курсовые,контрольные,дипломы,рефераты
Электронно-лучевыми приборами называют такие электронные электровакуумные приборы, в которых используется поток электронов, сконцентрированный в форме луча или пучка лучей. Электронно-лучевой прибор, имеющий форму трубки, обычно называют электронно-лучевой трубкой.
Управление пространственным положением луча осуществляется с помощью электрических (электростатическая отклоняющая система) и магнитных (магнитная отклоняющая система) полей, а управление плотностью тока – с помощью электрических полей. Электронно-лучевые приборы используются для получения видимого изображения электрических сигналов, а также для запоминания (хранения) сигналов.
Отклоняющая система служит для управления положением луча в пространстве. В трубках с магнитным управлением отклоняющая система состоит из двух пар отклоняющих катушек.
Магнитная отклоняющая система обычно содержит две пары катушек, надеваемых на горловину трубки и образующих магнитные поля во взаимно перпендикулярных направлениях. Рассмотрим отклонение электрона магнитным полем одной пары катушек, считая, что поле ограничено диаметром катушки и в этом пространстве однородно. На рис.1 силовые линии магнитного поля изображены уходящими от зрителя перпендикулярно плоскости чертежа. Электрон с начальной скоростью V0 движется в магнитном поле, вектор индукции B которого нормален к вектору скорости V0, по окружности с радиусом
Выражая скорость V0 электрона через напряжение на аноде, получаем:
Конструкция отклоняющих катушек. Отклоняющие катушки с ферромагнитными сердечниками позволяют увеличить плотность потока магнитных силовых линий в необходимом пространстве. Катушки с ферромагнитными сердечниками применяются только при низкочастотных отклоняющих сигналах, так как с увеличением частоты отклоняющего напряжения возрастают потери в сердечнике. В телевизионных и радиолокационных электронно-лучевых трубках обычно применяются отклоняющие катушки без сердечника. Стремясь получить более однородное магнитное поле, края катушки отгибают, а саму катушку изгибают по форме горловины трубки. Витки в катушке распределяют неравномерно: Число витков на краях обычно в 2 – 3 раза больше, чем в середине. Для уменьшения поля рассеяния катушки без сердечника обычно заключаются в стальной экран.
Достоинства и недостатки электростатической и магнитной систем отклонения. Отклонение луча магнитным полем в меньшей степени зависит от скорости электрона, чем для электростатической системы отклонения. Поэтому магнитная отклоняющая система находит применение в трубках с высоким анодным потенциалом, необходимым для получения большой яркости свечения экрана.
К недостаткам магнитных отклоняющих систем следует отнести невозможность их использования при отклоняющих напряжениях с частотой более 10 – 20 кГц, в то время как обычные трубки с электростатическим отклонением имеют верхний частотный предел порядка десятков мегагерц и больше. Кроме того, потребление магнитными отклоняющими катушками значительного тока требует применения мощных источников питания.
Достоинством магнитной отклоняющей системы является ее внешнее относительно электронно-лучевой трубки расположение, что позволяет применять вращающиеся вокруг оси трубки отклоняющие системы.
Статические и физические параметры транзистора.
Транзистором называют электропреобразовательный полупроводниковый прибор с одним или несколькими электрическими переходами, пригодный для усиления мощности, имеющий три или более выводов.
Физические параметры транзистора.
Токи в транзисторе определяются рядом физических процессов в электронно-дырочных переходах и в объеме базы, характеризуемых соответствующими параметрами. Физические параметры играют важную роль при анализе работы транзистора на переменном токе с сигналами малых амплитуд. Большинство этих параметров являются дифференциальными величинами и используются в качестве так называемых малосигнальных параметров транзистора.
Рассмотрим основные процессы и физические параметры транзистора.
Токи в транзисторе.
В активном режиме работы транзистора дырки, инжектируемые из эмиттера, движутся затем в базе и втягиваются полем коллекторного перехода, образуя коллекторный ток IK. В следствие рекомбинации в базе и других причин IK < IЭ. На основании закона Кирхгофа для токов в цепях электродов транзистора можно записать: IЭ = IK + IБ.
