курсовые,контрольные,дипломы,рефераты
Аккре́ция (лат. accretio — «приращение, увеличение» ← accrescere — «увеличиваться, расширяться») — процесс падения вещества на космическое тело из окружающего пространства.
Радиоисточник G359.23-0.82 (Мышь): Пульсар PSR J1747-2958, движущийся со скоростью ~600 км/с через межзвездный газ. Виден конус ударной волны (радиоизображение, синий цвет) и облака плазмы, разогретые вторичной ударной волной на границе магнитосферы (рентгеновское изображение, желтый цвет).
В случае излучающих тел (звезд) аккреция газа возможна только при условии, что светимость тела не превышает критическую светимость, то есть гравитационные силы превышают давление излучения тяготеющего тела.
Для неподвижной относительно тела газовой среды аккреция сферически симметрична. В случае излучающих тел (звёзд) сферически симметричная аккреция газа возможна только при условии, что светимость тела не превышает критическую светимость.
Для движущихся гравитирующих тел аккреция близка к сферически симметричной при скорости движения тела меньшей скорости звука в среде. При сверхзвуковых скоростях движения гравитирующего тела сквозь газовую среду, аккреция на него происходит в конусе, расположенном позади тела и ограниченном вызванной им ударной волной.
При аккреции плазмы на небесное тело, обладающее собственным магнитным полем, механизмы аккреции определяются магнитогидродинамическим взаимодействием плазмы с магнитным полем.
Если давление магнитного поля в окрестностях небесного тела превышает газовое давление аккрецируемой плазмы, то аккреция останавливается на расстоянии альвеновского радиуса, т.е. на границе магнитосферы и направляется на магнитные полюса небесного тела. Необходимым условием аккреции плазмы на магнитные полюса является ее проникновение внутрь магнитосферы, которое происходит за счет развития гидромагнитных неустойчивостей типа неустойчивости Рэлея-Тейлора. Граница магнитосферы (магнитопауза) определяется условием равенства давлений магнитного поля и набегающей плазмы, т. е. радиус магнитосферы (альвеновский радиус rA) определяется соотношением:
где В — магнитное поле небесного тела, ρ и V — соответственно плотность и скорость потока набегающей плазмы.
Аккреция в тесных двойных системах
Изображение переменной звезды Миры (омикрон Кита), сделанное космическим телескопом им. Хаббла в ультрафиолетовом диапазоне. На фотографии виден аккреционный «хвост», направленный от основного компонента — красного гиганта к компаньону — белому карлику
В случае двойных систем аккреция существенно асимметрична и может вносить значительный вклад в эволюцию как самой системы, так и ее компонентов. Наиболее интенсивная аккреция в двойных системах происходит когда в процессе эволюции один из компонентов заполняет свою полость Роша, что приводит к перетеканию вещества на соседнюю звезду через внутреннюю точку Лагранжа L1. В этом процессе перетекающее вещество образует аккреционный диск, ответственный за многие наблюдательные феномены рентгеновских источников.
Астрономические феномены, вызываемые аккрецией
Новая Единорога (Звезда V 838 Mon)
Наиболее интересные явления вызываются аккрецией на компактную проэволюционировавшую компоненту двойной системы.
Нестационарная аккреция на белые карлики в случае, если компаньоном является массивный красный карлик, приводит к возникновению карликовых новых (звезд типа U Gem (UG) и новоподобных переменных звёзд.
Аккреция на белые карлики, обладающие сильным магнитным полем, направляется в район магнитных полюсов белого карлика, и циклотронный механизм излучения аккрецирующей плазмы в околополярных областях сильного вызывает сильную поляризацию излучения в видимой области (поляры и промежуточные поляры).
Аккреция на белые карлики богатого водородом вещества приводит к его накоплению на поверхности (состоящей преимущественно из гелия) и разогреву до температур реакции синтеза гелия, что, в случае развития тепловой неустойчивости приводит к взрыву, наблюдаемому как вспышка новой звезды.
Достаточно длительная и интенсивная аккреция на массивный белый карлик приводит к превышению его массой предела Чандрасекара и гравитационному коллапсу, наблюдаемому как вспышка сверхновой типа Ia.
Аккреция на поверхность нейтронных звезд с накоплением на её поверхности и образованием вырожденной оболочки (см. вырожденный газ), богатой водородом и гелием, приводит к взрывному термоядерному синтезу. Такие объекты наблюдаются как вспыхивающие рентгеновские источники с периодом от нескольких часов до нескольких дней (барстеры).
При аккреции на нейтронные звезды, обладающие сильным магнитным полем, давление магнитного поля в магнитосфере нейтронной звезды сравнивается с давлением аккрецирующего потока ионизированного вещества и канализирует поток аккрецирующей плазмы в область магнитных полюсов. Вследствие вращения нейтронной звезды наблюдаемый поток излучения периодичен; такие системы наблюдаются как рентгеновские пульсары.
При аккреции на чёрные дыры сверхгорячий аккреционный диск наблюдается как рентгеновский источник.
О скрытых возможностях физического содержания уравнений Максвелла классической электродинамики
Единое электродинамическое поле и его распространение в виде плоских волн
Летящие группы Эггена (галактический взгляд на земные созвездия)
Квантовый эффект Холла в двумерных системах
Буриданов осел и шредингеровская кошка
Кинетика кипения воды в поле силы тяжести
Силовые поля или потенциалы?
Век с электроном
Земля как планета - прошлое, настоящее, будущее
Метод изображений в электростатике
Copyright (c) 2025 Stud-Baza.ru Рефераты, контрольные, курсовые, дипломные работы.