. , , ,

,,,

¦ ( x) , g(x) , xÎ R1 [ -p , p ] , 2p - , . f* g(x)

f* g(x) =dt

, [ -p ,p ]

cn ( f* g ) = cn ( f )× cn ( g ) , n = 0, ± 1 , ± 2 , ... ( 1 )

{ cn ( f )} -- f ( x ) :

cn = -i n tdt , n = 0, ± 1 , ± 2 , ¼

¦ Î L1 (-p , p ) . 0 £ r < 1

¦ r ( x ) = n ( f ) r| n | ei n x , x Î [ - p , p ] , ( 2 )

(2) r , 0 £ r < 1 . ¦ r ( )

cn ( fr ) = cn × r| n | , n = 0 , ± 1 , ± 2 , ¼ , (1) , ¦ r ( x ) :

¦ r ( x ) = , ( 3 )

, t Î [ - p , p ] . ( 4 )

r (t) , 0 £ r < 1 , t Î [ - p , p ] , , (3) -- .

,

Pr ( t ) = , 0 £ r < 1 , t Î [ - p , p ] . ( 5 )

¦ Î L1 ( -p , p ) - , , ,

c-n ( f ) = ` cn( f ) , n = 0, ± 1 , ± 2 , ¼ , (2) :

fr ( x ) =

= , ( 6 )

F ( z ) = c0 ( f ) + 2 ( z = reix ) ( 7 )

. (6) , ¦ Î L1( -p , p ) (3)

u ( z ) = ¦ r (eix ) , z = reix , 0 £ r < 1 , x Î [ -p , p ] .

u (z) v (z) c v (0) = 0

v (z) = Im F (z) = . ( 8 )

1.

u (z) - ( ) | z | < 1 + e ( e > 0 ) ¦ (x) = u (eix) , xÎ [ - p , p ] .

u (z) = ( z = reix , | z | < 1 ) ( 10 ).

Pr (t) - , (10) , u (z) - :

=, | z | < 1 + e .

(10) (2) (3).

¦ r (x) r® 1 , :

) ;

) ;

) d >0

) ) (5), ) (2) (3) ¦ ( ) º 1 .

1.

() ( -p , p ) , 1 £ p < ¥ ,

;

¦ (x) [ -p , p ] ¦ (-p ) = ¦ (p ) ,

.

.

(3) )

( 12 )

, ,

.

,

.

e > 0 d = d (e ) , . r , ,

.

.

1 .

" " " ", .

1.

(-, ), > 0 .

I , .

2.

(,) , y > 0

.

2 ().

- .

.. .

.

,

, ( 13 )

- , M ( f, x ) - f (x) . (5)

( - ).

- ,

.

.

(13) . (1,1) , ,

,

( 14 )

.. .

(13) xÎ (-2p , 2 p )

, 1 xÎ [-p , p ] (14)

n® ¥ .

2 .

.

(13) (59), , , .. xÎ [-p , p ] , reit eix .

, f (x) [ - 2p , 2p ] (.. f (x) = f (y) , x,y Î [-2p ,2p ] x-y=2p ) f (x) = 0 , | x| > 2 p .



&#166; &#40; x&#41; , g(x) , x&#206; R1 &#91; -&#112; , &#112; &#93; , 2&#112; - , . f&#42; g(x) f&#42; g(x) =dt ,

 

 

 

! , , , .
. , :