,,,
8.090615
: " . "
.
..
2006
""
.
_____________ ..
1. " . "
12-05 1 2006 .
2. . .
3. ( , .)
. .
4. :
.
.
5. - 1 2006 .
6. - 1 2005 .
_______________________
_________________
/ |
|||
1. | . | 02.10.2005 | |
2. | . | 30.10.2005 | |
3. | . | 30.11.2005 | |
4. | . | 15.01.2006 | |
5. | 15.02.2006 | ||
6. | . | 10.03.2006 | |
7. | . | 20.03.2006 | |
8. | . | 1.04.2003 | |
9. | 15.04.2006 | ||
10. | . | 25.04.2006 | |
11. | 28.05.2006 | ||
12. | 01.06.2006 | ||
13. | . | 12.06.2006 | |
14. | 19.06.2006 |
_____________________________
_________________
: 96 , 25 , 21 , 3 , 14 .
: .
.
.
, Allen-Bradley.
, , , .
, , , , ,
Abstract
Explanatory note: 96 page, 25 drawings, 21 tables, 3 exhibits, 14 sources.
Object of research: electric network OAO MMK im. Iliicha
Considereded questions of optimization current mode electroconsumptions on reactive power and development adaptive managerial system by modes of electroconsumption.
Designeded software on determination of optimum states of working electric networks.
Offereded system to automation of process of distribution reactive power marketed on equipping the company Allen-Bradley.
Designeded system to automations produces the collection of necessary parameters, calculates the current mode, defines the optimum power compensating device and will send (pass) controlling influences on device, regulative power compensating device.
OPTIMIZATION, ELECTROCONSUMPTION, REACTIVE POWER, ACTIVE POWER, LOSS a POWER, AUTOMATION
........................................................................................................... 9
1 . 17
1.1 . 17
1.2 . 17
1.3 . 19
1.3.1 19
1.4 . 21
1.4.1 -. 22
1.4.1.1 . 23
1.4.1.2 . 23
1.4.1.3 . 24
1.4.2 . 25
1.4.3 . 27
1.4.4 . 29
1.5 .. 30
1.5.1 . 31
1.5.2 . 32
1.5.3 . 35
1.6 . 38
1.7 . 39
1.7.1 . 40
1.7.1.1 . 41
1.7.2 . 43
1.7.3 . 46
1.8 -. 48
1.9 . 54
1.10 . 56
2 . 58
3 . 66
4. 73
4.1 .. 73
4.2 .. 73
4.2.1 . 73
4.2.2 . 74
4.2.3 . 75
4.3 .. 77
4.4 .. 78
4.4.1 . 78
4.4.1.1 PowerMonitor 79
4.4.1.2 RSEnergy 80
4.4.2 . 80
4.4.3 . 81
4.4.3.1 . 83
4.4.3.2 RSLinx: 84
4.4.3.3 RSLinx 84
4.4.3.4 RSLinx Lite. 84
4.4.3.5 RSLinx OEM.. 85
4.4.3.6 RSLinx Professional 86
4.4.3.7 RSLinx Gateway. 87
4.4.3.8 RSLinx SDK.. 88
4.4.3.9 SuperWho RSWho. 89
5 " . " 90
5.1 . 90
5.1.1 . 90
5.1.2 . 93
5.1.3 . 93
5.2 . 100
........................................................................................................ 103
.......................................................................................... 104
............................................................................................. 106
.............................................................................................. 118
, , .
, . , . , .
. , .
, - .
, . .
, , . . .
. , , .
, , . . .
. . , .
, . , . .
, , . , 40 60% .
( ), , . . .
, . .
, , . , , , . . .
, , . .
. .
. , .
, , . , .
, , , : (Z)=min. Z, .
, , Z , ( ) , , .
.
Z , , . , , , , . .
(Z) .
, . . , , , .
, , ++.
( ) min f() , f: R"R - . 3 :
;
;
.
, . .
, , .
. , . , , . , , . , . . :
) ;
) ;
) .
, ,
1.
1.1
, , , .[1] , (, , , ) . .
, :
;
;
( ).
:
( );
, ;
, ;
, , , ;
.
.[1,2] :
;
;
.
. , . :
(1.1)
- , ;
n - .
(1.1) .
, , , [1,2]. ,
(1.2)
m.
(1.3)
di Di - i.
, (1.1) , (1.2), , (1.3).
, , , .[2,3]
, , .
(1.1) (1.2) , . , [3,4,5,6].
. , . , , . .
n- . Uk Uk+1 Uk DUk, , ..
(1.4)
,.. Uk
(1.5)
, (1.4) Uk, (1.5) Uk
(1.6)
DUk Uk,
(1.7)
(1.8)
, (1.8) , .. .
, - . .
( ) :
;
;
;
.
n- . , [1,7].
. , , . , , , . , .
,
;
.
, . , - .
, - , . .
, .
[5,6]. :
-;
;
;
.
1.4.1 -
-[5,7], 1961, . - , . , , . - .
1.4.1.1
, . . , . . n- . .
1.4.1.2
[5,6] , .
Xp(k+1)=X(k)+(X(k)-X(k-1)). (1.9)
, Xp(k+1) . , X(k), X(k+1). , , X(k) . , . . , . , , :
X(k) - ,
X(k-1)- ,
Xp(k+1)- , ,
X(k+1)- () .
-.
1.4.1.3
1. b1 hj xj, j=1,2,...,n.
