,,,
.
.
,
,
y sinx
,
.
. .
́, ́ - , , , , [2] . , - , . , , , .
.
, , , , () : . . - , . . , , : .
, , . , , : . . , , , .
, , . , , , . , 12= (-1) 2, 1=1. , .
; ; .
. .
́́ ́ - , . x + iy, x y - , i - - , n n , . . , , - , , , , .
a + bi = c + di , a = c b = d ( , ).
(a + bi) + (c + di) = (a + c) + (b + d) i.
(a + bi) − (c + di) = (a − c) + (b − d) i.
- , - , .
: . : f (x) = x!
.
:
x | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
y | 1 | 1 | 2 | 3 | 5 | 8 | 13 | 21 | 34 | 55 |
1) . - x ( x), y = f (x) .
- y, . .2) - , .3) - , .4) . ( ) - , . ( ) - , .5) () . - , f (-x) = f (x). . - , f (-x) = - f (x). .6) . , M, |f (x) | ≤ M x. , - .7) . f (x) - , T, x : f (x+T) = f (x). . . ( ).
- , c x, - y.
- y = ax + b. y a > 0 a < 0. b = 0 .0 (y = ax - )
- = 2 + b + . . > 0, , < 0 - . ( ) - ax2 + bx + =0
- . > I III , < 0 - II IV. - . - = ( > 0) - ( < 0).
y = logax (a > 0)
. . y = sin x (. 19). .
y = cos x . 20; , y = sin x /2.
. , , , .
. - x ( x), y = f (x) .
- y, .
.2) - , .3) - , .4) .
( ) - , .
( ) - , .5) () . - , f (-x) = f (x). . - , f (-x) = - f (x). .6) . , M, |f (x) | ≤ M x. , - .7) . f (x) - , T, x : f (x+T) = f (x). . . ( ).
. .
́ ́ ― , - , (). . : 2 ( ) T1 T2 (T1,T2). 2 ( ) . , , .
.
. : y = axn, a, n - . n = 1 : y = ax; n = 2 - ; n = 1 - . , - . , , , 1, c, n = 0 : y = a, . e. - , , (, , ?). ( a = 1) .13 (n 0) .14 (n < 0). x , :
.
́ ́ - , , . , :
. .
n- .
n- a , n- a.
: n- a , n- a.
:
.
. , - , - .
:
.
.
, .
- , - , :
.
.
.
.
.
.
f (z) = zn . . , f (z) = z. . , , .
, . :
). , . , ; - , - ( ); - , - ( ).
- .
- , .
, .
- uv, 1695 .
, e. ( ).
; ; .
.
. : , , . : a>1 a=ay.
, =y. , , .. , x> x<. , a<ay a>ay. . , x=, .
, 0<a<1. . a=ay x=. 1=1y x=. a=ay, a>0 a≠1.
( ) () >0 : 0 < () < 1 f (x) g (x) , () > 1 - . () < 0. : , f (x) g (x) , , . , () = 0 () = 1 (, ), .
b a ( . λόγος - "", "" ἀριθμός - "" [1] ) , a, b. : . , . : , .
:
, .
f (x) = logax,
:
:
(1; 0)
:
, , . loga = b ( > 0, 1). x = ab.
, , loga = b ( > 0, 1) = b.
. , , , :
loga f () = loga g (), f () = g (), f () >0, g () >0, > 0, 1.
.
.
.
.
, , : loga f () > loga g ().
, . loga f () > loga g () f (x) > g (x) > 0 a > 1 0 < f (x) < g (x) 0 < < 1.
. , , , .
. ( ) - 1/360 . , 360. 60 ( ); - 60 ( ).
. (. " " " . "), l, r : = l / r.
. , l = r, = 1, , 1 , : = 1 . , :
, (AmB = AO, .1). , , , .
.
:
:
:
:
.
, . , .
.
.
. .
.
;
(; .
. .
- . (sin x), (cos x), (tg x), (ctg x), , , .
:
1. D (y) =R.
2. () = [-1; 1].
3. = sinx - , sin (-x) = - y/R = - sinx, R - , - ().
4. = 2 - . ,
sin (x+p) = sinx.
