курсовые,контрольные,дипломы,рефераты
В электоропечи можно получать легированную сталь с низким содержанием серы и фосфора, неметаллических включений, при этом потери легирующих элементов значительно меньше.
В процессе электроплавки можно точно регулировать температуру металла и его состав, выплавлять сплавы почти любого состава.
Электрические печи обладают существенными преимуществами по сравнению с другими сталеплавильными агрегатами, поэтому высоколегированные инструментальные сплавы, нержавеющие шарикоподшипниковые, жаростойкие и жаропрочные, а также многие конструкционные стали выплавляют только в этих печах.
Мощные электропечи успешно применяют для получения низколегированных и высокоуглеродистых сталей мартеновского сортамента. Кроме того, в электропечах получают различные ферросплавы, представляющие собой сплавы железа с элементами, которые необходимо выводить в сталь для легирования и раскисления.
Устройство дуговых электропечей.
Первая дуговая электропечь в России была установлена в 1910 г. на Обуховском заводе. За годы пятилеток были построены сотни различных печей. Вместимость наиболее крупной печи в СССР 200 т. Печь состоит из железного кожуха цилиндрической формы со сферическим днищем. Внутри кожух имеет огнеупорную футеровку. Плавильное пространство печи закрывается съемным сводом.
Печь имеет рабочее окно и выпускное отверстие со сливным желобом. Питание печи осуществляется трехфазным переменным током. Нагрев и плавление металла осуществляются электрическими мощными дугами, горящими между концами трех электродов и металлом, находящимся в печи. Печь опирается на два опорных сектора, перекатывающихся по станине. Наклон печи в сторону выпуска и рабочего окна осуществляется при помощи реечного механизма. Перед загрузклй печи свод, подвешенный на цепях, поднимают к порталу, затем портал со сводом и электродами отворачивается в сторону сливного желоба и печь загружают бадьей.
Механическое оборудование дуговой печи.
Кожух печи должен выдерживать нагрузку от массы огнеупоров и металла. Его делают сварным из листового железа толщиной 16–50 мм в зависимости от размеров печи. Форма кожуха определяет профиль рабочего пространства дуговой электропечи. Наиболее распространенным в настоящее время является кожух конической формы. Нижняя часть кожуха имеет форму цилиндра, верхняя часть—конусообразная с расширением кверху. Такая форма кожуха облегчает заправку печи огнеупорным материалом, наклонные стены увеличивают стойкость кладки, так как она дальше расположена от электрических дуг. Используют также кожухи цилиндрической формы с водоохлаждаемыми панелями. Для сохранения правильной цилиндрической формы кожух усиливается ребрами и кольцами жесткости. Днище кожуха обычно выполняется сферическим, что обеспечивает наибольшую прочность кожуха и минимальную массу кладки. Днище выполняют из немагнитной стали для установки под печью электромагнитного перемешивающего устройства.
Очистка отходящих газов.
Футеровка печей.
Большинство дуговых печей имеет основную футеровку, состоящую из материалов на основе MgO. Футеровка печи создает ванну для металла и играет роль теп-лоизолирующего слоя, уменьшающего потери тепла. Основные части футеровки – подина печи, стены, свод. Температура в зоне электрических дуг достигает нескольких тысяч градусов. Хотя футеровка электропечи отделена от дуг, она все же должна выдерживать нагрев до температуры 1700°С. В связи с этим применяемые для футеровки материалы должны обладать высокой огнеупорностью, механической прочностью, термо- и химической устойчивостью. Подину сталеплавильной печи набирают в следующем порядке. На стальной кожух укладывают листовой асбест, на асбест—слой шамотного порошка, два слоя шамотного кирпича и основной слой из магнезитового кирпича. На магнезитовой кирпичной подине набивают рабочий слой из магнезитового порошка со смолой и пеком — продуктом нефтепереработки. Толщина набивного слоя составляет 200 мм. Общая толщина подины равна примерно глубине ванны и может достигать 1 м для крупных печей. Стены печи выкладывают после соответствующей прокладки асбеста и шамотного кирпича из крупноразмерного безобжигового магнезитохромитового кирпича длиной до 430 мм. Кладка стен может выполняться из кирпичей в железных кассетах, которые обеспечивают сваривание кирпичей в один монолитный блок. Стойкость стен достигает 100—150 плавок. Стойкость подины составляет один-два года. В трудных условиях работает футеровка свода печи. Она выдерживает большие тепловые нагрузки от горящих дуг и тепла, отражаемого шлаком. Своды крупных печей набирают из магнезитохромитового кирпича. При наборе свода используют нормальный и фасонный кирпич. В поперечном сечении свод имеет форму арки, что обеспечивает плотное сцепление кирпичей между собой. Стойкость свода составляет 50 – 100 плавок. Она зависит от электрического режима плавки, от длительности пребывания в печи жидкого металла, состава выплавляемых стали, шлака. В настоящее время широкое распространение получают водоохлаждаемые своды и стеновые панели. Эти элементы облегчают службу футеровки.
