База знаний студента. Реферат, курсовая, контрольная, диплом на заказ

курсовые,контрольные,дипломы,рефераты

Агроэкологический мониторинг — Экология

Введение

Современный кризис в аграрном секторе экономики обостряется и переплетается с кризисом экологическим, который выражается в развитии эрозионных процессов, разрушении почвенного покрова и, в конечном итоге, в снижении плодородия почв.

За последние десятилетия аграрная сфера производства России пережила тяжелый кризис. По многим основным отраслям сельское хозяйство страны отброшено на 25-30 лет. Капитальные вложения на развитие сельского хозяйства за этот период сократились в 20 раз, объем внесения минеральных удобрений – в 7 раз, органических удобрений- в 5,5 раза, площади известкования кислых почв снизились в 9 раз, фосфоритования – в 11,5 раза.[1]

В 1990-е годы в России в результате разрушения государственной системы управления воспроизводством плодородия почвы кризис почвенных ресурсов принял всеобщий характер. Различными формами деградации почв оказалось подвержено около 230 млн. га земли, при этом сельскохозяйственные земли деградировали на 48 % площади, пастбища и сенокосы - на 25 %. Из сельскохозяйственного оборота за последние 10 лет выбыло более 30 млн. га земли и процесс этот продолжается [3].

Нарушение севооборотов, мелиоративных и почвозащитных систем земледелия, противоэрозионной организации территории, примитивная агротехника, низкий уровень производственной культуры на земле, отсутствие современных технологий и средств производства, развитие деградации земель являются следствием неуправляемого землепользования, оставленного без тщательного контроля со стороны государства.

На сегодня экологический фактор в решении сложившейся земельной проблемы выходит на первый план наряду с экономическими вопросами: необходимо систематически отслеживать изменения состояния почв, своевременно выявлять негативные процессы и стремиться предотвращать их.

Важная роль в организации контроля за состоянием окружающей природной среды принадлежит экологическому мониторингу, призванному осуществлять систематические наблюдения за изменяющимися показателями окружающей природной среды, давать оценку состояния и прогнозировать характер изменений; в зависимости от напряженности антропогенных и природных факторов.

Агроэкологический мониторинг, являющийся важной составляющей частью Единой Государственной системы экологического мониторинга, представляет собой общегосударственную систему наблюдений и контроля за состоянием и уровнем загрязнения агроэкосистем (и сопредельных с ними сред) в процессе интенсивной сельскохозяйственной деятельности. Он направлен на создание высокоэффективных, экологически сбалансированных агроценозов на основе оптимального использования и расширенного воспроизводства почвенного и ресурсного потенциала.

Цель данной работы – обосновать необходимость проведения агроэкологического мониторинга. Для достижения данной цели будут решаться следующие задачи:

1.  Определить цели, задачи, основные понятия агроэкологического мониторинга;

2.  Обосновать районы (регионы), наиболее нуждающиеся в проведении агроэкологического мониторинга.

3.  Проследить динамику изменения агроландшафтов на основе многолетних наблюдений;

Работа состоит из двух основных разделов. Раздел 1 – теоретический, в нем рассматриваются основные понятия агроэкологического мониторинга, определяются его основные цели и задачи.

В разделе 2 будет обоснована необходимость проведения агроэкологического мониторинга земель Российской Федерации, будет дана характеристика земельных угодий некоторых регионов на основе имеющихся данных по мониторингу.

В заключении работы приведены выводы, сделанные в ходе проведенной работы.


Раздел 1. Основные понятия агроэкологического мониторинга

1.1  Цели, задачи и компоненты агроэкологического мониторинга

Основной целью агроэкологического мониторинга является создание высокоэффективных, экологически сбалансированных агроценозов на основе рационального использования и расширенного воспроизводства природно-ресурсного потенциала, грамотного применения средств химизации сельского хозяйства и т. д. Поэтому в задачи агроэкологического мониторинга входят следующие мероприятия:

·  организация наблюдений за состоянием агроэкосистем;

·  получение систематической объективной и оперативной информации по регламентированному набору обязательных показателей, характеризующих состояние и функционирование основных компонентов агроэкосистем;

·  оценка получаемой информации;

·  прогноз возможного изменения состояния данного агроценоза или системы их в ближайшей и отдаленной перспективе;

·  выработка решений и рекомендаций; консультации;

·  предупреждение возникновения экстремальных ситуаций и обоснование путей выхода из них;

·  направленное управление эффективностью агроэкосистем.

Агроэкосистема – система, объединяющая участок территории (географический ландшафт), занятый хозяйством, производящим сельскохозяйственную продукцию. В ее состав входят: почвы с их населением (животные, водоросли, грибы, бактерии), поля-агроценозы, скот, фрагменты естественных и полуестественных экосистем (леса, естественные кормовые угодья, болота, водоемы) и человек. От естественных акосистем агроэкосистемы отличаются по целому ряду показателей (табл. 1).


Таблица 1. Сравнительный анализ естественных экосистем и агроэкосистем [6]

Параметр Естественная экосистема Агроэкосистема
Источник энергии для работы Солнечная энергия, фиксируемая при фотосинтезе Солнечная энергия, антропогенная энергия (особенно высокие вложения при интенсивном растениеводстве)
Степень замкнутости циклов минеральных элементов Высокая. Практически все элементы циркулируют по почти замкнутому циклу. Возможны некоторые потери за счет использования биомассы человеком Низкая. Вынос веществ человеком значителен
Отток вещества за счет межсистемных связей Низкий, но может возрастать при выпасе Высокий, выносится до 50% внесенных удобрений, теряется гумус вследствие эрозии, вымываются пестициды
Трофическая структура Блок гетеротрофов состоит из естественных консументов и редуцентов и составляет около 10% от биомассы растений. Основная часть первичной биологической продукции используется сапротрофами Основными гетеротрофами являются человек и скот, которые потребляют большую часть первичной продукции. В подземной части биомасса гетеротрофов может быть значительной, но не более 10% от всей биомассы гетеротрофов
Соотношение фитомассы надземной и подземной частей От 1:0,5 до 1:100 От 1:1 до 1:0,1
Роль разных частей растений в накоплении гумуса Надземные и подземные части участвуют в равной мере Формирование гумуса идет в основном за счет пожнивных остатков

При проведении агроэкологического мониторинга основываются на ряде принципов, к числу которых следует отнести:

·  Комплексность – одновременный контроль за тремя группами показателей, отражающих наиболее существенные особенности вариабельности агроэкосистем (показатели ранней диагностики изменений; показатели, характеризующие сезонные или краткосрочные изменения; показатели долгосрочных изменений);

·  Непрерывность контроля за агроэкосистемой, предусматривающая строгую периодичность наблюдений по каждому показателю с учетом возможных темпов и интенсивности его изменений;

·  Единство целей и задач исследований, проводимых разными специалистами (агрометеорологами, агрохимиками, гидрологами, микробиологами, почвоведами и другими.) по согласованным программам под единым научно-методическим руководством;

·  Системность исследований – одновременное исследование блока компонентов агроэкосистемы: атмосфера, вода, почва, растение, животное, человек;

·  Достоверность исследований – точность исследований должна перекрывать пространственное варьирование, сопровождаться оценкой достоверности различий;

·  Одновременность (совмещение, сопряженность) наблюдений по системе объектов, расположенных в различных природных зонах.