2. f(x) b1 f(x). f(x) b1 :
f(b) b1.
. , f(b1+h1*e1), e1- 1.
, d1 b1+h1*e1. f(b1-h1*e1), , b1 b1-h1*e1.
, b1 2, .. f(b1+ h2*e2) .. n-x, b2.
b2=b1, .. , b1, .
b2 b1, .
3. , , , . :
b2 b2-b1, .
P1=b1+2*(b2-b1). (1.10)
Pi=bi+2*(b(i+1)-bi). (1.11)
P1(Pi).
B,2 b2( b(i+1)), b3 (b(i+2)), B,1 . b2(b(i+1)), b2(b(i+1)).
4. , ( ) .
1.4.2
[7]:
xiL, xiU, i=1,2,..., N ( ), xo, a ( a =1,3) d .
1. , P ( P=2N). p = 1, 2,...,P-1
xp;
xp - , x xp = xp + (x - xp); , xp ;
xp - , , p=P;
W(xp) p=0,1,...,P-1.
2. :
xR, W(xR) = max W(xp) = Wmax ( );
x xm = x + a (x - xR);
xm - W(xm)< Wmax, xm x, , W(xm)<Wmax;
xm - W(xm)<Wmax, 4;
xm - , 3.
3. :
xim<xiL( ), xim = xiL;
xim>xiU( ), xim = xiU;
xm - , ; , xm .
4. :
;
,
; 2a.
1.4.3
[3,5] ,
xi = xiL +ri (xiU - xiL), i=1,2,...,N, (1.12)
ri - , [0,1].
, , . , , - . N . 90% i (xiU - xiL), 0< <1, xi . N=5, i=0,01 2,3 1010, .
. , . . .
xiL, xiU, i=1,2,..., N ( ), xo D xo = xiU - xiL, Q, P . , q = 1, .
1. i = 1,2,...,N
xip = xiq-1 +ri D xq-1, (1.13)
ri - , [-0,5;0,5].
2.
xp - p < P, 1;
xp - , xp W(xp)
p < P, 1;
p = P, xp W(xp) xq.
3. , D∙xiq = i∙D∙xiq-1.
4.
q > Q, .
q=q+1 , 1.
1.4.4
1.1 -
. . 1.1, (x1*,x2*). [3,4]. 1 , , , 1. , 2, , 2, D, .. , . n .
. . , .
1.5
, [3,5,7].
(1.14)
- ().
(1.15)
(1.14) (1.15) , , , n .
, (1.14) (1.15) . , ( ). .
1.5.1
[1,5,7] , . 1.2. 10 20.
1.2
(1.3), , 1 2. () 10, 20. Z0. (1.15) Z.
() Z. 11, 21. Z1.
: 2-, 3- 4- 12, 22; 13, 23 14, 24. Z2, Z3 Z4.
. 1.2 , c "" Z. , i- (i+1)- :
(1.16)
. . . Z. . 1.2 13, 23 14, 24. .
. ( ) .
, .
1.5.2
, ( ) , . , ( ) .
. . 1.3 [1,7].
1.3 () ()
. , i , -. . i i .
(1.17)
λi - λ, .
. (1.18)
λi (, ).
, . h. di .
(1.19)
di xi .
, λ , " " φ(λ).
. (1.20)
for(i=0;i<n;i++) g2+=g[i]*d[i]; -
. (1.21)
if (ff[2]>=ff[0] || g2>=0) "" , , . (0,λ), λ , , "".
, (0,λ) , λ/ 2.
(1.22)
l[3]=h*(ff[1]-.75*ff[0]-.25*ff[2]);
l[3]/=2*ff[1]-ff[0]-ff[2];
for(i=0;i<n;i++)
{ x[i]=y[i]+l[0]*d[i]; y[i]=x[i]; }
xi+1=xi, |g(xi+1)| , . , . .
, , , , , .
1.5.3
Z. , Z [1].
, .
,
(1.23)
, (. 1.4).
, :
() 10, 20;
Z0;
(1.15) grad Z;
.
1.4
. 11, 21. Z1.
, 11, 21 . (1.23), 11, 21:
(1.23)
, .
11, 21 . 12, 22. Z2.
. , 12, 22 .
. 12, 22 .. (11, 21; 12, 22) . 13, 23, . Z3.
13, 23. . (1.16).
1.6
W , (3.16)-(3.17). [3,5]
. (1.24)
T=W+RQ(x),
R - , .
, {Rk}, k=1,2,... . T. (b*,R1).
(b*,R1) T R2>R1 .. , T(b*,Rk), k=1,2 ..., .
1.5 -
1.7
, [6]. , , , .
:
;
;
.
1.7.1
. , .
, , , .
W(x) x1, x2, x3 W1, W2, W3, a, a1, a2 ,
q(x) = ao + a1(x - x1) + a2(x - x1)(x - x2) (1.25)
W(x) . q(x) (. .1.1).