В активном режиме к эмиттерному переходу приложено прямое напряжение и через переход течет ток IЭ, который содержит составляющие IЭр и IЭп – токов инжекции дырок из эмиттера в базу и электронов из базы в эмиттер, составляющую IЭr – тока рекомбинации в эмиттерном переходе, а также ток утечки IЭу: IЭ = IЭр + IЭп + IЭr + IЭу.
Токами IЭп, IЭr, IЭу пренебрежем: IЭ » IЭр.
Ток коллектора – это ток через переход, к которому в активном режиме приложено обратное напряжение. Помимо обратного тока через коллекторный переход протекает ток экстракции дырок из базы в коллектор равный дырочной составляющей эмиттерного тока за вычетом тока, обусловленного рекомбинацией дырок в базе.
Ток базы может быть определен как разность токов эмиттера и коллектора.
Обратные токи переходов.
Обратным током коллектора (или эмиттера) называют ток при заданном обратном напряжении на коллекторном (или эмиттерном) переходе при условии, что цепь другого перехода разомкнута: IЭ = 0 (или IК = 0)
Поскольку обратный ток коллектора, определяемый процессами генерации носителей в коллекторе, базе и коллекторном переходе, представляет собой не управляемую процессами в эмиттерном переходе часть коллекторного тока. Ток IКБО играет важную толь в работе транзистора в активном режиме, когда коллекторный переход находится под обратным напряжением.
Соответственно обратный ток эмиттера IЭБО представляет собой составляющую эмиттерного тока, значения которого определяется процессами генерации носителей в эмиттере, базе и в области эмиттерного перехода. Этот ток имеет важное значение при работе транзистора в инверсном режиме (эмиттерный переход включен в обратном направлении).
Помимо токов IКБО и IЭБО, измеряемых в режиме холостого хода в цепи эмиттера или коллектора соответственно, в транзисторе различают также обратные токи IКБК и IЭБК.
Ток IКБК, текущий через коллекторный переход при обратном напряжении на этом переходе, измеряется в условиях короткого замыкания цепи эмиттер – база. Аналогично ток IЭБК – это ток в эмиттерном переходе при обратном напряжении на этом переходе и при условии, что цепь коллектор – база замкнута накоротко.
Коэффициенты передачи тока.
С учетом понятия обратного тока коллектора ток IК для активного режима работы следует представить как сумму двух составляющих: тока IКБО и части эмиттерного тока, который определяется потоком носителей, инжектированных в базу и дошедших до коллекторного перехода.
Следовательно,
IК = a IЭ + IКБО.
называется коэффициентом эмиттерного тока. Обычно a < 1. В инверсном режиме (коллекторный переход включен в прямом, а эмиттерный – в обратном направлении) ток эмиттера равен:
IЭ = a1IК + IЭБО.
называется инверсным коэффициентом передачи коллекторного тока. Как правило, a1 < a.
С помощью коэффициентов a и a1 можно установить связь между обратными токами:
IКБО = IКБК(1 – aa1);
IЭБО = IЭБК(1 – aa1);
В транзисторе, включенном по схеме с общим эмиттером, входным током служит ток базы IБ, а выходным, как и в схеме с ОБ, то коллектора IК. Для схемы ОЭ, широко применяемой в радиотехнических устройствах на транзисторах, используется коэффициент передачи базового тока b. Выражение для b можно получить, решая его относительно тока IК:
Запишем это выражение в виде
IК = b IБ + IКЭО.
Где
и
- обратный ток коллекторного перехода в схеме ОЭ при IБ = 0.
Выражение для коэффициента передачи базового тока b легко получить используя эти соотношения:
Статические параметры транзистора.
Статические параметры транзистора характеризуют свойства прибора в статическом режиме, т.е. в том случае, когда к его электродам подключены лишь источники постоянных напряжений.