Основными блок-компонентами агроэкосистем являются атмосфера, вода, почва, растения. Проведение мониторинга по каждому из этих объектов имеет определенные особенности, и потому будет рассматриваться отдельно.[1]

1.2 Почвенный мониторинг

Почвенный экологический мониторинг является составной частью агроэкологического мониторинга. Он состоит из трех последовательных взаимосвязанных частей: контроль (наблюдения) за состоянием почв и почвенного покрова и оценка их пространственно-временных изменений; прогноз вероятных изменений состояния почв и почвенного покрова; научно обоснованные рекомендации по направленному регулированию основных средств и режимов в почвах, непосредственно определяющих их плодородие и урожайность сельскохозяйственных культур.

Получаемая на базе мониторинга информация об изменении свойств почвы, почвенных режимов и процессов под воздействием естественных факторов почвообразования и антропогенных нагрузок служит основой для моделирования почвенного плодородия.

Задача мониторинга состояния почвенного покрова - обеспечение регулярного контроля использования земель, однородности почвенного покрова полей, эрозионных процессов, оползневых и селевых наносов, подсклонового заиления, заболачивания, засоления, опустынивания и других негативных процессов.

Контроль за использованием земель подразумевает наблюдение за соответствием природного потенциала земель их производственному назначению. Контроль однородности почвенного покрова полей – выявление контурности, пятнистости, образования микрорельефа и др. Контроль за развитием эрозионных процессов подразумевает слежение за увеличением числа оврагов, дефляция поверхности, перемещение барханов, дюн и других негативных процессов.

Усиление негативных антропогенных воздействий, обусловливающих нарушение почв и снижение их плодородия, требует включения в программы почвенно-экологического мониторинга следующих задач:

·  определение потерь почвы (в том числе скорости потерь) в связи с развитием водной эрозии и дефляции;

·  контроль за изменением кислотности и щелочности почв (прежде всего в районах с повышенными дозами внесения минеральных удобрений при осушении и орошении, а также при использовании мелиорантов и промышленных отходов в окрестностях крупных промышленных центров, которые характеризуются высокой кислотностью атмосферных осадков);

·  контроль за изменением водно-солевого режима и водно-солевых балансов мелиорируемых, удобряемых или каким-либо другим способом изменяемых почв;

·  выявление регионов с нарушенным балансом основных элементов питания растений; обнаружение и оценки скорости потерь почвами гумуса, доступных форм азота и фосфора;

·  контроль за загрязнением почв тяжелыми металлами, выпадающими с атмосферными осадками, и за локальным загрязнением их тяжелыми металлами в зонах влияния промышленных предприятий и транспортных магистралей;

·  контроль за загрязнением почв химическими средствами защиты растений в районах их постоянного использования (например, на рисовых полях);

·  контроль за загрязнением почв детергентами и бытовыми отходами, особенно на территориях с высокой плотностью населения;

·  сезонный и долгосрочный контроль за структурой почв и содержанием в них элементов питания растений, за водно-физическими свойствами и уровнем грунтовых вод;

·  экспертная оценка вероятности изменения свойств почв при сооружении гидромелиоративных систем, внедрении новых систем земледелия и технологий, строительстве крупных промышленных предприятий и других объектов.

Многообразие природных условий и факторов антропогенных воздействий на почвы, сложность почвенных структур обусловливают необходимость разработки дифференцированных программ почвенно-экологического мониторинга.

Начальный этап мониторинга (первая форма) позволяет оценить состояние почв и почвенного покрова, масштабы воздействия антропогенных факторов, направленность и интенсивность развития негативных процессов и выбрать (в соответствии с базовыми принципами мониторинга) объекты для последующих исследований.

Стационарная форма почвенно-экологического мониторинга (вторая форма) реализуется по расширенной программе комплексных исследований свойств и параметров почв, режимов и процессов, протекающих в них.

Для длительных и комплексных наблюдений стационарный участок должен включать группу достаточных по размерам площадок, которые охватывали бы все виды почв, различающихся по степени проявления тех или иных процессов, например, при гидроморфизме мезоморфные почвы вершин повышений, глееватые почвы склонов, глеевые понижения рельефа. То же относится и к немелиорированным массивам. Размеры экспериментальных участков (площадок) трудно определить заранее. Их устанавливают с учетом размеров и состояния элементарных почвенных ареалов, длительности исследований, видов режимных исследований и периодичности наблюдений.

Третья форма мониторинга реализуется по сокращенной программе в процессе маршрутных обследований заранее выбранных участков или маршрутов (по тому же принципу, что и стационаров). При этом основное внимание уделяют репрезентативным диагностическим показателям, наиболее динамично меняющимся во времени (кислотность, ОВП, плотность и структурное состояние почвы, впитывание УГВ и т.д.). Маршрутные обследования пространственно могут быть приурочены к стационарным участкам или их прокладывают по самостоятельным направлениям.

По своему содержанию маршрутная система мониторинга представляет собой форму оперативного контроля за состоянием почв и почвенного покрова, мелиоративных систем, агроэкосистем и продуктивностью земель. Периодичность (частота) маршрутов 1...3 за вегетационный период. В случае выявления негативных процессов (переосушение или подтопление площадей, утечка воды из дрен, изреженность и вымокание посевов, засоление, подкисление, осолонцевание, эрозия и т. д.) составляют соответствующие карты и картосхемы, специальные акты. При обнаружении значительных изменений в свойствах почв и структуре почвенного покрова оценивают целесообразность проведения дальнейших наблюдений на таких участках (территориях).

Четвертая форма мониторинга заключается в сплошном обследовании территории. Выходные информационные материалы при этой форме мониторинга составляют в первую очередь инвентаризационные картографические характеристики, а также картограммы агрохимических обследований и разработанные на этой основе рекомендации по рационализации землепользования.

