курсовые,контрольные,дипломы,рефераты
2. Движение электрона в неизменном во времени магнитном поле, когда скорость электрона не перпендикулярна силовым линиям……………….4
3. Фокусировка пучка электронов постоянным во времени
магнитным полем (магнитная линза)……………………………………….6
4. Движение электронов в равномерном электрическом поле. Принцип работы электронного осциллографа………………………………………...7
5. Фокусировка пучка электронов постоянным во времени
электрическим полем (электрическая линза)……………………………….8
6. Движение электрона в равномерных, взаимно перпендикулярных, неизменных во времени магнитном и электрическом полях………………9
7. Движение заряженных частиц в кольцевых ускорителях………………11
Движение заряженных частиц в магнитном и электрическом полях
1. Движение электрона в равномерном магнитном поле, неизменном во времени и направленном перпендикулярно скорости.
В данных разделах под заряженной частицей мы будем подразумевать электрон. Заряд его обозначим q=-qэ и массу m. Заряд примем равным qэ=1,601.10-19 Кл, при скорости движения, значительно меньшей скорости света, масса m=0,91.10-27 г. Полагаем, что имеет место достаточно высокий вакуум, так что при движении электрон не сталкивуается с другими частицами. На электрон, движущийся со скоростью в магнитном поле индукции, действует сила Лоренца .
Электрон будет двигаться по окружности радиусом r с угловой частотой wц, которую называют циклотронной частотой. Центробежное ускорение равно силе f, деленной на массу .
Отсюда
(1)
Следовательно
(2)
2. Движение электрона в неизменном во времени магнитном поле, когда скорость электрона не перпендикулярна силовым линиям.
Рассмотрим два случая: в первом- электрон будет двигаться в равномерном, во втором – в неравномерном поле.
а) Движение в равномерном поле. Через a на рис 2. Обозначен угол между скоростью электрона и индукцией . Разложим на , направленную по и численно равную , и на , направленную перпендикулярно и численно равную . Так как , то наличие составляющей скорости не вызывает силы воздействия на электрон. Движение со скоростью приводит к вращению электрона вокруг линии подобно тому, как это было рассмотрено в первом пункте. В целом электрон будет двигатся по спирали рис. 2. б. Осевой линией которой является линия магнитной индукции. Радиус спирали шаг спирали
(3)
Рис 2. б.
б) Движение в неравномерном поле. Если магнитное поле неравномерно, например сгущается ( рис.2 в.), то при движении по спирали электрон будет попадать в точки поля, где индукция В увеличивается. Но чем больше индукция В, тем при прочих равных условиях меньше радиус спирали r. Дрейф электрона будет происходить в этом случае по спирали со всем уменьшающимся радиусом. Если бы
магнитные силовые линии образовывали расходящийся пучок, то электрон при своем движении попадал бы в точки поля со все уменьшающейся индукцией и радиус спирали возрастал бы.
Рис 2. в.
3. Фокусировка пучка электронов постоянным во времени магнитным полем (магнитная линза).
Из катода электронного прибора (рис. 3) выходит расходящийся пучок электронов. Со скоростью электроны входят в неравномерное магнитное поле узкой цилиндрической катушки с током.
Разложим скорость электрона в произвольной точке т на две составляющие: и .
Первая направлена противоположно , а вторая -перпендикулярно . Возникшая ситуация повторяет ситуацию, рассмотренную в пункте 2. Электрон начнет двигаться по спирали, осью которой является . В результате электронный пучок фокусируется в точке b.
4. Движение электронов в равномерном электрическом поле. Принцип работы электронного осциллографа.
Электрон, пройдя расстояние от катода К до узкого отверстия в аноде А (рис. 4, а), под действием ускоряющего напряжения Uак увеличивает свою кинетическую энергию на величину работы сил поля.
При дальнейшем прямолинейном движении по оси х электрон попадает в равномерное электрическое поле, напряженностью Е между отклоняющими пластинами 1 и 2 (находятся в плоскостях, параллельных плоскости zох).
5. Фокусировка пучка электронов постоянным во времени электрическим полем (электрическая линза).
Фокусировка основана на том что, проходя через участок неравномерного электрического поля, электрон отклоняется в сторону эквипотенциали с большим значением потенциала (рис. 5, а). Электрическая линза образована катодом, испускающим электроны, анодом, куда пучок электронов приходит сфокусированным, и фокусирующей диафрагмой, представляющей собой пластинку с круглым отверстием в центре (рис. 5, б). Диафрагма имеет отрицательный потенциал по отношению к окружающим ее точкам пространства, вследствие этого эквинотенциали электрического поля как бы выпучиваются через
6. Движение электрона в равномерных, взаимно перпендикулярных, неизменных во времени магнитном и электрическом полях.
Уравнение движения или
Следовательно, ;
В соответствии с формулой (2) заменим qэB/m на циклотронную частоту wц. Тогда
(4)
(5)
Продифференцируем (4) по t и в правую часть уравнения подставим (5).
(6)
Решим уравнение классическим методом: vy=vy пр+vy св :
Составим два уравнения для определения постоянных интегрирования.
Так как при t=0 vy=v, то . При t=0 vz=0. Поэтому или. Отсюда и .
Таким образом,
Пути, пройденные электроном по осям у и z:
На рис. 6, б, в, г изображены три характерных случая движения при различных значениях v0. На рис. 6, б трохоида при v0=0, максимальное отклонение по оси z равно .
Если v0>0 и направлена по оси +y, то траекторией является растянутая
трохоида (рис. 6, в) с максимальным отклонением .
Если v0<0 и направлена по оси —у, то траекторией будет сжатая трохоида (рис. 6, г) с .
Когда магнитное и электрическое поля мало отличаются от равномерных, траектории движения электронов близки к трохоидам.
Рис 6.в
Рис 6.г
7. Движение заряженных частиц в кольцевых ускорителях.
Рис 8.
Вывод заряда из циклотрона осуществляется с помощью постоянного электрического поля, создаваемого между одной из камер (на рис. 7 правой) и вспомогательным электродом А. С увеличением скорости она становится соизмеримой со скоростью света, масса частицы т во много раз увеличивается. Возрастает и время t1, прохождения полуоборота. Поэтому одновременно с увеличением скорости частицы необходимо уменьшать либо частоту источника напряжения Umcos(wt) (фазотрон), либо величину индукции магнитного поля (синхротрон), либо частоту и индукцию (синхрофазотрон).
Содержание 1. Движение электрона в равномерном магнитном поле, неизменном во времени и направленном перпендикулярно скорости……………………..3 2. Движение электрона в неизменном во времени магнитном поле, когда скорость электрона не перпендикулярна
Двойное лучепреломление электромагнитных волн
Двойственная природа света, ее проявления. Шкала электромагнитных волн
Двумерный оптический сигнал и его информационная структура
Детекторы ионизирующих излучений
Дефект масс и энергия связи ядер
Динамика твердого тела
Дисперсия света
Диссипативные структуры
Дифференциальные уравнения движения точки. Решение задач динамики точки
Дослідження впливу наповнювача на структурну організацію і міжфазну взаємодію в композиційних полімерних матеріалах
Copyright (c) 2025 Stud-Baza.ru Рефераты, контрольные, курсовые, дипломные работы.