Ток в плавильное пространство печи подается через электроды, собранные из секций, каждая из которых представляет собой круглую заготовку диаметром от 100 до 610 мм и длиной до 1500 мм. В малых электропечах используют угольные электроды, в крупных – графитированные. Графитированные электроды изготавливают из малозольных углеродистых материалов: нефтяного кокса, смолы, пека. Электродную массу смешивают и прессуют, после чего сырая заготовка обжигается в газовых печах при 1300 градусах и подвергается дополнительному графитирующему обжигу при температуре 2600 – 2800 градусах в электрических печах сопротивления. В процессе эксплуатации в результате окисления печными газами и распыления при горении дуги электроды сгорают. По мере укорачивания электрод опускают в печь. При этом электрододержатель приближается к своду. Наступает момент, когда электрод становится настолько коротким, что не может поддерживать дугу, и его необходимо наращивать. Для наращивания электродов в концах секций сделаны отверстия с резьбой, куда ввинчивается переходник-ниппель, при помощи которого соединяются отдельные секции. Расход электродов составляет 5—9 кг на тонну выплавляемой стали.
Электрическая дуга—один из видов электрического разряда, при котором ток проходит через ионизированные газы, пары металлов. При кратковременном сближении электродов с шихтой или друг с другом возникает короткое замыкание. Идет ток большой силы. Концы электродов раскаляются добела. При раздвигании электродов между ними возникает электрическая дуга. С раскаленного катода происходит термоэлектронная эмиссия электронов, которые, направляясь к аноду, сталкиваются с нейтральными молекулами газа и ионизируют их. Отрицательные ионы направляются к аноду, положительные к катоду. Пространство между анодом и катодом становится ионизированным, токопроводящим. Бомбардировка анода электронами и ионами вызывает сильный его разогрев. Температура анода может достигать 4000 градусов. Дуга может гореть на постоянном и на переменном токе. Электродуговые печи работают на переменном токе. В последнее время в ФРГ построена электродуговая печь на постоянном токе.
В первую половину периода, когда катодом является электрод, дуга горит. При перемене полярности, когда катодом становится шихта — металл, дуга гаснет, так как в начальный период плавки металл еще не нагрет и его температура недостаточна для эмиссии электронов. Поэтому в начальный период плавки дуга горит неспокойно, прерывисто. После того как ванна покрывается слоем шлака, дуга стабилизируется и горит более ровно.
Электрооборудование.
Рабочее напряжение электродуговых печей составляет 100 – 800 В, а сила тока измеряется десятками тысяч ампер. Мощность отдельной установки может достигать 50 – 140 МВ*А. К подстанции электросталеплавильного цеха подают ток напряжением до 110 кВ. Высоким напряжением питаются первичные обмотки печных трансформаторов. На показана упрощенная схема электрического питания печи. В электрическое оборудование дуговой печи входят производства ремонтных работ на печи. следующие приборы:
1. Воздушный разъединитель, предназначен для отключения всей электропечной установки от линии высокого напряжения во время
2. Главный автоматический выключатель, служит для отключения под нагрузкой электрической цепи, по которой протекает ток высокого напряжения. При неплотной укладке шихты в печи в начале плавки, когда шихта еще холодная, дуги горят неустойчиво, происходят обва лы шихты и возникают короткие замыкания между электродами. При этом си ла тока резко возрастает. Это приводит к большим перегрузкам трансформатора, который может выйти из строя. Когда сила тока превысит установленный предел, выключатель авто матически отключает установку, для чего имеется реле максимальной силы тока.
