,,,
- . .. ( )
: .
( )
: .
: . -09-2 ________________ / ../
() (...)
: _____________
: _________________
__ ________________ / . ./
() () (...)
-
2010
- .. ( )
___________ /________/
"___"__________2010 .
/
___________________________________
_____________________________________________________________
( )
-09-2 ..
( ) (...)
1. : .
2.
3. , , , , , , , .
4. ______________________________
_____________ / . ./
() () (...)
: _____________________
Turbo Pascal 7.0, Microsoft Office Excel 2007 MathCad 14. Microsoft Office Word 2007.
60, 23, 3.
The explanatory note represents the report on course work on a theme: the decision of geodetic problems with the help of programming language Turbo Pascal and tabulared processor Excel and MathCad 14. The report is made out in word-processor Microsoft Word.
Pages 60, figures 23, tables 3.
1.
1.1
1.2
1.3
1.4 TURBO PASCAL
1.5
1.6 DANO.TXT
1.7
1.8 MS EXCEL
1.9 MATHCAD
1.10
2.
2.1
2.2
2.3
2.4 TURBO PASCAL
2.5
2.6 IN.TXT
2.7
2.8 MS EXCEL
2.9 MATHCAD
2.10
3.
3.1
3.2
3.3
3.4 TURBO PASCAL
3.5
3.6 DATA.TXT
3.7
3.8 MS EXCEL
3.9 MATHCAD
3.10
4.
4.1
4.2
4.3
4.4 -
4.5
4.6. CLAY.TXT
4.7
4.8 MS EXCEL
4.9 MATHCAD
4.10
.
. , .
, .
. , , , .
, StarNet - , Mapsuite - - , LEICA Geo Office - , SiteMaster - , GeometricalGeodesy - Mathematica, . Turbo Pascal, Microsoft Excel 2007 MathCad 14.
Turbo Pascal :
If , , .
For , , .
Assign ( ). . .
Close ( ). , , , .
Reset ( ). , , .
. - , , , , . . - . .
( abs, arctan, sqr, sqrt ..).
Microsoft Word 2007.
1.
1.1
R = | AB | x, y . , , , . .
x C
A
B
y
. 1.1
(. 1.1),
, . 1.1, :
(1.1)
.
(1.2)
, , , .
. 1.1.
+ | + | I |
= r |
- | + | II |
r |
- | - | III |
r |
+ | - | IV |
r |
:
(1.3)
:
(1.4)
. :
;
;
;
;
,
.
, , , m, s.
1.2
2- A(,y) B(x,y). AB.
1.3
2
) X1 = 5119.94 Y1 = 6157.33
X2 = 7182.27 Y2 = 4976.39
) X1 = 10932.84 Y1 = 6112.26
X2 = 9115.24 Y2 = 4903.68
1.4. Turbo Pascal
* ;
