База знаний студента. Реферат, курсовая, контрольная, диплом на заказ

курсовые,контрольные,дипломы,рефераты

Черные металлы в конструкциях РЭС — Металлургия

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ

РАДИОТЕХНИКИ ЭЛЕКТРОНИКИ И АВТОМАТИКИ

Индивидуальное задание  по материаловедению

На тему

Черные металлы в конструкциях РЭС

Студента 2-го курса

Факультета РТС

Группы РК-1-01

Якушев Николай.

Преподователь:

Ахмадьярова Д.И.

1.       Понятие черных металлов.

      В понятие черных металлов входят все металлические материалы содержащие железо: стали, чугуны и др.

Черным металлам характерны такие свойства как тепло- и электропроводность, кристаллическая структура, магнитные свойства (производятся специальные трансформаторные стали, ферриты и др.)

3.    

 Диаграмма Железо-Графит.

Образование стабильной фазы графита в чугуне может происходить в результате непосредственного выделения его из жидкого раствора или вследствие распада предварительно образовавшегося цементита.

Процесс образования в чугуне (стали) графита называют графитизацией.

Диаграмма состояния стабильного равновесия показана на рис.87 (штриховые линии соответствуют выделению графита, а сплошные – выделению цементита).

В стабильной системе при температурах, соответствующих линии C'D', кристаллизуется первичный графит. При температуре 1153 град С (линия E'C'F') образуется графитная эвтектика: аустенит + графит.

По линии E'S' выделяется вторичный графит, а при температуре 738 град С (линия P'S'K') образуется эвтектоид, состоящий из феррита и графита.

Вероятность образования в жидкой фазе метастабильного цементита, содержащего 6,67% С, значительно больше, чем графита, состоящего только из атомов углерода. Графит образуется при очень малой скорости охлаждения, когда степень переохлаждения жидкой фазы невелика.

Ускоренное охлаждение частично или полностью останавливает кристаллизацию графита и способствует образованию цементита. При охлаждении жидкого чугуна ниже 1147 град С образуется цементит.

В жидком чугуне присутствуют различные включения (графит, SiO2 ,Al2O3  и др.). Эти частицы облегчают образование и рост графитных зародышей. При наличии готовых зародышей процесс образования графита может протекать и при температурах, лежащих ниже 1147 град С. Этому же способствует легирование чугуна Si, который вызывает процесс графитизации.

При последующем медленном охлаждении возможно выделение графита из аустенита и образование эвтектоидного графита в интервале 738-727 град С.

4.     Виды термообработки.

Упрочнению термической обработкой подвергаются до 8-10% общей выплавки стали в стране. В машиностроении объем термического передела составляет до 40% стали, потребляемой этой отраслью.

Основными видами термической обработки являются отжиг, нормализация, закалка и отпуск.

Отжиг первого рода в зависимости от исходного состояния стали и температуры его выполнения может включать процессы гомогенизации, рекристаллизации, снижения твердости и снятия остаточных напряжений. Характерная особенность этого вида отжига в том, что указанные процессы происходят независимо от того, протекают ли в сплавах при этой обработке фазовые превращения или нет. Поэтому отжиг первого рода можно проводить при температурах выше и ниже температур фазовых превращений (критических точек А1 и А2 на рис. 87)

Высокий отпуск. После горячей механической обработки сталь чаще имеет мелкое зерно и удовлетворительную микроструктуру, поэтому не требуется фазовой перекристаллизации (отжига). Но в следствии ускоренного охлаждения после прокатки или другой горячей обработки легированные стали имеют неравновесную структуру – сорбит, троостит, буйнит или мартенсит – и, как следствие этого высокую твердость. Для снижения твердости сортовой прокат подвергают высокому отпуску при 650 – 700 гр С (несколько ниже точки А1) в течение 3 – 15 часов и последующему охлаждению. При нагреве до указанных температур происходит распад мартенсита и/или бейнита, коагуляция и сфероидизация карбидов в итоге

снижается твердость. Углеродистые стали подвергают высокому отпуску в тех случаях, когда они предназначаются для обработки резанием, холодной высадке или волочения.

Отжиг для снятия остаточных напряжений. Этот вид отжига применяют для отливок, сварных изделий, деталей после обработки резанием и др., в которых в процессе предшествующих технологических операций из-за неравномерного охлаждения, неоднородной пластической деформации и т. п. возникли остаточные напряжения.

Отжиг второго рода заключается в нагреве стали до температур выше точек Ас1 или Ас3, выдержке и, как правило, последующем медленном охлаждении. В процессе нагрева и охлаждения протекают фазовые превращения, определяющие структуру и свойства стали. После отжига сталь имеет низкую твердость и прочность при высокой пластичности. В большинстве случаев отжиг является подготовительной термической обработкой; отжигу подвергают отливки, поковки, сортовой и фасонный прокат, трубы, горячекатаные листы и т. д.

5.     Кодирование черных металлов.

Углеродистые конструкционные стали.