3. Печной трансформатор необходим для преобразования высокого напряжения в низкое (с 6—10 кВ до 100—800 В). Обмотки высокого и низкого напряжения и магнитопроводы, на которых они помещены, располагаются в баке с маслом, служащим для охлаждения обмоток. Охлаждение создается принудительным перекачиванием масла из трансформаторного кожуха в бак теплообменника, в котором масло охлаждается водой. Трансформатор устанавливают рядом с электропечью в специальном помещении. Он имеет устройство, позволяющее переключать обмотки по ступеням и таким образом ступенчато регулировать подаваемое в печь напряжение. Так, например, трансформатор для 200-т отечественной печи мощностью 65 МВ*А имеет 23 ступени напряжения, которые переключаются под нагрузкой, без отключения печи.
Участок электрической сети от трансформатора до электродов называется короткой сетью. Выходящие из стены трансформаторной подстанции фидеры при помощи гибких, водоохлаждаемых кабелей подают напряжение на электрододержатель. Длина гибкого участка должна позволять производить нужный наклон печи и отворачивать свод для загрузки. Гибкие кабели соединяются с медными водоохлаждаемыми шинами, установленными на рукавах электрододержателей. Трубошины непосредственно присоединены к головке электрододер-жателя, зажимающей электрод. Помимо указанных основных узлов электрической сети в нее входит различная измерительная аппаратура, подсоединяемая к линиям тока через трансформаторы тока или напряжения, а также приборы автоматического регулирования процесса плавки.
Автоматическое регулирование.
По ходу плавки в электродуговую печь требуется подавать различное количество энергии. Менять подачу мощности можно изменением напряжения или силы тока дуги. Регулирование напряжения производится переключением обмоток трансформатора. Регулирование силы тока осуществляется изменением расстояния между электродом и шихтой путем подъема или опускания электродов. При этом напряжение дуги не изменяется. Опускание или подъем электродов производятся автоматически при помощи автоматических регуляторов, установленных на каждой фазе печи. В современных печах заданная программа электрического режима может быть установлена на весь период плавки.
Устройство для электромагнитного перемешивания металла.
Применение синтетического шлака.
Этот метод предусматривает перенесение рафинирования металла из электропечи в разливочный ковш. Для рафинирования металла выплавляют синтетический шлак на основе извести (52–55%) и глинозема (40%) в специальной электродуговой печи с угольной футеровкой. Порцию, жидкого, горячего, активного шлака (4–5 % от массы стали, выплавленной в электропечи) наливают в основной сталеразливочный ковш. Ковш подают к печи и в него выпускают сталь. Струя стали, падая с большой высоты, ударяется о поверхность жидкого шлака, разбивается на мелкие капли и вспенивает шлак. Происходит перемешивание стали со шлаком. Это способствует активному протеканию обменных процессов между металлом и синтетическим шлаком. В первую очередь протекают процессы удаления серы благодаря низкому содержанию FeO в шлаке и кислорода в металле; повышенной концентрации извести в шлаке, высокой температуре и перемешиванию стали со шлаком. Концентрация серы может быть снижена до 0,001 %. При этом происходит значительное удаление оксидных неметаллических включений из стали благодаря ассимиляции, поглощению этих включений синтетическим шлаком и перераспределению кислорода между металлом и шлаком.
Обработка металла аргоном.
После выпуска стали из печи через объем металла в ковше продувают аргон, который подают либо через пористые пробки, зафутеро-ванные в днище, либо через швы кладки подины ковша. Продувка стали в ковше аргоном позволяет выровнять температуру и химический состав стали, понизить содержание водорода, удалить неметаллические включения, что в конечном итоге позволяет повысить механические и эксплуатационные свойства стали.
Применение порошкообразных материалов.
Продувка стали в дуговой электропечи порошкообразными материалами в токе газаносителя (аргона или кислорода) позволяет ускорить важнейшие процессы рафинирования стали: обезуглероживание, дефосфорацию, десульфурацию, раскисление металла.