5. :
: sinx = 0; = pn, nÎZ;
Oy: = 0, = 0,6. :
sinx > 0, xÎ (2pn; p + 2pn), nÎZ;
sinx < 0, Î (p + 2pn; 2p+pn), nÎZ.
> 0 .
< 0 .
7. :
y = sinx [-p/2 + 2pn; p/2 + 2pn],
nÎz [p/2 + 2pn; 3p/2 + 2pn], nÎz.
8. :
xmax = p/2 + 2pn, nÎz; ymax = 1;
ymax = - p/2 + 2pn, nÎz; ymin = - 1.
= cosx :
:
1. D (y) = R.
2. () = [-1; 1].
3. = cosx - , cos (-a) = x/R = cosa ()
4. = 2p - . ,
cos (x+2pn) = cosx.
5. :
: cosx = 0;
= p/2 + pn, nÎZ;
: = 0, = 1.
6. :
cosx > 0, Î (-p/2+2pn; p/2 + 2pn), nÎZ;
cosx < 0, Î (p/2 + 2pn; 3p/2 + 2pn), nÎZ.
(). :
x > 0 a .
x < 0 a .
7. :
y = cosx [-p + 2pn; 2pn],
nÎz [2pn; p + 2pn], nÎz.
= tgx : -
1. D (y) = (xÎR, x ¹ p/2 + pn, nÎZ).
2. E (y) =R.
3. y = tgx -
4. = p - .
5. :
tgx > 0 Î (pn; p/2 + pn;), nÎZ;
tgx < 0 xÎ (-p/2 + pn; pn), nÎZ.
.
6. :
y = tgx
(-p/2 + pn; p/2 + pn),
nÎz.
7. :
.
8. x = p/2 + pn, nÎz -
= ctgx :
:
1. D (y) = (xÎR, x ¹ pn, nÎZ). 2. E (y) =R.
3. y = ctgx - .
4. = p - .
5. :
ctgx > 0 Î (pn; p/2 + pn;), nÎZ;
ctgx < 0 Î (-p/2 + pn; pn), nÎZ.
.
6. = ctgx (pn; p + pn), nÎZ.
7. = ctgx .
8. = ctgx , y= tgx p/2 (-1) ()
́ ́ ́ ( , ) - , . : ́, ́, ́, . "-" ( . arc - ). , ( , ), . sin−1 ..; , −1.
y=arcsinX, .
m x, y = sinx . y = arcsinx . ( ).
y=arccosX, .
m x,
y = cosx . y = arccosx . cos (arccosx) = x arccos (cosy) = y D (arccosx) = [− 1; 1], ( ), E (arccosx) = [0; π]. ( ). arccos ( -
y=arctgX, .
m α, . .
arctg
,
.
y=arcctg, .
m x,
.
. 0 < y < π arcctg ( - x.
.
.
. sin x = a; cos x = a; tg x = a; ctg x = a, x - , aR, .
. sin x = a; cos x = a; tg x = a; ctg x = a, x - , aR, .
: , . , , , .
1. , , , . 2. ,
B |
|
.5 |
. , , .
= . |
|
.6 |
3. , , .
= a . |
|
.7 |
1. , . 2. , .
,
.
.
2.3 , . a α, a || α. 2.4 . - , . b α, a || b a α ( 2.2.1). . a α, a α A. A b, a || b. a b . . 2.5 β a, α, b, b || a. , a b , β. , , a || α. 2.4 b β α.
: , , , . , , , . , , , .
(1): , , , .
(2): , , .
(3): , .
. .
( - ) , , . , . - , . , . , 1 ( ) 2 . 2 , : . 8 , : . . 180.
.
, , , , .
.
, , , , .
1- .
, .
2- .
, , .
, , , . |
AB - α, AC - c - α, C BC. CK AB. CK α ( AB), , , , CK c. AB CK β ( , ). c , β, BC CK , , , , , AC.
, , , .
- a, - - a, . , . a ( , ), , , . b ( , ). b, , , , . , a.
.
, , , , . , , .
, , , , . , , . , , , .
1. , , . , , .
2. , , , , , . AB - α.
AC - , CB - .
- , B - .
.
.
.
- , , , , . , - . , , , . , , , .
.
.
, .
. . ,
Copyright (c) 2024 Stud-Baza.ru , , , .