Стали обыкновенного качества (ГОСТ 380 – 88). Углеродистую сталь обыкновенного качества изготовляют следующих марок:

Марка    Ст0        Ст1        Ст2         Ст3         Ст4        Ст5         Ст6

С, %       0,23       0,06-       0,09-       0,14-       0,18-      0,28-       0,28

                             0,12         0,15        0,22        0,27        0,37        0,49

Mn,%       ----       0,25-       0,25         0,3-        0,4-         0,5-         0,5

                              0,5            0,5         0,65        0,7         0,8           0,8

Буквы <<Ст>> в  марке стали обозначают <<сталь>>, цифры – условный номер марки (с увеличением номера возрастает содержание углерода), кроме того, ГОСТ предусматривает стали с повышенным содержанием марганца (0,8-1,1%) – Ст3Гпс, Ст3Гсп, Ст5Гпс.

В зависимости от условий и степени раскисления различают стали:

1.    

2.    

3.    

Стали обыкновенного качества, особенно кипящие , наиболее дешовые. В процессе выплавки они наименее очищаются от вредных примесей. Массовая доля серы должна быть не более 0,05%, фосфора не более 0,04%, а азота не более 0,08%.

С повышением условного номера марки стали возрастает предел прочности и текучести и снижается пластичность.

Качественные углеродистые стали. Эти стали (ГОСТ 1050-74) выплавляют с соблюдением более строгих условий в отношеняи состава шихты и ведения плавки и разливки. К ним предъявляют более высокие требования по химическому составу и структуре.

Качественные углеродистые стали маркируют цифрами 08, 10, 15, 20, …, 85, которые указывают среднее содержание углерода в сотых долях процента.

Низкоуглеродистые стали (содержание углерода не более 0,25%) 05кп, 08, 07кп, 10, 10кп обладают невысокой прочностью и высокой пластичностью. Эти стали без термической обработки применяют для малонагруженных деталей. Тонколистовую, холоднокатаную сталь используют для холодной штамповки изделий.

Среднеуглеродистые стали (0,3-0,5% С) 30,35,40,45,50,55 применяют после нормализации, улучшения и поверхностной закалки для самых разнообразных деталей во всех отраслях машиностроения.

Стали с высоким содержанием углерода (0,6-0,85 % С) 60, 65,70, 80,85 обладают повышенной прочностью, износостойкостью и упругими свойствами; применяют их после закалки и отпуска и поверхностной закалки для деталей, работающих в условиях трения при наличии высоких статических вибрационных нагрузок.

6.     Влияние легирующих элементов.

Влияние кремния и марганца. Содержание кремния в углеродистой, хорошо раскисленной стали в качестве примеси обычно не превышает 0,37%, а марганца – 0,8%. Кремний, дегазируя металл, повышает плотность слитка. Кремний, остающийся после раскисления в твердом растворе, сильно повышает предел текучести. Это снижает способность стали к вытяжке и особенно к холодной высадке. В связи с этим в сталях, предназначенных для холодной штамповки и холодной высадки, содержание кремния должно быть сниженным.

Марганец заметно повышает прочность, практически не снижая пластичности и резко уменьшая красноломкость стали, т.е. хрупкость при высоких температурах, вызванную влиянием серы.

Легирование хромистой стали ванадием 0.1 – 0.2% улучшает механические свойства, такие стали менее склонны к перегреву.

Содержание малибдена в стали повышает ее термоустойчивость.

Примеси титана в стали повышает ее прочностные характеристики.

Примеси алюминия  - влияют на магнитные свойства.

7.     Применение черных металлов в РЭС.

В РЭС технологической переработке подвергают металлические материалы в виде:

-        

-        

-        

-        

-        

-        

По химическому составу металлические материалы делят на черные и цветные. Черные металлические материалы – это железо и его сплавы. Для конструкционных деталей используют сплавы на основе железа. Они делятся на стали (содержание С менее 2,14%) и твердые сплавы.

-        

-        

-        

-        

-        

-        

-        

-        

В РЭС не применяют чугуны так как они тяжелые и очень хрупкие. Сплавы из цветных металлов дороги, и как самые дешевые и распространенные применяют сплавы на основе железа.

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ РАДИОТЕХНИКИ ЭЛЕКТРОНИКИ И АВТОМАТИКИ Индивидуальное задание  по материаловедению На тему Черные металлы в конструкциях РЭС Студента 2-го курса Факультета РТС Группы РК

 

 

 

Внимание! Представленный Реферат находится в открытом доступе в сети Интернет, и уже неоднократно сдавался, возможно, даже в твоем учебном заведении.
Советуем не рисковать. Узнай, сколько стоит абсолютно уникальный Реферат по твоей теме:

Новости образования и науки

Заказать уникальную работу

Похожие работы:

История завода Свободный Сокол
Специальные виды литья
Осаждение двойного покрытия медь-никель
Осаждение сплава олово-свинец
История литейного оборудования (производства)
Улучшение качественных характеристик металла шва за счет повышения чистоты шихты
Производство чугуна. Материалы для плавки и процессы в доменной печи
Доменный процесс
Способы предварительной подготовки топлива и исходных материалов, применяемых в доменном производстве для получение чугуна
Литье в разовые песчано-глинистые формы

Свои сданные студенческие работы

присылайте нам на e-mail

Client@Stud-Baza.ru