1.1 -
1.7.1.1
f(x) α, β, γ fα, fβ, fγ, f(x)
ö(x)=Ax2+Bx+C, (1.26)
,
Aá2+Bá+C=fá,
Aâ2+Bâ+C=fâ,
Aã2+Bã+C=fã. (1.27)
A=[(ã-â)fá+(á-ã)fâ+(â-á)fã] / D,
B=[(â2-ã2)fá+(ã2-á2)fâ+(á2-â2)fã] / D,
C=[âã(ã-â)fá+ãá(á-ã)fâ+áâ(â-ã)fã] / D, (1.28)
D=(á-â)(â-ã)(ã-á)
, φ(x)
x=-B/2A,
>0. , f(x)
(1.29)
. , 3. f(x) x0+λd, x0- , d . f(x0+λd) λ:
φλ = f(x0+λd). (1.30)
, , , . , f(x), D, , x*(, ). :
1. x2 = x1 + D x.
2. W(x1) W(x2).
3.
W(x1) > W(x2), x3 = x1 + 2 D x;
W(x1)< W(x2), x3 = x1 - D x;
W(x1) > W(x2),
4. W(x3)
Wmin = min{ W(x1),W(x2), W(x3)},
Xmin = xi, Wmin.
5. x1, x2, x3 x*, .
6.
| Wmin - W(x*)| < W, . 7;
| Xmin - x*| < x, . 7.
7. Xmin x* . 4.
, , á, â, ã, fá, fâ, fã d (1.29) . , (1.29) :
(1.31)
1.7.2
, , . [6,7], .
, .
f(x) x0 + hd ,
(1.32)
, :
(1.33)
a+bh+ch2+dh3, φ(h) p=0 , , a, b, c, d :
(1.34)
, r ,
(1.35)
. 2c +6dh.
,
(1.36)
(1.37)
q . Gp >0 , q , φ(h) , q . , (0, ) . , φq > φ p Gp >0.
, q , , .
, q :
(1.38)
φm - φ(h),
h- , 2 1.
1.7.3
[7,8]
(1.39)
a - ;
b - ;
G - - x* , x* :
(1.40)
x0
(1.41)
G(x0) - , x0.
f(x) φ(x). xm,
(1.42)
(1.43)
x :
(1.44)
(1.45)
λ - , G-1(x)g(x).
1.8 -
- ( ) , [7,8]. (n+1)- n- . , . , , . (n+1) . , , . , , . , , n<=6.
, : , . .
1. :
f1=f( x1), f2=f(x2) ... fn+1=f(xn+1) (1.46)
2. fh, fg , fl xh, xg xl.
3. , xh.
(1.47)
f(x0)=f0.
4. xh. xh x0, xr f(xr) = fr.
. 1.6.
1.6
α>0 - , xr :
xr-x0=α (x0-xh), ..
xr=(1+α)x0 -αxh. (1.48)
.
α= |xr-x0| / |x0 xh|.
5. fr fl.
fr<fl, . x0 xr . , xe fe=f(xe). 1.7. . γ1 : xe-x0=γ (xr-x0), ..
xe=γxr+ (1-γ)x0. (1.49)
1.7
γ=|xe-x0| / |xr-x0|
fe<fl, xh xe (n+1)- (. 8). , ; 2.
fe=fl , xe. , x0 xr. xh xr, ( 5, 1) , , 2.
fr>fl, fr <=fg xr xh xr , , 2, .. 1,, .
fr>fl fr>fg 6.
6. fr fh.
fr>f h, 6,2.
fr<fh, xh xr fh fr. fr>f g 5,2, . 6,2.
fr>f h, , xh x0. , xc ( f) , . 1.8.
fr>f h, xc
xc-x0=β(xh-x0), (1.50)
β(0<b<1)- .
xc=βxh+(1-β)x0. (1.51)
fr<f h, xh xr, . xc
xc-x0=β(xr-x0), ..
xc=βxr+(1-β)x0. (1.52)
7. fc fh.
fc<f h, xh xc, , 2.
fc>f h, , fh , 8.
xl-, .
1.8 - fr>fh
1.9 - fr<fh
, xi
,
.. xi .
fi i=1,2,...,(n+1), , , 2.
9. , (n+1) - .
, (1.53)
.
σ<ε, , , , xl. , , , , "" .
αβγ , . α=1, β=0.5 γ=2. . , .
. x1 ,
x2=x1+ke1,
x3=x1+ke2,
xn+1=x1+ken, (1.54)
k - ,
ej - .
1.9
, [3]. ( ) ( ). . .
(1.55)
n , m
(1.56)
- , , .. (1.56)
(1.57)
(1.55) (1.57) , :
(1.58)
- , , .
, , .
, (1.55) (1.57) (1.58).
(1.58) . , :
(1.59)
m (1.57) .
(1.59) (m+n) .
(1.59) (1.58) (1.55) (1.57).
(1.59) . (1.59) , , , . (1.59) .
1.10
, , :
, .. , ;
, , .
, , , .
, . " ".
, .
2.
() (6.1). .
, (2.1)
- , , , ;
- , , ;
- ;
- ;
- .
(.2.1). U R S=P+jQ [9]. Q.
2.1
()
. (2.2)
()
. (2.3)
, , , - .
.
:
(2.4)
;
Δ ;
;
.
QK:
(2.5)
(2.5) ,
(2.6)
Q , U R, .
. , , . , .
[9,10,11], , , .
, . 2.2. 110 . , , .2.2 , 1. , Q, Q, Q, , 2 3 (Q12, Q21, Q13, Q31) 1 Q1.
2.2
n 35 , n . , . , G. 1 P+jQ.
(jQ) (jQ) , 0,4 1 0,4 (jQ). .
: 635 G, Q, Q, Q, Qi (i=1, 2, n), , .
, . . . .