Получаемые данные о фактическом состоянии почвенных (содержание гумуса, эродированность, рН, засоленность, солонцеватость и др.) и агрохимических (содержание подвижных форм азота, фосфора, калия и др.) свойств, агропроизводственная группировка почв и «почвенные очерки», характеризующие почвы по всему спектру пользования, служат базовыми предпосылками для последующих теоретических обобщений и практических рекомендаций. Последние же должны отражать трансформацию сельскохозяйственных угодий; охрану почв от водной и ветровой эрозии; осушение, орошение и проведение культуртехнических работ; химическую мелиорацию земель (известкование, гипсование и т.д.); рациональные размещения и набор сельскохозяйственных культур; особенности агротехнических приемов и систем применения удобрений с учетом почвенных условий; улучшение сенокосов и пастбищ.

Обязательное условие при осуществлении рассматриваемой формы мониторинга - использование методов картографирования. При этом набор приемов получения исходных данных (от визуальных до космических) должен быть максимально полным.

В зависимости от сложности почвенного покрова для проведения съемок, оценки специализации хозяйств и интенсивности использования земель устанавливают различные масштабы почвенных исследований (лесостепь - 1 : 10 000 – 1 : 25 000; пастбищные угодья в полупустыне - 1 : 50 000; орошаемые и осушенные земли - 1 : 2000 – 1 : 5000 ). Одновременно дифференцируют точность проводимых обследований и составляемых картографических материалов.

В результате длительной распашки, применения удобрений, химических мелиорантов, орошения, осушения и других агротехнических и мелиоративных мероприятий компонентный состав комплексных почвенных контуров изменяется. На это обстоятельство в процессе мониторинга следует обращать серьезное внимание.

Для достижения репрезентативности наблюдений и объективности оценок состояния и изменений почвенно-агрохимических свойств почвенные обследования целесообразно проводить с периодичностью 1 раз в 10-15 лет, а агрохимические - каждые 5 лет. Проведение таких работ повторно, с одной стороны, позволяет устранять недостатки и восполнять пробелы прежних наблюдений, а с другой (что наиболее существенно) - выявлять и фиксировать происшедшие изменения свойств почв и почвенного покрова вследствие природных и антропогенных воздействий.

Объекты мониторинга закладываются во всех земледельческих зонах. Они должны отражать типичные природные и сельскохозяйственные ландшафты и быть приурочены к местам наиболее интенсивного антропогенного воздействия. Параллельно выбирают фоновые территории (участки), представленные природными ландшафтами, почвы которых за последние 40-50 лет не испытывали или испытывали незначительные антропогенные нагрузки. Фоновыми территориями могут служить заповедники.

При выборе объектов мониторинга учитывают специализацию хозяйства, систему земледелия, способы обработки почв, систему севооборотов. Целесообразно выбирать объекты исследования (хозяйства) с разным экономическим уровнем.

Вид и степень антропогенного воздействия на почвы и структуру почвенного покрова также существенно влияют на выбор объектов мониторинга и объекты соответствующих работ. Например, при организации почвенного мониторинга распространения вторичного засоления число наблюдательных участков помимо прочих условий будет зависеть от степени (и, возможно, вида) засоления, уровня грунтовых вод и других специфических факторов. Предположим, что в зоне засоления почв имеются эрозионно опасные земли и источники техногенного загрязнения (к примеру, тяжелыми металлами), тогда в схему объектов мониторинга включают участки, позволяющие учитывать различные масштабы смытости, а также особенности аккумуляции почвой техногенных веществ в зависимости от расстояния до источников загрязнения, вида ценозов и других экологических факторов.

На мелиорированных землях необходимо принимать во внимание способ орошения, тип дренажа, сроки функционирования оросительной или осушительной системы, состав оросительных и дренажных вод.[1]

1.3 Мониторинг за состоянием растений

Одним из основных блок-компонентов агроэкосистем являются растения. В процессе агроэкологического мониторинга фиксируют не только количество и качество урожая в конце вегетации, но данные по всем динамическим показателям его формирования (накопление биомассы; формирование листовой поверхности для последующего расчета использования фотосинтетического потенциала, развитие ассимиляционной поверхности листьев; изменение структуры агрофитоценоза и его оптико-биологическая характеристика с оценкой КПД использования лучистой энергии; закладка и реализация элементов продуктивности растений).

Проведение таких наблюдений позволит уточнить сроки агротехнических и агрохимических мероприятий, контролировать развитие процессов формирования урожая. Зная оптимальные параметры отдельных элементов, можно регулировать их.

При интенсивных технологиях возделывания зерновых культур для целесообразного внедрения различных агротехнических мероприятий, направленных на увеличение урожайности, важен учет не только фаз, но и этапов развития растений.

Для характеристики фотосинтетической деятельности растений оперируют площадью листовой поверхности, которую можно измерять с помощью фитопланиметра или рассчитывать по формуле

 

S= LDK,

где L - длина листьев; D - ширина листьев; К- постоянный поправочный коэффициент, равный для пшеницы и ячменя 0,67; для кукурузы 0,75.

Площадь листьев определяют в те же периоды, что и биомассу растений. По полученным данным строят кривые нарастания площади листьев в онтогенезе.

Морфофизиологический метод контроля позволяет в течение онтогенеза наблюдать за формированием основных элементов продуктивности, оценивать фото- и биосинтетическую активность посевов. Метод позволяет не только грамотно определять сроки агроэкологических мероприятий, но и объективно оценивать потенциальные возможности растений и степень реализации этих возможностей в зависимости как от применяемой системы удобрений, так и от абиотических факторов.

Выращивание экологически безопасной продукции в условиях накопления тяжелых металлов в почве требует изучения баланса их в целом, а также его расходных статей (вымывание фильтрующимися и поверхностными водами, вынос растениями и др.).Процессы накопления тяжелых металлов в почве, их подвижность и вертикальная миграция по профилю изучены пока недостаточно. Поэтому наряду с исследованиями миграции биогенных элементов из почвы с фильтрующимися водами необходимо изучать миграцию тяжелых металлов (Cd, Zn, Pb, Cr, Cu, Ni и др.) и факторы, влияющие на этот процесс (тип почвы и гранулометрический состав, содержание органического вещества, физико-химические свойства, известкование, применение минеральных и органических удобрений).[1]


1.4 Мониторинг состояния вод

Факторами формирования качества воды являются химические процессы трансформации и биохимические, биологические, физико-химические, а также гидрологические взаимодействия веществ.

В химическом составе природных вод можно выделить следующие группы соединений.

