,,,
¦ ( x) , g(x) , xÎ R1 [ -p , p ] , 2p - , . f* g(x)
f* g(x) =dt
, [ -p ,p ]
cn ( f* g ) = cn ( f )× cn ( g ) , n = 0, ± 1 , ± 2 , ... ( 1 )
{ cn ( f )} -- f ( x ) :
cn = -i n tdt , n = 0, ± 1 , ± 2 , ¼
¦ Î L1 (-p , p ) . 0 £ r < 1
¦ r ( x ) = n ( f ) r| n | ei n x , x Î [ - p , p ] , ( 2 )
(2) r , 0 £ r < 1 . ¦ r ( )
cn ( fr ) = cn × r| n | , n = 0 , ± 1 , ± 2 , ¼ , (1) , ¦ r ( x ) :
¦ r ( x ) = , ( 3 )
, t Î [ - p , p ] . ( 4 )
r (t) , 0 £ r < 1 , t Î [ - p , p ] , , (3) -- .
,
Pr ( t ) = , 0 £ r < 1 , t Î [ - p , p ] . ( 5 )
¦ Î L1 ( -p , p ) - , , ,
c-n ( f ) = ` cn( f ) , n = 0, ± 1 , ± 2 , ¼ , (2) :
fr ( x ) =
= , ( 6 )
F ( z ) = c0 ( f ) + 2 ( z = reix ) ( 7 )
. (6) , ¦ Î L1( -p , p ) (3)u ( z ) = ¦ r (eix ) , z = reix , 0 £ r < 1 , x Î [ -p , p ] .
u (z) v (z) c v (0) = 0
v (z) = Im F (z) = . ( 8 )
1.
u (z) - ( ) | z | < 1 + e ( e > 0 ) ¦ (x) = u (eix) , xÎ [ - p , p ] .
u (z) = ( z = reix , | z | < 1 ) ( 10 ).
Pr (t) - , (10) , u (z) - :
=, | z | < 1 + e .
(10) (2) (3).
¦ r (x) r® 1 , :
) ;
) ;
) d >0
) ) (5), ) (2) (3) ¦ ( ) º 1 .
1.
() ( -p , p ) , 1 £ p < ¥ ,
;
¦ (x) [ -p , p ] ¦ (-p ) = ¦ (p ) ,
.
.
(3) )
( 12 )
, ,
.
,
.
e > 0 d = d (e ) , . r , ,
.
.
1 .
" " " ", .
1.
(-, ), > 0 .
I , .
2.
(,) , y > 0
.
2 ().
- .
.. .
.
,
, ( 13 )
- , M ( f, x ) - f (x) . (5)
( - ).
- ,
.
.
(13) . (1,1) , ,
,
( 14 )
.. .
(13) xÎ (-2p , 2 p )
, 1 xÎ [-p , p ] (14)
n® ¥ .
2 .
.
(13) (59), , , .. xÎ [-p , p ] , reit eix .
, f (x) [ - 2p , 2p ] (.. f (x) = f (y) , x,y Î [-2p ,2p ] x-y=2p ) f (x) = 0 , | x| > 2 p .
Copyright (c) 2024 Stud-Baza.ru , , , .