, , . , :
, , ;
, ( 3 !).
.
, . , , .
(. 2.3). Q1 Q2 1 2 .
2.3
:
U;
R1 R2;
1 2 Q1 Q2;
zo;
.
, ,
(2.7)
1=R1∙co∙10-3/U2=0,0006;
2=R2∙co∙10-3/U2=0,0004.
10-3 (..).
. Z Q1 Q2:
(2.8)
:
(2.9)
.
, Qk2 Z , Qk1, ..
(2.10)
Qk2 .
=400 . ( ) Qk11=0, Qk21=400 . Z1.
: Qk12=0, Qk22=400 . Z2.
Qk2 , Zn<Zn-1. Zn Zn-1, Qk2 Qk1n-1 Qk2n-1, n-1 .
Qk1. Z. , Qk2 , Zm<Zm-1.
Qk1m-1, Qk2n-1 Z. =400 . . , , . . , . ++.
, .. . " . " , (. " "). , , .
3.
(. . 3.1). :
, , , ;
, .
:
;
;
;
;
.
:
;
;
;
;
;
.
:
,
,
,
.
3.1 -
. , . .
-, .[2,4,8] , , (. 3.1).
. (3.1)
NCONF CPP, . [12]
NCONF CPP (m, me, n, xguess, ibtype, xlb, xub, xscale, iprint, maxitn; x, fvalue).
NCONF CPP:
: m, me, n, xguess, ibtype, xscale, iprint, maxitn;
/: xlb, xub;
: x, fvalue.
m - .
me .
n .
x ( ).
xguess n, ;
ibtype , :
ibtype=3 , .
xlb n, :
, ibtype=0;
, ibtype=1 2;
/, ibtype=3.
xub - n, :
, ibtype=0;
, ibtype=1 2;
/, ibtype=3.
xscale n, . xscale 1.0.
iprint , ; :
0 ;
1 ;
2 ;
3 .
maxitn .
n, .
fvalue , .
, NCONF CPP,
(3.2)
(3.3)
.
:
, (3.4)
- ;
- .
.
(3.5)
Y11, ,Y1N ,
U1,,U2 .
(3.5) , , , . ≤ .
:
, (3.6)
.. , , .
, NCONF CPP, , [8,12]. ,
(3.7)
(3.8)
Bk ;
xk .
dk . xk+1 :
(3.9)
, . . , Bk .
NCONF CPP :
foryzc ;
luc ;
rluc , .
4.
4.1
, , ( ).
, , ( )
.
,
, , , .
4.2
4.2.1
.
:
;
: , , .
, :
;
;
.
. .
4.2.2
(, ) , .
:
;
( , "", "" "").
, , , .
.
, , .
, : .
.
. , , , , , .
: , . - , , .
4.2.3
: , - , - , , - , .. .
:
;
: , , ;
;
( , "", "" "").
, , .
.
, .
4.1
/ | - | |||
1 | 2 | 3 | 4 | 5 |
1 | ; : , , . | - . ; - - . | , | |
2 |
; ( , "", "" ""). |
|||
3 | - ++ | - + ( . ) | ; . | |
4 | ||||
5 | - | - + + |
4.3
, .
, , , , .
, , .
, , .
, . .
.
. , , , .
- , , , . , , . , :
Allen-Bradley Power Monitor RSEnergy;
, , ;
(. );
.
4.4
4.4.1
, . , , , . , , Allen-Bradley PowerMonitor RSEnergy.
4.4.1.1 PowerMonitor
PowerMonitor , , [14].
:
) :
;
;
cos ;
;
, , ;
, ;
;
;
, : ;
;
;
) :
;
, ;
;
: ;
) :
;
;
) :
, ;
;
.
RSEnergy
Rockwell Automation RSEnergy [14]. RSEnergy , . (. . 4.1). , .
Allen-Bradley PLC RSLinx, :
;
;
;
;
.
RSEnergy:
;
;
;
.
4.4.2
PLC , . PLC -.
- . / , . , - .
PLC-5 - 512 3072 6K 100K . -. - 5 125. / - ControlNet, DeviceNet Remote I/O.
4.4.3
RSIinx Rockwell Automation Networks Devices Microsoft Windows NT, Windows 95 Windows 98 [14].
32- , RSIinx Windows. RSIinx .
RSLinx , Rockwell Software. RSLinx , . RSLinx , PLC (RSEnergy) .
RSLinx , Ethernet ControlLogix Gateway (. . 4.2).
, Allen-Bradley , ControlLogix Gateways, . , PCMCIA, .
RSLinx , .
RSLinx LiteTM , Rockwell Software Allen-Bradley.
RSLinx OEMTM - MMI, , RSLinx API.
RSLinxTM RSLinx DDE , DDE ( DDE, DDE: Advance DDE, CF_Text, XL_Table Fast DDE).
RSLinx C SDK , RSLinx RSLinx Dynamic Link Library (DLL) .
4.4.3.1
, 32- Allen-Bradley .
1784-, 1784-(D), 1784-PCMK, RS-232 DFI, Ethernet Allen-Bradley, WINtelligent LINX Gateway, RSEmulate 500 RSEmulate 5.
Rockwell Software Allen-Bradley.
PLC-5, PLC-2, PLC-3, PLC-5/250TM, MicroLogix 1000 SLC 500.
.
, .
DDE-.
.
, 1785-, 1785-5, 5130- 5820-EI.