1.  Ионы, определяющие степень минерализации воды (С1-, SO42-, HCO3- , СО32-, Са2+, Mg2+, К+);

2.  Биогенные вещества: нитраты (NO-3), нитриты (NO-2), аммоний (NH+4), фосфаты (РО3-4), кремний (Si), органические соединения азота и фосфора;

3.  Органические вещества - комплекс истинно растворимых и коллоидных органических соединений;

4.  Растворенные газы (02, С02, Н2 и др.);

5.  Микроэлементы (Li+, Pb2+, Cs+, Ве2+, Sr2+, Ba2+, Cr2+, Mo, V, Mn, Br--, J-, F-, B);

6.  Ионы водорода, определяющие кислотно-щелочное равновесие водных растворов (рН);

7.  Радиоактивные элементы;

Качество природных вод, контактирующих и взаимодействующих с почвой, тесно связано с почвенными процессами и техногенным воздействием на почву. Под влиянием антропогенных факторов в природных водах могут содержаться различные загрязняющие вещества: нитраты, нитриты, пестициды, фенольные соединения, синтетические поверхностно-активные вещества, тяжелые металлы и т. д.

Атмосферные осадки, вынося из атмосферы вещества-загрязнители, являются фактором экологического риска. Так, наличие в атмосфере окислов серы и азота создает опасность выпадения кислотных дождей.

Анализ химического состава атмосферных осадков необходим для учета поступления элементов на единицу площади при балансовых расчетах.[1]

 

1.5 Микробиологический мониторинг

Микрофлора почвы - основной фактор почвообразовательного процесса. Качество почвы определяется ее плодородием, важнейшими показателями которого являются биомасса микроорганизмов, интенсивность протекающих в почве биохимических процессов, таксономический состав микрофлоры и ее функциональное разнообразие.

Закономерно, что одна из первоочередных задач заключается в оценке параметров биологической активности почв с разным плодородием, сформированным на основе различных систем земледелия в длительных стационарных опытах. Такие оценки проводят на основных типах почв в различных по природным условиям земледельческих зонах.

Полученные таким образом результаты - исходная база для разработки критериев микробиологической оценки качества почвы и создания банков нормативной информации, необходимых для управления почвенным плодородием и охраной окружающей природной среды. Современные возможности накопления, обработки, хранения и предоставления информации открывают широкие возможности для более обоснованного, а главное, конструктивного решения управленческих задач в области почвенного плодородия.

Разработка качественных и количественных параметров, нормативной базы биологических свойств почвы позволяет развернуть систематические наблюдения за их изменениями в процессе сельскохозяйственного производства.

В связи с этим, цели микробиологического мониторинга (как составной части агроэкологического мониторинга) можно определить следующим образом:

1.  Получение информации по основным параметрам биологических свойств почвы в различных регионах страны.

2.  Оценка соответствия почв нормативным требованиям.

3.  Прогноз возможных путей эволюции почв под влиянием тех или иных агротехнических мероприятий.

4.  Выдача нормативной информации для разработки корректировки агротехнических приемов, обеспечивающих расширенное воспроизводство почвенного плодородия и высокую продуктивность агроэкосистем.

Таким образом, микробиологический мониторинг призван выполнять контрольную функцию качества почвенной среды и предоставлять нормативную информацию, необходимую для разработки экологически безопасных агротехнологий.[1]

 

1.6 Эколого-токсикологическая оценка агроэкосистем

В системе агроэкологического мониторинга важной базовой составляющей является комплексная эколого-токсикологическая оценка исследуемых объектов.

Определение набора показателей для эколого-токсикологической оценки представляет собой самостоятельную методическую задачу, решая которую целесообразно учитывать:

·  почвенно-климатические характеристики регионов;

·  наиболее вероятные (на основе многолетних данных) метеорологические условия, включая особенности перемещения воздушных масс;

·  возможность загрязнения агроэкосистем промышленными выбросами близлежащих предприятий; объемы и состав, токсичность выбросов (при обязательном учете розы ветров);

·  применяемые технологии обработки почв и использования средств химизации (удобрения, средства защиты растений, химические мелиоранты).

Обязательное условие - проведение исходного химического анализа вод, почв, растений (в том числе по биогенным элементам: CI, F, Se, В, Br, As, NO3, NO2, нитрозоаминам; тяжелым металлам: Be, Mn, Zn, Pb, Cd, Cr, Co, Mo, Ni, Hg, V, Sn; остаткам средств защиты растений; обязательно — ДДТ (ДДЭ), бенз(а)пирен, диоксины. При этом целесообразно использовать технологические карты и архивные материалы.

Для ряда регионов обязательным требованием при определении набора показателей для проведения эколого-токсикологической оценки является гаммаспектрометрия и радиометрия образцов почв, вод и растений.

Обязательное условие проведения эколого-токсикологической оценки - исходный анализ вод, почв, растений по комплексу выбранных показателей на фоновой территории (на достаточно большом участке ненарушенного ландшафта). В этом случае представляется возможным проследить динамику изменений экологического состояния исследуемой агроэкосистемы, в том числе и при проведении природоохранных мероприятий. Площадь выбираемого фонового участка зависит от условий того или иного региона. При достаточном облесении и низком промышленном воздействии такие площади могут не превышать 1...1,5 га. В степных регионах, особенно при наличии экологически небезопасных предприятий (химические и металлургические производства, ТЭЦ и др.), указанные площади должны быть в 100...200 раз больше. Располагать фоновые участки надо с учетом розы ветров в соответствии с размещением оцениваемых агроэкосистем.

Контроль за накоплением растениями токсичных соединений и качеством растительной продукции входит в число системообразующих задач агроэкологического мониторинга. Токсикологическая же оценка продукции растениеводства определяет эколого-экономическую эффективность всего технологического комплекса возделывания культур.

Гранулометрический состав целесообразно определять 1 раз в 5... 10 лет. Определяют гранулометрический состав послойно через каждые 10 см с помощью бура методом пипетки (по Качинскому). Данный метод позволяет получить достаточно надежные результаты. Водопроницаемость, фильтрационная и водоудерживающая способности почв более динамичны во времени. Они существенно зависят от влажности, уплотненности и сложения почв. Данные показатели следует контролировать при полигонном мониторинге 1 раз в ротацию севооборота (из-за трудоемкости определения) в конце вегетации (после уборки), когда устанавливается относительно равновесная плотность почвы, а посевы не затрудняют полевое определение водопроницаемости и фильтрационной способности.