В струе аргона или кислорода в ванну вдуваются порошки на основе извести, плавикового шпата. Для рас-кисления металла используют порошкообразный ферросилиций. Для окисления ванны и для ускорения удаленияуглерода и фосфора добавляют оксиды железа. Мел-кораспыленные твердые материалы, попадая в ванну металла, имеют большую поверхность контакта с металлом, во много раз превышающую площадь контакта ванны со шлаковым слоем. При этом происходитинтенсивное перемешивание металла с твердыми частицами. Все это способствует ускорению реакций рафинирования стали. Кроме того, порошкообразные флюсы могут использоваться для более быстрого наведения шлака.
Плавка в кислой электропечи.
Кислые электропечи футеруют огнеупорными материалами на основе кремнезема. Эти печи имеют более глубокие ванны и в связи с этим меньший диаметр кожуха, меньшие тепловые потери и расход электроэнергии. Стойкость футеровки свода и стен кислой печи значительно выше, чем у основной. Это объясняется малой продолжительностью плавки. Печи с кислой футеровкой вместимостью 1—3 т применяются в литейных цехах для производства стального литья и отливок из ковкого чугуна. Они допускают периодичность в работе, т. е. работу с перерывами. Известно, что основная футеровка быстро изнашивается при частом охлаждении. Расход огнеупоров на 1 т стали в кислой печи ниже. Кислые огнеупоры дешевле, чем основные. В кислых печах быстрее разогревают металл до высокой температуры, что необходимо для литья. Недостатки кислых печей связаны прежде всего с характером шлака. В этих печах шлак кислый, состоящий в основном из кремнезема. Поэтому такой шлак не позволяет удалять из стали фосфор и серу. Для того чтобы иметь содержание этих примесей в допустимых пределах, необходимо подбирать специальные шихтовые материалы, чистые по фосфору и по сере. Кроме того, кислая сталь обладает пониженными пластическими свойствами по сравнению с основной сталью вследствие присутствия в металле высококремнистых неметаллических включений.Технология плавки в кислой электропечи имеет следующие особенности. Окислительный период плавки непродолжителен, кипение металла идет слабо, так как кремнезем связывает РеО в шлаке и тем самым скорость перехода кислорода в металл для окисления углерода снижается. Кислый шлак более вязкий, он затрудняет кипение. Шлак наводят присадками песка, использованной формовочной земли. Известь присаживают до содержания в шлаке не более 6—8 % СаО. Раскисление кислой стали проводят, как правило, присадкой кускового ферросилиция. Частично сталь раскисляется кремнием, который восстанавливается из шлака или из футеровки по реакциям: (SiO2)+2Fe=2(FeO)+[Si]; (SiO2)+2[C]=2CO+[Si]. В отличие от основного процесса при кислом ферромарганец присаживают в конце плавки в раздробленном виде в ковш. При таком способе усваивается до 90 % марганца. Конечное раскисление проводят алюминием.
Получение низкоуглеродистой коррозионностойкой стали (процессы AOD и VOD).
Широкое распространение получают методы производства низкоуглеродистой коррозионностойкой стали вне электропечи.
Метод AOD. В электропечи выплавляют основу нержавеющей стали, содержащей заданное количество хрома и никеля, с использованием недорогих, высокоуглеродистых ферросплавов. Затем сталь вместе с печным шлаком заливают в конвертер, профиль которого представлен на рис. 81. Футеровка конвертера изготовлена из магнезитохромитового кирпича. Стойкость футеровки до 200 плавок. В нижней зоне футеровки, в третьем ряду кирпичной кладки от днища конвертера. Фурмы представляют собой конструкцию из медной внутренней трубы и наружной трубы из нержавеющей стали, внутренний диаметр фурмы 12—15 мм. Начальное содержание углерода в стали может быть для ферритных хромистых сталей 2,0—2,5 %, а для аустенитных сталей 1,3—1,7 %. В первые 35 мин сталь продувают смесью кислорода и аргона в соотношении 3 : 1. Во избежание перегрева металла в о, конвертер присаживают лом — данной марки стали, феррохром и т. п. Затем в течение 9 мин сталь продувают смесью кислорода и аргона в соотношении 1:1. В это время концентрация углерода снижается до 0,18%. В третьем периоде в продувочном газе еще более уменьшают отношение кислорода к аргону до 1:2, продувку продолжают еще 15 мин. За это время содержание углерода снижается до 0,035%. Температура повышается до 1720°С. В конце продувки присаживают известь и ферросилиций для восстановления хрома из шлака. После восстановления шлак, содержащий 1 % Cr2O3, скачивается и после наведения нового шлака проводят окончательную продувку аргоном. При этом в шлак переходит сера, ее содержание в металле снижается до 0,010 %.