, SuperWho .
, - , .
4.4.3.2 RSLinx
IBM- 468SX .
RAM (12 ).
8 .
VGA .
Microsoft Windows NTTM 3.51 (IntelTM 486 PentiumTM).
- , Windows NTTM 3.51 (, , ..)
Ethernet / Allen-Bradley, , .
4.4.3.3 RSLinx
RSLinx. , , , . , , .
4.4.3.4 RSLinx Lite
RSLinx Lite , Rockwell Software Allen-Bradley. , , RSLinx. (DDE) RSLinx (RSLinx Application Programming Interface (API)). Rockwell Software, Allen-Bradley.
RSLinx Lite :
, 32- Allen-Bradley ;
Rockwell Software Allen-Bradley;
;
, ;
- , RSWho ;
- , Rockwell Software;
, - .
4.4.3.5 RSLinx OEM
RSIinx OEM , Rockwell Software, , HMI (- ).
RSLinx Lite, AdvanceDDE, Rockwell Software. , RSLinx Application Programming Interface (API).
RSLinx OPC. OPC OLE Microsoft .
RSIinx Lite, RSLinx OEM :
, API AdvanceDDE, RSLinx;
/ PLC-2, PLC-3, PLC-5, PLC-5/250, SLC 500, MicroLogix 1000, AdvanceDDE ControlLogix 5550 API;
/;
DDE;
DDE Rockwell Software;
OPC ;
, RSLinx API;
AdvanceDDE Rockwell Software (DDE DDE , Rockwell Software);
DDE .
4.4.3.6 RSLinx Professional
RSIinx Professional for Rockwell Automation Networks and Devices . RSLinx Professional RSIinx Lite RSIinx OEM, (DDE) DDE , Microsoft Excel Access, AdvanceDDE Rockwell Software , AdvanceDDE.
RSIinx Lite RSLinx OEM, RSLinx Professional :
RSLinx Lite / RSLinx OEM Linx;
/ PLC-2, PLC-3, PLC-5, PLC-5/250, SLC 500, MicroLogix 1000, AdvanceDDE Logix 5550 DDE ;
DDE CF_Text DDE , Visual Basic Lotus 1-2-3;
DDE Microsoft XL_Table DDE Microsoft Office, Microsoft Excel Access;
FastDDE DDE , FastDDE;
OPC .
4.4.3.7 RSLinx Gateway
RSLinx Gateway for Rockwell Automation Networks and Devices RSLinx. RSLinx WINtelligent LINX RSLinx Gateway TCP/IP. RSLinx Gateway - PLC, SLC MicroLogix Allen-Bradley, , RSLinx Gateway. , . -.
RSIinx, RSLinx Gateway :
, ;
RSLinx Gateway RSLinx WINtelligent LINX, TCP/IP ;
Microsoft RAS ( ), ;
OPC .
4.4.3.8 RSLinx SDK
RSLinx SDK for Rockwell Automation Networks and Devices , RSLinx RSLinx OEM. RSLinx SDK , RSLinx OEM , , , Rockwell Software Allen-Bradley, RSLinx.
RSLinx SDK :
, , RSLinx;
;
;
Rockwell Software HMI.
4.4.3.9 SuperWho RSWho
Communications/Super Who / SuperWho. SuperWho . Normal () Fast () SuperWho . (Graphical) SuperWho . , .
: Data Highway Plus, Data Highway 485 Ethernet. SuperWho , .
SuperWho, , .
RSWho - RSIinx, SuperWho. (. . 4.3).
5. " . "
5.1
5.1.1
5.1 110-220
, [9,13]:
(5.1)
(5.2)
(5.3)
- ,
- ().
5.2
, (5.4)
(5.5)
(5.6)
. (5.7)
5.3
:
. (5.8)
(5.9)
:
(5.10)
(5.11)
, (5.7) (5.8).
5.1.2
4(3*240) 540 : r=70.2 .
-240 604 : r=78,52 , x=241.6 ; =1721,4*10-6 .
-400 634 : r =50,72 , x=240,9 ; =1902*10-6 .
-240 686 : r =89,18 , x=274,4 ; =1955*10-6 .
5.1.3
5.1 /
, | I ., % | U, % | , | ., | |||
- | - | - | |||||
-25000/110 | 115/38,5/6,6 | 0,7 | 10,5 | 17,5 | 6,5 | 140 | 31 |
(5.9), (5.11) :
rT=1,5 ,
1=56,9 ,
2=0,
3=35,7 .
(5.6)-(5.7):
GT=0.0023,
BT=0.013.
5.2 /
, | U, % | , | ., | I ., % | |
-40000/110 | 115/6,3 | 10,5 | 172 | 36 | 0,65 |
(5.4) - (5.7) :
rT=1,42 ,
=34,7 ,
GT=0.0027,
BT=0.02.
5.3 1 / 28, 2 / 37
, | U, % | , | ., | I ., % | |
-60000/110 | 115/6,3 | 10,5 | 250 | 50 | 0,6 |
(5.4) - (5.7) :
rT=0.92 ,
=23 ,
GT=0.0038,
BT=0.0272.
5.4 - 2 / 28, 1 2 / 20.
, | U, % | , | ., | I ., % | |
-63000/110 | 115/6,3 | 10,5 | 260 | 59 | 0,6 |
(5.4) - (5.7) :
rT=0.87 ,
=22 ,
GT=0.0045,
BT=0.0286.