Постоянно наблюдая за состоянием агрофизических параметров, можно предотвратить нежелательные изменения и ухудшение свойств почв, развитие негативных деградационных процессов, а в итоге сохранить высокое плодородие почв, их важные экологические функции.

Рассматривая агроэкологический мониторинг относительно проблемы почвенного гумуса, следует учитывать, что данные фракционно-группового состава позволяют выявить генетические особенности гумуса различных почв, но малопригодны для оценки изменения природы гумусовых веществ под влиянием различных факторов, даже при длительном воздействии земледельческих приемов. Поэтому направленное регулирование количества и качества гумусовых соединений требует разработки методов диагностики их изменений под влиянием различных факторов техногенеза.

Без надежной информации о реальном вкладе биологического азота и органического вещества, бобовых в различных почвенно-климатических условиях в зависимости от насыщенности севооборота бобовыми культурами и их видового состава трудно избежать негативных экономических и экологических последствий.

Для реализации потенциала биологического азота в практике земледелия необходима достоверная информация, позволяющая разработать систему оценочных показателей, основные из которых:

·  размеры азотфиксации бобовыми при различной их урожайности;

·  количество вовлекаемого атмосферного азота и поступление в почву органического вещества;

·  возможные урожайности зерновых за счет использования азота бобовых и потребность в минеральном азоте при возделывании культур по бобовым предшественникам.

Исходными данными для решения этих вопросов должны служить материалы агроэкологического мониторинга.

Для однолетних бобовых культур массу органического вещества, общего и симбиотического азота, поступающую в почву, определяют ежегодно в конце вегетации, для многолетних бобовых трав - в год распахивания их пласта.

Органическое вещество бобовых, поступающее в почву, состоит из массы пожнивных и корневых остатков в слое 0...40 см и активного органического вещества, выпадающего из непосредственного учета (мелкие живые и отмершие корешки, клубеньки, корневые экссудаты и т. д.). Учет в этом случае ведут косвенно, вводят поправочные коэффициенты.

Практически выполняется следующая процедура. Первоначально учитывают корневую массу в слое почвы 0...20 и 20...40 см, отмывая корни от почвы на ситах с отверстиями 1,5...2,0 мм. Далее полученную учетную массу стерни и корней умножают на поправочный коэффициент. В итоге обеспечивается относительная полнота учета всей органической массы бобовых, поступающей в почву.

Важнейший показатель плодородия, определяющий урожайность сельскохозяйственных культур и эффективность действия удобрений,- содержание подвижного фосфора в почве, что также относится к объектам агроэкологического мониторинга.

Задача состоит в том, чтобы достичь в почве такого содержания фосфора, при котором он не являлся бы фактором, ограничивающим урожай.

Первая часть проблемы - создание определенного количества фосфора в почве - обоснована исследованиями системы «почва - удобрения - растения». Установлено, что для обеспечения потребности растений первостепенное значение имеет концентрация фосфора в почвенном растворе у поверхности корней. Степень концентрации зависит от поглощения фосфора корнями растений и восстановления ее за счет перехода фосфора из твердой фазы. Чем больше запас ионов, способных к обмену между твердой и жидкой фазами почвы (фактор емкости), чем больше их подвижность (фактор интенсивности), тем быстрее концентрация восстанавливается, а растения лучше обеспечиваются фосфором. [1]

Фосфор и калий являются основными макроэлементами, непосредственно участвующими в формировании величины урожая сельскохозяйственных культур. При недостатке хотя бы одного из них в почвенном растворе создается дисбаланс в минеральном питании растений, приводящий к потере урожая.

В улучшении плодородия почв, повышении продуктивности возделываемых культур особое значение имеют органические удобрения

Будучи важным источником пополнения запасов доступных растениям питательных веществ, они оказывают положительное мелиоративное влияние на почву, способствуя, в частности оптимизации ее гумусового состояния Известно положительное влияние органических удобрений в нейтрализации токсических свойств тяжелых металлов в результате связывания их в малодоступные соединения, ослаблении токсичного действия других химических элементов. Например, в Японии содержание кадмия в рисе снижалось при внесении птичьего помета, компоста или муки из рисовой соломы. Уменьшение токсичности соединений хрома отмечено при внесении торфа или осадка сточных вод. Несмотря на большое производственное значение органических удобрений, накоплено немало данных о больших потерях органикой питательных элементов, высоких концентрациях токсичных веществ в сельскохозяйственной продукции главным образом из-за нарушения технологии использования данного вида удобрений (особенно различных видов бесподстилочного навоза).

Концентрация животноводства, развитие его на промышленной основе коренным образом изменили структуру и качество органических удобрений. Сократилась доля подстилочного навоза (до 20 % общей массы); одновременно увеличился выход бесподстилочного полужидкого и жидкого навоза и навозных стоков.

Применение высоких доз бесподстилочного навоза сопровождается накоплением фосфора в почве, а также повышением его содержания в грунтовых водах.

Из применяемой в качестве удобрений органики наибольшую опасность для окружающей среды могут представлять осадки сточных вод. Применение их в качестве удобрения возможно в научно обоснованных дозах только после тщательного химического анализа осадков и санитарной проверки на специальных площадках.

Учитывая возможность загрязнения окружающей среды, необходим постоянный контроль за качеством органических удобрений, содержанием в них токсичных веществ, а также накоплением последних в почве и растениях.

Расширенное воспроизводство плодородия почв, будучи одной из важнейших природоохранных задач, предусматривает постоянную заботу о пополнении запасов гумуса, что возможно при максимальном использовании различных видов органических отходов в качестве удобрений. Наблюдается прямая связь - чем больше внимания уделяют грамотному использованию навоза и других органических удобрений, тем выше культура земледелия. Нарушение научно обоснованных рекомендаций по приготовлению, хранению и внесению органических удобрений не только существенно снижает их эффективность, но и заметно повышает вероятность загрязнения природных комплексов и их составляющих.

Сообразуясь с требованиями экологической безопасности, необходим обязательный контроль по основным блок-компонентам агроэкосистем. Различные виды органических удобрений необходимо анализировать на содержание в них макро- и микроэлементов, патогенной микрофлоры и яиц гельминтов. В нетрадиционных видах органики (сапропели, всевозможные компосты, сырьем для которых служат отходы промышленных и сельскохозяйственных предприятий) следует дополнительно определять содержание тяжелых металлов и остаточных количеств пестицидов.

Закономерности поведения в объектах внешней среды (атмосфера, вода, почва, растение) большого набора химических средств защиты растений, регуляторов роста, ингибиторов, дефолиантов и десикантов, а также азотсодержащих токсикантов (нитраты, нитриты, нитрозоамины) и тяжелых металлов достаточно хорошо изучены в модельных экспериментах.