В результате процесса AOD получают высококачественную нержавеющую сталь с низким содержанием углерода, серы, азота, кислорода, сульфидных и оксидных неметаллических включений, с высокими механическими свойствами. Для повышения экономичности процесса аргон частично заменяют азотом. Средняя продолжительность продувки составляет 60—120 мин, расход аргона составляет 10—23 м^3/т, кислорода 23 м^3/т. На рис. 82 представлено изменение температуры и состава металла. Степень извлечения хрома составляет 98%.
Метод VOD. Этот метод вакуумно-кислородного обезуглероживания с продувкой аргоном. В основе метода лежит осуществление реакции [C]+[O]=CO, равновесие которой в вакууме сдвигается в правую сторону. Чем ниже парциальное давление СО, тем ниже должна быть остаточная концентрация углерода в стали. При этом создаются благоприятные условия для восстановления оксида хрома углеродом, что позволяет проводить процесс обезуглероживания без заметных потерь хрома со шлаком. Коррозионностойкую сталь выплавляют в электропечи с достаточно высоким содержанием углерода (0,3—0,5 % ); сталь выпускают в специальный ковш с хромомагнезитовой футеровкой, имеющим в днище фурму для подачи аргона. Ковш устанавливают в вакуумную камеру, откачивают воздух и начинают продувку кислородом сверху через водоохлаждаемую фурму, которую вводят в камеру через крышку. Одновременно производится продувка аргоном через дно ковша. После окончания продувки проводят присадку раскислителей и легирующих для корректировки состава. Расход аргона в этом способе значительно ниже чем в AOD (всего 0,2 м^3/т). Получаемая сталь содержит очень низкие концентрации углерода (0,01 %) при низком содержании азота. Окисление хрома незначительное. Для удаления серы в ковш загружают известь, что позволяет после раскисления и кратковременного перемешивания аргоном снизить концентрацию серы в металле до необходимых пределов. По сравнению с процессом AOD этот метод более сложен и применяется для производства сталей ответственного назначения с низким содержанием углерода. К достоинствам того и другого процесса следует отнести экономию дорогого низкоуглеродистого феррохрома, обычно использовавшегося при получении нержавеющей стали в дуговых печах, а также достижение низких содержаний углерода без значительных потерь хрома.
Индукционные печи и плавка в них.
В настоящее время индукционные печи находят широкое применение в металлургии и машиностроении. В лабораториях используют высокочастотные печи емкостью от нескольких грамм до 100 кг, в литейных цехах низко- и среднечастотные печи до 2—6 т; наиболее крупные печи имеют емкость до 60 т. По сравнению с дуговыми электропечами в индукционных печах отсутствие электродов и электрических дуг дает возможность получать стали и сплавы с низким содержанием углерода и газов. Плавка характеризуется небольшим угаром легирующих элементов, высоким электрическим к. п. д„ точным регулированием температуры металла.
Недостатком печей является холодный, плохо перемешиваемый шлак, что не позволяет так же интенсивно, как в дуговых печах, проводить процессы рафинирования. Стойкость футеровки в печах невысокая.
Основной тип современных высокочастотных или индукционных печей — это печи без сердечника. Такая печь состоит из индуктора-катушки, навитой из медной трубки с водяным охлаждением. Внутрь индуктора вставляется либо готовый огнеупорный тигель, либо тигель набивается порошкообразным огнеупорным материалом. При наложении на индуктор переменного электрического тока частотой от 50 до 400 кГц образуется переменное магнитное силовое поле, пронизывающее пространство внутри индуктора. Это магнитное поле наводит в металлической садке вихревые токи.