Система статических параметров транзистора выбирается таким образом, чтобы с помощью минимального числа этих параметров можно было бы наиболее полно отобразить особенности статических характеристик транзистора в различных режимах. Можно выделить статические параметры режима отсечки, активного режима и режима насыщения. К статическим параметрам относятся также величины, отображающие характеристики в близи пробоя.
Статические параметры в активном режиме.
Статическим параметром для этого режима служит статический коэффициент передачи тока в схеме ОЭ:
Коэффициент h21Э является интегральным коэффициентом передачи базового тока b, однако, статический коэффициент определяет как пренебрегая током ІКБО, что вполне допустимо при условии, что ІБ ³ 20ІКБО.
В качестве статического параметра активного режима используется также статическая крутизна прямой передачи в схеме ОЭ:
Статические параметры в режиме отсечки.
В качестве этих параметров используются обратные токи в транзисторе.
Статические параметры режима отсечки в значительной мере определяют температурную нестабильность работы транзистора и обязательно используются во всех расчетах схем на транзисторах. К числу этих параметров относятся следующие токи:
обратный ток коллектора ІКБО – это ток через коллекторный переход при заданном обратном напряжении коллектор – база и разомкнутом выводе эмиттера;
обратный ток эмиттера ІЭБО – это ток через эмиттерный переход при заданном обратном напряжении эмиттер – база и разомкнутом выводе коллектора;
обратный ток коллектора ІКБК – это ток через коллекторный переход при заданном обратном напряжении коллектор – база и при замкнутых накоротко выводах эмиттера и базы;
обратный ток ІЭБК – это ток через эмиттерный переход при заданном обратном напряжении эмиттер – база и при замкнутых накоротко выводах коллектора и базы;
обратный ток коллектор – эмиттер – ток в цепи коллектор – эмиттер при заданном обратном напряжении UКЭ. Этот ток обозначается: ІКЭО – при разомкнутом выводе базы; ІКЭК – при коротко замкнутых выводах эмиттера и базы; ІКЭR – при заданном сопротивлении в цепи базы – эмиттер; ІКЭX – при заданном обратном напряжении UБЭ.
Статические параметры в режиме насыщения.
В качестве параметров в этом режиме используются величины напряжений между электродами транзистора, включенного по схеме ОЭ.
Напряжение насыщение коллектор – эмиттер UКЭ нас – это напряжение между выводами коллектора и эмиттера в режиме насыщения при заданных токах базы и коллектора;
напряжение насыщение база – эмиттер UБЭ нас – это напряжение между выводами базы и эмиттера в режиме насыщения при заданных токах базы и коллектора.
При измерениях UКЭ нас и UБЭ нас ток коллектора задается чаще всего равным номинальному значению, а ток базы задается в соответствии с соотношением ІБ = КнасІ’Б, где Кнас коэффициент насыщения; І’Б ток на границе насыщения.
Статические параметры в области пробоя.
Основными параметрами в этом режиме служат:
пробивное напряжение коллектор – база UКБО проб – это пробивное напряжение между выводами коллектора и базы при заданном обратном токе коллектора ІКБО и токе ІЭ = 0.
пробивное напряжение коллектор – эмиттер – пробивное напряжение между выводами коллектора и эмиттера при заданном токе ІК.
Напряжение UКЭО проб определяется соотношением
Электронно-лучевыми приборами называют такие электронные электровакуумные приборы, в которых используется поток электронов, сконцентрированный в форме луча или пучка лучей. Электронно-лучевой прибор, имеющий форму трубки, обычно называют электронн
Общего принципа относительности не существует
Понятие о компонентах и фазах. Гетерогенные равновесия.
Научно-Технический Прогресс (НТП)
Энергетика воды
Наука и образование в обществе интеллектуальной культуры
Информационные аспекты взаимодействия в системе "человек - техника - природа"
Некоторые научно-технические проблемы развития электромеханики малой мощности
Атомная энергия: за и против
Формирование исходных данных
Лазерная медицинская установка для целей лучевой терапии "Импульс-1"
Copyright (c) 2024 Stud-Baza.ru Рефераты, контрольные, курсовые, дипломные работы.