Важный показатель - динамика содержания пестицидов в почве и растениях. Для изучения динамики пробы отбирают, как минимум, в 3...4 срока: первый - в день обработки (исходное содержание), а далее через 3...5, 15. ..30 и 50...60 суток после обработки, а также при уборке урожая. Наименьшие временные интервалы берут при использовании нестойких препаратов, наибольшие - стойких.

Остаточные количества пестицидов в почве и растениях определяют официальными методами, утвержденными уполномоченными на то органами (Госхимкомиссия, Минздрав и др.). Оценивают получаемую информацию сравнением с нормативами ПДК и МДУ в почве и растениях. Параллельно с остаточным количеством пестицидов в растительных образцах на основе стандартных методов исследуется содержание азотсодержащих токсикантов (NO2, NO3, нитрозоамины), тяжелых металлов, фтора, мышьяка, хлора, ряда микроэлементов.

Основные задачи оценки сводятся к следующим:

·  выявление и комплексная характеристика источников загрязнения природной среды;

·  слежение за загрязнителями по всем возможным каналам их миграции, оконтуривание зон вероятного влияния на живые организмы, выявление участков депонирования загрязнителей;

·  биогеохимическая оценка миграции и концентрации загрязнений как непосредственно в зонах загрязнения, так и при переносе их по трофическим цепям;

·  определение динамики загрязнения среды, скорости и объемов поступления, распространения и выведения изучаемых соединений; получение прогнозных материалов.

Таким образом, в данной главе были рассмотрены основные компоненты агроэкологического мониторинга, основные показатели, контролируемые при ведении наблюдений за состоянием агроценоза, определены основные цели и задачи данной системы. В следующем разделе будет обоснована необходимость проведения агроэкологического мониторинга для земель Российской Федерации, будут рассмотрены состояние и использование земельных угодий некоторых регионов на основе имеющихся данных по мониторингу, будет исследована динамика изменения пахотных площадей некоторых субъектов РФ.


Раздел 2. Анализ агроландшафтов России

2.1 Обоснование необходимости проведения агроэкологического мониторинга для земель РФ

Как говорилось в предыдущей главе, задачей мониторинга состояния почвенного покрова (одной из наиболее важных составляющих агроэкологического мониторинга) является обеспечение регулярного контроля использования земель, однородности почвенного покрова полей, эрозионных процессов, оползневых и селевых наносов, подсклонового заиления, заболачивания, засоления, опустынивания и других негативных процессов. Поэтому земли, подверженные наиболее сильному антропогенному воздействию, требуют особо тщательного контроля за изменением их качественных и количественных характеристик.

На сегодняшний день одной из самых острых проблем земледелия в России является прогрессирующая деградация почвенного покрова, особенно южных территорий страны (рис.1 ).

Рисунок 1. Деградация почвенного покрова на Земле.

Широко распространенная форма деградации земель – это дегумификация почв из-за потери ее главного носителя плодородия гумуса. В результате длительного и нерационального использования земель почвы сельхозугодий оказались истощенными и разрушенными. В нашей стране ежегодная убыль гумуса на пашне составляет 0,62 т/га, а в целом по России 81,4 млн. т. Абсолютная доля потерь органического вещества за последнее десятилетие составила 0,4 – 0,8%. Содержание его в пахотных почвах за последние сто лет снизилось на 30 – 40%. В России за период с 1990 г. выбыло из сельскохозяйственного оборота 25,6 млн. га сельхозугодий, в том числе пашни 8,2 млн. га. С 1970 г. в стране площади с эродированными, засоленными и кислыми почвами увеличились примерно в 2 раза, с переувлажненными и каменистыми в 3, супесчаными в 8 раз. За последние 30 – 40 лет богатые черноземы Русской равнины потеряли 10 – 15 см плодородного слоя. [2]

В значительной степени подвержены деградации пастбища. Только на Северном Кавказе, в Алтайском крае и Новосибирской области от деградации пострадало около 5 млн. га пастбищ.

Площадь действующих оврагов на сельскохозяйственных землях составляет 1,7 млн. га, а площадь заовраженных не пригодных для обработки сельскохозяйственных земель по разным данным – от 5 до 8 млн. га.[2]

В целом по России процессам деградации и опустынивания подвержено около 100 млн. га (около 50% сельхозугодий).

Урожай сельскохозяйственных культур на деградированных землях снижается на 10 – 80% в зависимости от степени деградации. В результате недобор земледельческой продукции в пересчете на зерно составляет примерно 47 млн. т.

Деградация земельных угодий наряду с ущербом для национальной экономики представляет угрозу экологической безопасности страны. Приводящие к деградации негативные процессы (эрозия, дефляция, засоление) усиливаются, а вместе с ними возрастает опасность заиления и загрязнения водных источников смываемыми с полей почвой и химикатами. Так, в реки и водоемы водосборного бассейна р. Дона ежегодно поступает около 300 млн. т почвы, содержащей 75 тыс. т азота, фосфора и других биогенных элементов и 1 тыс. т гербицидов. Это приводит к прогрессирующему снижению водности рек и загрязнению воды ядохимикатами. Годовой сток Волги уже сократился на 10%, Дона, Кубани и Терека – на 25 – 40%. [3]

Следует так же отметить, что наблюдается ежегодное сокращение сельскохозяйственных угодий, одной из причин которого является именно нарушение земель и снижение их плодородия (рис.2 )

 


Рисунок 2. Изменение площади сельскохозяйственных угодий на 1 января 2009 года[4]

Как видно из имеющихся данных, процессы деградации агроландшафтов России идут достаточно интенсивно, постоянно сокращаются площади пахотных земель, и все большее количество земельных участков выводится из сельскохозяйственного оборота. Поэтому необходимо создание целостной системы агроэкологического мониторинга за состоянием агроэколандшафтов России. При этом важно не только осуществлять организацию наблюдений за состоянием агроэкосистем и отслеживать динамику негативных процессов, но и оценивать получаемую информацию, а также прогнозировать возможные изменения состояния каждого конкретного агроценоза или их системы в ближайшей и отдаленной перспективе. На основании этого следует в ближайшем времени вырабатывать решения и рекомендации для борьбы и предупреждения возникновения негативных процессов, связанных с деградацией почвенного покрова.