Устройство индукционных печей
В центре печи помещен индуктор. Он имеет вид соленоида и изготовлен из профилированной медной трубы. По трубе идет вода для ее охлаждения. Внутри индуктора набит огнеупорный тигель. Ток подается по гибким кабелям. Печь заключена в металлический кожух. Сверху тигель закрывается сводом. Поворот печи для слива металла осуществляется вокруг оси, расположенной у сливного носка. Поворотные цапфы печи покоятся на опорных подшипниках станин. Наклон печи проводится при помощи реечного механизма через подвижные шарниры-цапфы или гидроприводом. Небольшие печи наклоняют при помощи тали.
Футеровка печей может быть кислой или основной, набивной или кирпичной. Для набивки используют огнеупорные материалы различной крупности от долей миллиметра до 2—4 мм. Для основной футеровки применяют порошок магнезита с добавками хромомагнезита и борной кислоты для связки. Кислые смеси готовят на основе молотого кварцита. Набивку тигля ведут послойно вокруг металлического шаблона, форма которого соответствует профилю тигля.
После окончания набивки футеровку спекают и обжигают. В железный шаблон загружают чугун, включают ток, металл постепенно разогревается и нагревает футеровку. Затем металл доводят до плавления. В первой плавке расплавляют мягкое железо, что позволяет достичь высокой температуры для обжига футеровки. Крупные печи футеруют фасонным огнеупорным кирпичом.
Электрическое оборудование
Индукционные печи питаются током высокой частоты от ламповых генераторов или током средней частоты (2500 Гц) от машинных преобразователей. Крупные печи работают на токе промышленной низкой частоты (50Гц от сети). Эти печи часто служат в качестве миксеров жидкого металла в литейных цехах.
В схему входят машинный генератор, батарея конденсаторов и автоматический регулятор, плавильный контур. Преобразовательный агрегат состоит из асинхронного электродвигателя, вращающего генератор и динамомашину, которая дает ток в обмотки возбуждения генератора.
Для компенсации реактивной мощности и создания электрического резонанса устанавливают батарею конденсаторов. Часть конденсаторов может быть отключена для изменения емкостной составляющей. Резонанс бывает при условии ωL=1/ωC (L–коэффициент самоиндукции печи, C – емкость конденсатора, ω – угловая частота). Подбирая переменную емкость, можно работать в условиях, близких к резонансу, т.е. поддерживать cosφ близкий к единице. Автоматический регулятор электрического режима поддерживает оптимальную электрическую мощность взаимосвязанным регулированием cosφ, напряжения и силы тока.
Технология плавки стали в индукционной печи.
Плавку проводят на высококачественном ломе с пониженным содержанием фосфора и серы. Крупные и мелкие куски так укладывают в тигель или бадью, с помощью которой загружают крупные печи, чтобы они плотно заполняли объем тигля. Тугоплавкие ферросплавы укладывают на дно тигля. После загрузки включают ток на полную мощность. По мере проплавления и оседания скрапа подгружают шихту, не вошедшую сразу в тигель. Когда последние куски шихты погрузятся в жидкий металл, на поверхность металла забрасывают шлакообразующие материалы: известь, магнезитовый порошок, плавиковый шпат. Шлак защищает металл от контакта с атмосферой, предотвращает тепловые потери. По ходу плавки шлак раскисляют добавками порошка кокса, молотого ферросилиция. Металл раскисляют кусковыми ферросплавами и в конце алюминием. По ходу плавки дают добавки легирующих. Поскольку угара легирующих практически не происходит, то в индукционных печах можно выплавлять сплавы сложного состава.
Список использованной литературы.
Металлургия черных металлов; Б.В. Линчевский, А.Л. Соболевский, А.А.Кальменев
Производство стали в электрических печах. В электоропечи можно получать легированную сталь с низким содержанием серы и фосфора, неметаллических включений, при этом потери легирующих элементов значительно меньше. В процессе э
Copyright (c) 2024 Stud-Baza.ru Рефераты, контрольные, курсовые, дипломные работы.