5.5 - / 32
, | U, % | , | ., | I ., % | |
-40500/110 | 115/10,5 | 10,5 | 172 | 36 | 0,65 |
(5.4) - (5.7) :
rT=1,42 ,
=34,7 ,
GT=0.0027,
BT=0.0197.
5.6 - 1 / 33
, | U, % | , | ., | I ., % | |
-40500/110 | 115/10,5 | 10,5 | 172 | 36 | 0,65 |
(5.4) - (5.7) :
rT=1,42 ,
=34,7 ,
GT=0.0027,
BT=0.0197.
5.7 - 2 / 33
, | U, % | , | ., | I ., % | |
-31500/110 | 115/10,5 | 10,5 | 140 | 60 | 0,7 |
(5.4) - (5.7) :
rT=1,9 ,
=44 ,
GT=0.0045,
BT=0.0167.
5.8 - / 6, / 42, 1 - 2 / 41
, | I ., % | U, % | , | ., | |||
- | - | - | |||||
-40000/110 | 115/11/6,6 | 0,6 | 10,5 | 17 | 6 | 200 | 43 |
(5.9), (5.11) :
rT=0,8 ,
1=35,5 ,
2=0,
3=22,3 .
(5.6)-(5.7):
GT=0.0033,
BT=0.0181.
5.9 - 1 / 44
, | U, % | , | ., | I ., % | |
-40000/110 | 115/6,6 | 10,5 | 172 | 36 | 0,65 |
(5.4) - (5.7) :
rT=1,42 ,
=34,7 ,
GT=0.0027,
BT=0.0197.
5.10 - 2 / 44, / 43
, | U, % | , | ., | I ., % | |
-32000/110 | 115/6,6 | 10,5 | 140 | 60 | 0,7 |
(5.4) - (5.7) :
rT=1,9 , =44 ,
GT=0.0045,BT=0.0167.
5.11 - 1 / 34, / 46
, | U, % | , | ., | I ., % | |
-16000/110 | 115/6,6 | 10,5 | 85 | 19 | 0,7 |
(5.4) - (5.7) :
rT=4,38 ,
=86,7 ,
GT=0.0014,
BT=0.0085.
5.12 - 2 / 34, / 2
, | U, % | , | ., | I ., % | |
-31500/110 | 115/6,6 | 10,5 | 140 | 60 | 0,7 |
(5.4) - (5.7) :
rT=1,9 ,
=44 ,
GT=0.0045,
BT=0.0167.
5.13 - / 38
, | U, % | , | ., | I ., % | |
-40500/110 | 115/6,6 | 10,5 | 172 | 36 | 0,65 |
(5.4) - (5.7) :
rT=1,42 ,
=34,7 ,
GT=0.0027,
BT=0.0197.
5.14 - 1 / 37
, | U, % | , | ., | I ., % | |
-40500/110 | 115/6,6 | 10,5 | 172 | 36 | 0,65 |
(5.4) - (5.7) :
rT=1,42 ,
=34,7 ,
GT=0.0027,
BT=0.0197.
5.15 - / 40
, | U, % | , | ., | I ., % | |
-31500/110 | 115/6,6 | 10,5 | 140 | 60 | 0,7 |
(5.4) - (5.7) :
rT=1,9 ,
=44 ,
GT=0.0045,
BT=0.0167.
5.16 - / 31: -40500/110/10
, | U, % | , | ., | I ., % | |
-40500/110 | 115/11 | 10,5 | 172 | 36 | 0,65 |
(5.4) - (5.7) :
rT=1,42 ,
=34,7 ,
GT=0.0027,
BT=0.0197.
5.17 - 3, 4 / 41
, | U, % | , | ., | I ., % | |
-63000/110 | 115/10 | 10,5 | 260 | 59 | 0,6 |
(5.4) - (5.7) :
rT=0,87 ,
=22 ,
GT=0.0045,
BT=0.0286.
5.2
(. . 3.1) " . " . . - .
5.18 -
/ | 110 | ||
, | , | ||
28 | 114,2 | - | 42351 |
2 | 113,8 | - | 38136 |
6 | 114,5 | - | 14233 |
32 | 113,7 | - | 9541 |
38 | 113,9 | - | 14919 |
46 | 114,1 | - | 5351 |
37 | 114,3 | - | 3780 |
40 | 113,8 | - | 10280 |
44 | 114,2 | - | 25306 |
34 | 114,5 | - | 15570 |
33 | 114,6 | - | 24905 |
20 | 113,8 | - | 45693 |
31 | 114,2 | - | 13560 |
43 | 114,1 | - | 10751 |
42 | 114,3 | - | 13341 |
41 | 114,2 | - | 65340 |
-1 | 114,8 | 15210 | 6800 |
-2 | 115,1 | 32155 | 12751 |
" . " , Δ=84500 . .
5.19
/ | 110 | ||
, | , | ||
28 | 113,8 | - | 46283 |
2 | 113,3 | - | 40563 |
6 | 114,1 | - | 15621 |
32 | 113,1 | - | 10159 |
38 | 113,2 | - | 16105 |
46 | 113,8 | - | 6258 |
37 | 113,9 | - | 4106 |
40 | 113,5 | - | 12223 |
44 | 113,9 | - | 28412 |
34 | 114,0 | - | 16933 |
33 | 114,1 | - | 26122 |
20 | 113,4 | - | 47731 |
31 | 113,8 | - | 15303 |
43 | 113,7 | - | 116697 |
42 | 113,9 | - | 15105 |
41 | 113,9 | - | 68251 |
-1 | 114,7 | 16250 | 7200 |
-2 | 115,0 | 34120 | 14105 |
" . " , Δ=89320 . .