2.2 Земли РФ, требующие наиболее тщательного контроля

Среди земель, наиболее полно испытывающих на себе влияние хозяйственной деятельности человека, находятся южные и центральные районы России (рис 3). Эти земли относятся к территориям с острой экологической ситуацией. Динамика развития деградационных процессов здесь отличается большой скоростью и, на некоторых участках, фактической необратимостью нарушения почвенного покрова. Если сравнить карту России с нанесенными на ней границами районов с острыми экологическими ситуациями и карту почвенного покрова, то можно заметить, что в число неблагоприятных территории попадает фактически весь черноземный юг России (рис. 4). К числу таких субъектов России следует отнести:

1.  Центрально-черноземный район России (Белгородская, Воронежская, Курская, Липецкая и Тамбовская области),

2.  Поволжье (Астраханская, Волгоградская, Пензенская, Самарская, Саратовская и Ульяновская области)

3.  Северный Кавказ (Краснодарский край, Ставропольский край, Ростовская области)

4.  Западную Сибирь (Курганская, Тюменская, Омская, Новосибирская области и Алтайский край)



Рисунок 3. Регионы с очень острой и острой экологической ситуацией.

 

Рисунок 4. Черноземы на территории России


Процессы на сельскохозяйственных землях Поволжья, Южно-Чернозёмной полосы и Северного Кавказа во Всероссийском НИИ агролесомелиорации (ВНИАЛМИ, Волгоград) считают долгосрочным опустыниванием, поскольку увеличиваются водная эрозия, выветривание гумуса (плодородного слоя) и засоление почв. Среди главных причин этого рассматривают последствия как повсеместной мелиорации, так и методов освоения целинных земель.

По данным этого института (апрель 2009 года), распашка и мелиорация 1956-1965 годах целинных и залежных земель в Поволжье методами, игнорирующими специфику тех почв, вызвали их долгосрочную деградацию: площадь смытых за последние 45 лет почв только в Волгоградской области увеличилась на 60%. [3]

Аналогичная ситуация по тем же причинам наблюдается в Саратовской области. По данным управления Федерального агентства кадастра объектов недвижимости по Саратовской области, с 1996 года в области не проводится комплексный мониторинг состояния почв. А областная целевая программа "Государственный мониторинг земель", принятая в 2003 году и рассчитанная на 5 лет, утратила силу из-за отсутствия финансирования. Прекращены работы по периодическому почвенному обследованию и экономической оценке земель, потеряна возможность получения достоверной информации об их состоянии.

Тем временем, периодические наблюдения государственных агрохимических служб показывают, что более 60% земель сельскохозяйственного назначения области эродированы, более 13% засолены, потери гумуса в почвах достигли 16%.

Что касается Ставропольского края, то в "Стратегии развития агропромышленного комплекса Ставропольского края на период до 2020 года включительно", утвержденной Министерством сельского хозяйства края в апреле 2009 года, отмечено, что к основным угрозам развития агропромышленного комплекса края отнесены:

·  потеря почвенного плодородия — отчуждение из почвы микроэлементов превысило их внесение: по фосфору — 12-15 кг/га; по калию — 30-40 кг/га;

·  дефицит гумуса достиг 400-700 кг/га; 60-70% урожая формируется за счет истощения почв;

·  ускоряющиеся темпы деградации земель сельскохозяйственного назначения;

·  высокая потенциальная опасность проявления ветряной эрозии на 58% территории сельскохозяйственных угодий, водной эрозии — на 34%.[5]

Процессам переувлажнения и заболачивания подвержено около 270 тыс. га сельскохозяйственных угодий Ставропольского края. Площадь засоленных земель, солонцов и солонцеватых почв составляет более 2,7 млн га. Площадь средне — и сильносбитых сенокосов и пастбищ составляет соответственно 404 и 355 тыс. га. Общая площадь полезащищенных лесных насаждений уменьшилась с 140 тыс. га в 1991 году до 128 тыс. га в 2008 году, значительно ухудшилось их состояние. Наблюдается прогрессирующее заиливание обводнительно-оросительных систем и технологических водоемов. Ухудшается фитосанитарная обстановка, увеличивается применение ядохимикатов вследствие нарушения севооборотов.

Те же тенденции наблюдаются в других субъектах Южного и Поволжского округов РФ. Вся серьезность данной проблемы заключается не только в ухудшении экологического состояния региона, но и в экономических потерях , поскольку эти регионы обеспечивают почти треть товарного объема сельскохозяйственной продукции РФ.[5]

2.3 Динамика сокращения посевных площадей

Выше уже было отмечено, что в настоящее время в связи с ухудшением качества почв и нерациональным использованием земель снижается количество сельскохозяйственных угодий, в том числе, площади пашни.

К примеру, за период 1990-1997 гг. значительно уменьшились площади пашни (табл.2), также сократились площади сельскохозяйственных угодий за период 2005-2008гг (табл.3). Данные приведены по 15 субъектам РФ, являющихся одними из важнейших сельскохозяйственных регионов страны.


Таблица 2. Группировка некоторых сельскохозяйственных регионов по показателю уменьшения площади пашни 1990-1997 гг. (8лет)[6]

Уменьшение площади пашни, %
4-11 12-19 20-30

Татарстан

Башкортостан

Белгородская обл.

Ульяновская обл.

Краснодарский край

Воронежская обл.

Самарская обл.

Оренбургская обл.

Липецкая обл.

Алтайский край

Саратовская обл.

Волгоградская обл.

Тюменская обл.

Курганская обл.

Ростовская обл


Таблица 3. Динамика площади сельскохозяйственных угодий по субъектам РФ, тыс. га[4]

Субъект РФ Сельскохозяйственные угодья
Всего Пашня, в том числе
2008 2007 2006 2005 2008 2007 2006 2005
Татарстан 4530,8 4543,6 4561,9 4563,4 3443,4 3444,8 3463,6 3468,0
Башкортостан 7340,4 7341,4 7339,8 7343,6 3680,3 3677,4 3686,2 3709,5
Белгородская область 2141,4 2141,5 2142,1 2143,8 1651,9 1652 1652,8 1653,3
Ульяновская область 2211,9 2210,2 2212,5 2212,5 1664,5 1660 1696,6 1724,5
Краснодарский край 4715,2 4716,6 4717,5 4717,7 3990,9 3991,9 3987,2 3986,2
Воронежская область 4079,9 4081,2 4081,6 4072,3 3059,8 3060,3 3059,3 3053
Самарская область 4004,8 4007,4 4011,2 4013,3 2989,3 3016 3026,5 3039,9
Оренбургская область 10826,7 10839,4 10839,6 10838,7 6116,2 6132,7 6132,5 6131,5
Липецкая область 1955,1 1955,2 1955,5 1957,7 1554.2 1554,3 1554,4 1555,3
Алтайский край 11024,3 11024 11024,9 11025,5 6590 6464,7 6401,3 6474,3
Саратовская обл. 8562,7 8563,9 8564,9 8565,6 5947,9 5945,1 5941 5941,6
Волгоградская обл. 1449,9 1449,9 1449,7 1450,3 821,8 821,6 822,5 823
Тюменская обл. 3388,7 3389 3390,5 3390,9 1446,6 1472 1480,1 1477,1
Курганская обл. 4459 4459 4459 4459,1 2470,1 2489 2525,9 2555,1
Ростовская обл. 8513,5 8522,3 8534,6 8540,1 5854,5 5835,1 5800,6 5781,9

 

Таблица 4. Группировка некоторых сельскохозяйственных регионов по показателю уменьшения площади пашни 2005-2008гг. (4года)

Уменьшение пахотных площадей, %
Увеличение пахотных площадей 0-1 1-3 3-4

Краснодарский край

Воронежская обл.

