. , , ,

,,,

Simulink —

. " Simulink"

: ().

1.  1- 2- .

2.  1- 2- .

3.  1- 2- .

4.  1- .

() . .

:

  , ;

  ;

  ;

  , .. , .

.1. , - : Power meter - ; Spectr_a, b, c, d, e -

.2 - .

.3. .

.4 .

.5 .

1.  () Simulink. Simulink. . .1.

2.  . Parameters Simulation Simulink. . Solver (Stop time) 5 . (Type: Fixed-step) (discrete (no continuous states)). (Fixed Step Size) , : 10 40 .

3.  . , , (Sample time). 10 ( /, 2*pi*f, f - ). (j = j - j) 90 (pi/2), . ,

4.  RC-, , 10 , , .

5.  - () , F (p) = (1 + a/p), - , - . [10,30] 5.

6.  . , j Í [p, p], U = h (j) .

7.  [-1,1] 0.5 Df = f (U).

8.  , , Df , , 1- 2- .

9.  , , Df , 1- 2- .

10.  , 1- 2- [-1,1] 1.

11.  1- 2- . 10 4 2.

12.  . - , - .

.6. , , , : S = 1 /, 40 , 0.2 /, Δf = Δf = 1 , tÎ [23, 28] .

. .1.1

. .1.2

..1.1 (), , (), , (), ().

.

f U f (U) (..1.2). . , - , S = Df / DU /.

() , j j j.

U j = j - j U (j), S = dU/dj - , - , /.

F (j) = U (j) /E,

E - , . F (j) - , 1.

, ..1.3, , ..1.3, , .

. .1.3

 

() . . - K (p) = 1/ (1+pT), T = R*C, .1.4. - , .1.4, K (p) = (1 + p m T) / (1 + p T), T = C* (R+R1), m = R1/ (R+R1). - K (p) = ( ( + p) / p), - .

. .1.4 :

) ;

) -

. w j , w j. (f - f) = Δf Δf . U . U, , , , w w , . S S .

, , () , , , , , . 1 - U = U. .

: , , , .

, , , , , .

, , . , .

, , . , , .

Δf , . Δf - , .

Δf , , . . Δf Δf . 1 - Δf = Δf = SE, - RC - t =1/ SSE, j = arcsin (Δf/ SE). .

.

 

: , , . .2.1.

, - , K1 - (), θ (t) - , θ' (t) - , θ (t) = w0 t + θ1 (t) θ' (t) = w0 t + θ2 (t), θ1 (t) θ2 (t) - .

u (t) , w0. [w0 + K2e (t)], K2 - .

. .2.1

, ,

x (t) , ,

, .

(t)

, t = 0. e0 (t) , t = 0. , , e0 (t) º0 t.

h (t) F (). , (, ) , , .

£ .

, .

- , q (t):

,

, ..2.2.

. .2.2 -

, , , , - . , . , . q (t) , j (t) , - .


j (t) , , "" .

j (t) 1 , , 5%. , , .

, sinφ φ -

, ,

F (p) - , j () - j (t), q (p) - q (t).

-, . .2.3.

j(p)

 

q1(p)

 

q2(p)

 

1/p

 

F(p)

 

. .2.3

- φ () θ2 () , θ1 ()

() = θ2 () / θ1 ()

. , j (p), q1 (p), q2 (p):

,

.

:

. F (p) , (p) - . , [1 + A K F (p) /p] . θ2 () φ (),

θ1 ().

, , w [/] q0 .

.

q2 (t) = (w-w0) t+q0,

limj (t) , . j (t) , (w-w0) / (AK) [], , , . , , (w-w0) / (AK) q0 .

, , . , , . .2.4

:

, , , . , , , . , , .. F (p) /p.

. .2.4 -2

, ..2.5,

. .2.5 -2

, . .2.5, =1/R2C e = l/ (R1 + R2) . , , . .2.4, , R1 R2 , .

, e/ . .

, ,

R . , , , , Rc/w [/2] , - .

[F (s) = I],

j (t) t¥, . . , .

, , , . , , , 1 .

. , . .2.6

, .

.1. , , ( ) , ( ) . , .

.

, .

. .2.6 -3

1

wt+q0

1 AK/ (p+AK)

(w-w0) /AK

AK/4

wt+q0

1+a/p

AK (p+a) / (p2 +Akp+Aka)

0 (AK+) /4

wt+q0

() (p+a) / (p+e)

AK (p+a) / (p2 + (Ak+e) +Aka)

(e/a) ( (w-w0) /AK)

(/4) * [ (AK+) / (AK+ε)]

1/2 (Rt2+wt+q0)

1+a/p

AK (p+a) / (p2 +Akp+Aka)

R/aAK (AK+) /4

1/2 (Rt2+wt+q0)

1+a/s+b/ s2

AK (s2+as+b) / (s3 +Aks2+aAks+bAK)

0

(/4) * [ (AK+2-b) / (aAK-b)]


1.  . . .. . - .: , 1982.

2.  .. . . - .: , 1970.

3.  .. , .. . . - .: , 1982.

4.  .. . . - .: , 1990.

.. , .. . . - .: , 1985.

. " Simulink" :

 

 

 

! , , , .
. , :