, .
, - .
, , , , " . " :
;
;
.
, , , , " . " .
1. .. .: : . . .: , 2003 120.
2. .. . . .: , 1980 256.
3. . , . . . .: , 1988 440.
4. .. , .. , .. . . .: , 1981 272.
5. . , . . . .: , 1977 339.
6. .. . .: , 1980 518.
7. .. . , .-.: , 2004 226.
8. .. , .. . . . .: , 1986 248.
9. .. , .. , .. . : . . .: , 2003 147.
10. .. . .: , 1989. 446.
11. .., .. : . .: . , 1981. 271.
12. . . . MCSD Visual C++ 6.0 MFC, .-.: , 2000 554.
13. .. . .: , - 1972. 352.
#include <stdio.h>
#include <complex.h>
#include <iostream.h>
#include <conio.h>
#include <math.h>
int luc ( int, complex [][31], int [], double );
void rluc ( int, complex [][31], int [], complex [] );
void gauss ( int n, complex [][31], complex [], complex * );
void rasis ( int, int, complex [], complex [], complex [], int [], int [] );
void start ( int, int, int, complex [][31], complex [],
complex [], int [], int [], int [], int );
void vard ( int, int, int, complex [][31], complex [],
complex [], int [], int [], int [] );
void varm ( int, int, int, complex [][31], complex [],
complex [], int [], int [], int [] );
void prejc ( int, int, int, complex [], complex [] );
void rasis ( int, int, complex [], complex [], complex [], int [], int [] );
void pryzc ( int, complex [], int [], int [], int );
void foryzc ( int, int, complex [][31], complex [], int [], int [] );
double w;
void main ( void )
{
complex a[30][31], b[30], yz[90], tok[90], s;
int imax[90], imin[90], irow[30];
int n, nyz, nej, istop, i, j;
double f;
do
{
clrscr ( );
scanf ( "%i4 %i4 %i4 %i4", &f, &n, &nyz, &nej, &istop );
w = 2 * M_PI * f;
start ( n, nyz, nej, a, b, yz, imax, imin, irow, 0 );
for ( i = 0; i < nyz; i++ )
{
yz[i] = 1.0 / yz[i];
cout << yz[i];
if ( ! ( i % 4 ) ) cout << '\n';
}
for ( i = 0; i < nyz; i++ )
cin >> imax[i] >> imin[i];
cin >> n;
vard ( n, nyz, nej, a, b, yz, imax, imin, irow );
rasis ( n, nyz, b, yz, tok, imax, imin );
}
while ( istop );
//for ( i = 0; i < n; i++ )
//for ( j = 0; j <= n; j++ )
//cin >> a[i][j];
//for ( i = 0; i < n; i++ )
//b[i] = a[i][n];
//for ( i = 0; i < n; i++ )
//{
//for ( j = 0; j <= n; j++ )
//cout << a[i][j];
//cout << '\n';
//}
//for ( i = 0; i < n; i++ )
//cout << b[i];
//luc ( n, a, irow, 0.00001 );
//rluc ( n, a, irow, b );
//cout << '\n';
//gauss ( n, a, b, &s );
//for ( i = 0; i < n; i++ )
//cout << b[i];
}
int luc ( int n, complex a[][31], int irow[], double eps )
{
int i, i1, j, k, l, n1;
complex prom;
for ( i = 0; i < n; i++ )
irow[i] = i;
n1 = n - 1;
for ( i = 0; i < n1; i++ )
{
i1 = i + 1;
l = i;
for ( k = i1; k < n; k++ )
if ( abs ( a[k][i] ) > abs ( a[l][i] ) ) l = k;
if ( abs ( a[l][i] ) < eps ) return 0;
if ( l > i )
{
for ( j = 0; j < n; j++ )
{
prom = a[i][j];
a[i][j] = a[l][j];
a[l][j] = prom;
}
irow[i] = l;
}
for ( j = i1; j < n; j++ )
a[i][j] = a[i][j] / a[i][i];
for ( k = i1; k < n; k++ )
for ( j = i1; j < n; j++ )
a[k][j] -= a[k][i] * a[i][j];
}
return 1;
}
void rluc ( int n, complex a[][31], int irow[], complex b[] )
{
int i, j;
complex sum;
for ( i = 0; i < n; i++ )
if ( i != irow[i] )
{
sum = b[i];
b[i] = b[irow[i]];
b[irow[i]] = sum;
}
for ( i = 0; i < n; i++ )
{
sum = b[i];
for ( j = 0; j < i; j++ )
sum -= a[i][j] * b[j];
b[i] = sum / a[i][i];
}
for ( i = n - 2; i >= 0; i-- )
{
sum = b[i];
for ( j = i+1; j < n; j++ )
sum -= a[i][j] * b[j];
b[i] = sum;
}
}
void gauss ( int n, complex a[][31], complex x[], complex *s )
{
int i, j, k, l, k1, n1;
complex r;
n1 = n + 1;
for ( k = 0; k < n; k++ )
{