Алтайский край

Саратовская обл.

Ростовская обл.

Татарстан

Башкортостан

Белгородская обл.

Оренбургская обл.

Липецкая обл.

Волгоградская обл

Самарская обл.

Тюменская обл.

Ульяновская обл.

Курганская обл.

 

В тоже время в некоторых регионах, таких как Краснодарский край, Воронежская область, Алтайский край, Саратовская и Ростовская области, произошло увеличение площадей пахотных земель. При этом следует отметить, что за период 1990-1997гг в Ростовской и Тюменской областях сократились пахотные земли на 20-30%, а за период 2005-2008 гг. площадь пашни в этих регионах увеличилась на 0,1%, т.е. наблюдается тенденция положительной динамики.

Наибольшее снижение пахотных площадей наблюдается а Курганской (-3,3%) и Ульяновской (-3,5%) областях. Наибольшее увеличение площадей пашни наблюдается в Алтайском крае (+1,8%).



Рисунок 5. Курганская область на карте России

 


Рисунок 6.Ульяновская область на карте России

Уменьшение площадей пашни в Курганской и Ульяновской областях, по-видимому, можно объяснить тем, что обе эти области расположены на территориях, где интенсивно происходит загрязнение почвы химическими поллютантами, внесение чрезмерного количества средств химизации и, как следствие, снижение почвенного плодородия (рис 5,6). В других областях, где продолжается, хотя и менее интенсивно, процесс уменьшения количества пахотных земель также связано, по-видимому, с острой экологической ситуацией.


Заключение

 

Агроэкологический мониторинг является важной составляющей частью ЕГСЭМ. Благодаря сведениям, получаемых в результате работы этой системы, можно выявить негативные процессы и явления, протекающие в агроэкосистемах, установить их причины и своевременно остановить их дальнейшее развитие. При слаженной работе системы агроэкологических наблюдений процесс выявления нарушения, принятия решения по его устранению и реализация мероприятий на практике дает хорошие и своевременные результаты.

В России на данный момент целостной системы наблюдения и контроля за состоянием агроценозов нет:

·  информация не всегда точна и своевременна;

·  несмотря на обилие всевозможной информации, отсутствует структура быстрого принятия решений и своевременного устранения источника негативного воздействия и самого воздействия;

·  отдельные этапы проведения агроэкологического мониторинга не всегда согласованы между различными структурами, осуществляющими их. Поэтому получаемые данные не всегда состыковываются.

В ходе работы было выявлено, что наиболее сложная экологическая обстановка - на территории юга России, в черноземной зоне.

Был проведен анализ изменения площадей пашни в южных регионах России. На его основе можно сделать вывод о том, что наблюдается связь между сокращением числа пахотных площадей и загрязнением окружающей среды. В районах с острой экологической ситуацией загрязненные и нарушенные земли все меньше используются для нужд сельского хозяйства. Для черноземных почв юга России эта проблема имеет наиболее острый характер.

Поэтому именно этот регион нуждается в проведении наиболее тщательного контроля за состоянием агроценозов и почв в частности, в разработке мер по снижению антропогенной нагрузки на эти земли. В этом регионе необходимо осуществлять не только стационарные наблюдения, но и маршрутный мониторинг периодичностью 1-3 раза за вегетационный период для наиболее репрезентативного отражения динамики и скорости развития негативных процессов. Тогда, возможно, меры по снижению конкретных антропогенных нагрузок на определенные агроландшафты будут приниматься быстрее и эффективнее, что в последствии действительно приведет к более эффективному управлению агроэкосистемами.

 


Список использованной литературы

 

1.  В. А. Черников, Р. М. Алексансин, А. В. Голубев и др. Агроэкология. Москва, Колос 2000.

2.  Защитное лесоразведение в Среднем Поволжье: Материалы Всероссийской научно-практической конференции, посвященной 75-летию Поволжской агролесомелиоративной опытной станции, п. Березки Самарской обл., 23 – 24 июня 2005 г. / ВНИАЛМИ. – Волгоград, 2005

3.  Статистические материалы и результаты исследований развития АПК России, М., РАСХН, 2006

4.  Государственный (национальный) доклад о состоянии и использовании земель в Российской Федерации в 2008 году, Министерство экономического развития РФ, Федеральное агентство кадастра объектов недвижимости, Москва, 2009

5.  журнал «Аграрное обозрение», июнь-июль 2009 г.

6.  http://science.viniti.ru

Введение Современный кризис в аграрном секторе экономики обостряется и переплетается с кризисом экологическим, который выражается в развитии эрозионных процессов, разрушении почвенного покрова и, в конечном итоге, в снижении плодородия почв

 

 

 

Внимание! Представленная Курсовая работа находится в открытом доступе в сети Интернет, и уже неоднократно сдавалась, возможно, даже в твоем учебном заведении.
Советуем не рисковать. Узнай, сколько стоит абсолютно уникальная Курсовая работа по твоей теме:

Новости образования и науки

Заказать уникальную работу

Похожие работы:

Альтернативні джерела енергії
Базові методики прогнозування стану довкілля
Види джерел забруднення навколишнього середовища
Структура, функціонування, зональність та механізми стійкості макроекосистем
Сутність екологізації розвитку продуктивних сил України
Сучасне поняття про агроекосистему
Сущность природоохранной функции социально-культурной деятельности
Тварини-індикатори забруднення навколишнього середовища
Оценка воздействия на окружающую среду и экологическая экспертиза
Оценка степени антропогенной нагрузки в г. Ставрополе

Свои сданные студенческие работы

присылайте нам на e-mail

Client@Stud-Baza.ru