размерности

Следовательно, на основании доказанной теоремы, вектор Y имеет многомерное нормальное распределение.

Z=CX

Компоненты вектора Z имеют вид

          

Пусть матрица  А произвольная, но т.к. ее ранг равен m она содержит m линейно независимых столбцов. Путем перестановки  столбцом соберем эти столбцы в первые m. И соответствующим образом пронумеруем компоненты вектора Х. Попадаем в предыдущий случай.

Предельные случайные последовательности.

Рассмотрим вероятностное пространство  в котором задана счетная последовательность случайных величин, каждая из которых является измеримой

Покажем, что событие    измеримо, т.е. имеет вероятность наступления. Действительно событие

Каждое из этих событий в пересечении принадлежит

Пусть последовательность    имеет предел при

1.

Событие А состоит из всех m, удовлетворяющих условию: для любого как угодно большого r существует такое m, что для всех n выполняется

2.  А: Если предел

Для любого, как угодно большого r существует такое m, что для всех n выполняется

3.Если предел случайная величина, то

Показать самим, что событие А с

любое событие  измеримо, как доказывалось ранее измеримы, и следовательно имеет вероятность наступления. Разность

Если предел константа, то эквиваленты 1 и 2, если случайная величина - то 1 и 3.

Существующие определения сходимости случайных величин.

Пусть имеется счетная последовательность случайных величин и пусть

1. Счетная последовательность сходится к пределу с вероятностью 1, если Р(А)=1.

Это не вероятность достоверного события.

2. Сходимость по поверхности.

Счетная последовательность случайных величин

3. Сходимость в среднеквадратичном.

Последовательность случайных величин сходится к пределу в среднеквадратичном, если выполняется

Покажем, что из сходимости в среднеквадратичном следует сходимость по вероятности.

Воспользуемся Неравенством Чебышева

При любом конечном r если выполняется сходимость в среднеквадратичном, то этот предел существует и равен 0, т.к. числитель сходится к 0, а знаменатель конечен.

Теорема.

Счетная последовательность  с вероятностью 1 только тогда, когда

Указанное выше событие

и сходимость с вероятностью 1 означает, что P(B)=0.

Очевидно, что условие теоремы достаточно рассмотреть для

Положим

События Вrm, m=1,2,.... убывают, и для  

Докажем это.

Будем искать P(Br)  так

Событие, обратное  имеет следующую структуру:

Показать самим, что следующее событие включает предыдущее.

По построению справедлива следующая формула

По третьей аксиоме теории вероятности

Построенный ряд D1, D2...Dn образует неубывающую ограниченную последовательность, следовательно имеет предел сверху.

Поэтому возможен переход

Теорема Бернулли.

Рассмотрим систему независимых испытаний Бернулли.

Система испытаний неограниченна. С каждым i-видом испытаний свяжем дискретную величину Xi

Хi принимают значения 1, если в i-том испытании произошло событие А и 0 - в противном случае

Рассмотрим случайную величину - число появлений события А в n испытаниях

Свойства многомерного нормального распределения Все одномерные плотности вероятности - это плотности вероятности одномерной нормальной случайной величины с параметрами, определяемыми координатами вектора X и главной диагональю ковариационной мат

 

 

 

Внимание! Представленная Лабораторная находится в открытом доступе в сети Интернет, и уже неоднократно сдавалась, возможно, даже в твоем учебном заведении.
Советуем не рисковать. Узнай, сколько стоит абсолютно уникальная Лабораторная по твоей теме:

Новости образования и науки

Заказать уникальную работу

Похожие работы:

Решение смешанной задачи для уравнения гиперболического типа методом сеток
Лабораторные работы по экономико-математическому моделированию
Решение задач линейного программирования
Приближенный метод решения интегралов. Метод прямоугольников (правых, средних, левых)
Интерполяционный многочлен Лагранжа
Моделирование и оптимизация процессов в деревообрабатывающей промышленности
Булевы функции (лабораторные работы)

Свои сданные студенческие работы

присылайте нам на e-mail

Client@Stud-Baza.ru