k1 = k + 1;
*s = a[k][k];
j = k;
for ( i = k1; i < n; i++ )
{
r = a[i][k];
if ( abs ( r ) > abs ( *s ) )
{
*s = r;
j = i;
}
}
if ( *s == complex ( 0.0, 0.0 ) ) break;
if ( j != k )
for ( i = k; i < n1; i++ )
{
r = a[k][i];
a[k][i] = a[j][i];
a[j][i] = r;
}
for ( j = k1; j < n1; j++ )
a[k][j] /= *s;
for ( i = k1; i < n; i++ )
{
r = a[i][k];
for ( j = k1; j < n1; j++ )
a[i][j] -= a[k][j] * r;
}
}
if ( *s != complex ( 0.0, 0.0 ) )
for ( i = n - 1; i >= 0; i-- )
{
*s = a[i][n];
for ( j = i + 1; j < n; j++ )
*s -= a[i][j] * x[j];
x[i] = *s;
}
return;
}
void start ( int n, int nyz, int nej, complex a[][31], complex b[],
complex yz[], int imax[], int imin[], int irow[], int iy )
{
int i;
pryzc ( nyz, yz, imax, imin, iy );
for ( i = 0; i < nyz; i++ )
{
cout << yz[i];
if ( ! ( i % 4 ) ) cout << '\n';
}
vard ( n, nyz, nej, a, b, yz, imax, imin, irow );
}
void vard ( int n, int nyz, int nej, complex a[][31], complex b[],
complex yz[], int imax[], int imin[], int irow[] )
{
int i, j;
foryzc ( n, nyz, a, yz, imax, imin );
//for ( i = 0; i < n; i++ )
//{
//for ( j = 0; j < n; j++ )
//cout << a[i][j];
//cout << '\n';
//}
if ( luc ( n, a, irow, 1.0e-5 ) )
varm ( n, nyz, nej, a, b, yz, imax, imin, irow );
else
printf ( "\n筮 襭 " );
return;
}
void varm ( int n, int nyz, int nej, complex a[][31], complex b[],
complex yz[], int imax[], int imin[], int irow[] )
{
int i;
prejc ( n, nej, nyz, b, yz );
for ( i = 0; i < n; i++ )
{
cout << b[i];
if ( ! ( i % 4 ) ) cout << '\n';
}
rluc ( n, a, irow, b );
for ( i = 0; i < n; i++ )
{
cout << b[i];
if ( ! ( i % 4 ) ) cout << '\n';
}
return;
}
void pryzc ( int nyz, complex yz[], int imax[], int imin[], int iy )
{
int i, indrlc;
complex rlc;
for ( i = 0; i < nyz; i++ )
{
cin >> rlc >> indrlc >> imax[i] >> imin[i];
yz[i] = rlc;
if ( indrlc == 2 )
yz[i] = complex ( 0.0, -1000000 / ( w * imag ( rlc ) ) );
if ( indrlc == 1 )
yz[i] = complex ( 0.0, w * imag ( rlc ) * 0.001 );
if ( indrlc == 3 ) yz[i] = polar ( real ( rlc ), imag ( rlc ) );
cout << "YZ[" << i+1 << "]= " << yz[i];
}
}
void foryzc ( int n, int nyz, complex a[][31], complex yz[],
int imax[], int imin[] )
{
int i, j, k, kolstr;
for ( i = 0; i < n; i++ )
{
for ( j = 0; j < n; j++ )
a[i][j] = complex ( 0.0, 0.0 );
//cout << '\n';
}
for ( k = 0; k < nyz; k++ )
{
i = imax[k];
j = imin[k];
a[i-1][i-1] += yz[k];
if ( j )
{
a[j-1][j-1] += yz[k];
a[i-1][j-1] -= yz[k];
a[j-1][i-1] = a[i-1][j-1];
}
}
clrscr();
cout << "YZ[i][j]=";
kolstr = 0;
for ( i = 0; i < n; i++ )
{
for ( j = 0; j < n; j++ )
{
cout << "\nYZ[" << i+1 << "][" << j+1 << "]= " << a[i][j];
kolstr++;
if ( kolstr == 22 )
{
kolstr = 0;
getchar ( );
clrscr();
cout << "YZ[i][j]=";
}
}
}
return;
}
void prejc ( int n, int nej, int nyz, complex b[], complex yz[] )
{
int i, ind1, ind2, imin, imax, iyz;
complex ej;
for ( i = 0; i < n; i++ )
b[i] = complex ( 0.0, 0.0 );
for ( i = 0; i < nej; i++ )
{
cin >> ej >> iyz >> imax >> imin >> ind1 >> ind2;
if ( ind1 )
ej = polar ( real ( ej ), imag ( ej ) );
if ( ind2 ) ej *= yz[iyz-1];
cout << "ei= " << ej;
b[imax-1] += ej;
if ( imin ) b[imin-1] -= ej;
}
return;
}
void rasis ( int n, int nyz, complex b[], complex yz[],
complex tok[], int imax[], int imin[] )
{
int i, j, k;
for ( k = 0; k < nyz; k++ )
{
i = imax[k];
j = imin[k];
if ( j )
tok[k] = ( b[i-1] - b[j-1] ) * yz[k];
else
tok[k] = b[i-1] * yz[k];
}
for ( k = 0; k < nyz; k++ )
cout << "I["<< k+1 << "]=" << tok[k];
return;
}
Copyright (c) 2024 Stud-Baza.ru , , , .