** ;
*** .
1.5
Program Zadacha1;
Uses CRT;{ }
Var i,j,k:integer;{ }
x1,y1,x2,y2,x3,y3,x4,y4,Dy,Dx,Dx1,Dy1,R,R1,Alfa,alfa1,S,S1:real;
AlfaGr,AlfaMi,AlfaS,AlfaGr1,AlfaMi1,AlfaS1:real;
t1,t2:text;
{ }
procedure Prir (var k1:real; var k2:real; var Dd:real);
begin
Dd:=k2-k1;
end;
{ }
procedure Gradyc (var A,AGr,AMi,AS:real);
Var
AG,AM:real;
begin
AG:=180*(A/Pi);
AGr:=int(AG);
AM:=60*(AG-AGr);
AMi:=int(AM);
AS:=int(60*(AM-AMi));
end;
{ }
procedure Analiz (var X,Y,R,A:real);
begin
If (X>0) and (Y>0) Then
Begin
A:=R;
Writeln('I chetvert');
Writeln(t2,'I ');
Writeln('Direkcionnii ygol raven(v radianax):');
Writeln(t2,' ( ):');
Writeln(A:6:3);
Writeln(t2,A:6:3);
End;
If (X<0) and (Y>0) Then
Begin
A:=(Pi)-R;
Writeln('II chetvert');
Writeln(t2,'II ');
Writeln('Direkcionnii ygol raven(v radianax):');
Writeln(t2,' ( ):');
Writeln(A:6:3);
Writeln(t2,A:6:3);
End;
If (X<0) and (Y<0) Then
Begin
A:=(Pi)+R;
Writeln('III chetvert');
Writeln(t2,'III ');
Writeln('Direkcionnii ygol raven(v radianax):');
Writeln(t2,' ( ):');
Writeln(A:6:3);
Writeln(t2,A:6:3);
End;
If (X>0) and (Y<0) Then
Begin
A:=(2*(Pi)-R);
Writeln('IV chetvert');
Writeln(t2,'IV ');
Writeln('Direkcionnii ygol raven(v radianax):');
Writeln(t2,' ( ):');
Writeln(A:6:3);
Writeln(t2,A:6:3);
End;
end;
Begin
ClrScr;{ }
Assign (t1,'dano.txt');{ }
Assign (t2,'rezultat.txt');
Reset (t1);
Rewrite (t2);
{ }
Readln(t1);
Readln(t1);{ " 1."}
Readln(t1);{ " X:"}
Readln(t1,x1);{ X }
Readln(t1);{ " Y:"}
Readln(t1,y1);{ Y }
Readln(t1);{ " 2."}
Readln(t1);{ " X:"}
Readln(t1,x2);{ X B}
Readln(t1);{ " Y:"}
Readln(t1,y2);{ Y B}
Readln(t1);
Readln(t1);
Readln(t1);{ " 1."}
Readln(t1);{ " X:"}
Readln(t1,x3);{ X }
Readln(t1);{ " Y:"}
Readln(t1,y3);{ Y }
Readln(t1);{ " 2."}
Readln(t1);{ " X:"}
Readln(t1,x4);{ X B}
Readln(t1);{ " Y:"}
Readln(t1,y4);{ Y B}
Readln(t1);
Begin
{ }
Prir(x1,x2,Dx);
Prir(y1,y2,Dy);
Prir(x3,x4,Dx1);
Prir(y3,y4,Dy1);
{ }
Writeln('Prirasheniya zadaniya A');{ " "}
Writeln(t2,' ');{ " "}
Writeln('Po oci X');{ " X"}
Writeln(t2,' X');{ " X"}
Writeln(Dx:6:2);{ X }
Writeln(t2,Dx:6:2);{ X }
Writeln('Po oci Y');{ " Y"}
Writeln(t2,' Y');{ " Y"}
Writeln(Dy:6:2);{ Y }
Writeln(t2,Dy:6:2);{ Y }
Writeln('Prirasheniya zadaniya B');{ " B"}
Writeln(t2,' B');{ " B"}
Writeln('Po oci X');{ " X"}
Writeln(t2,' X');{ " X"}
Writeln(Dx1:6:2);{ X }
Writeln(t2,Dx1:6:2);{ X }
Writeln('Po oci Y');{ " Y"}
Writeln(t2,' Y');{ " Y"}
Writeln(Dy1:6:2);{ Y }
Writeln(t2,Dy1:6:2);{ Y }
End;
Begin
{ }
R:=arctan(abs(Dy/Dx));
R1:=arctan(abs(Dy1/Dx1));
{ }
Writeln('RYMB zadaniya A');{ " "}
Writeln(t2,' ');{ " "}
Writeln(R:6:6);{ }
Writeln(t2,R:6:6);{ }
Writeln('RYMB zadaniya B');{ " B"}
Writeln(t2,' ');{ " B"}
Writeln(R1:6:6);{ }
Writeln(t2,R1:6:6);{ }
End;
Begin
{ }
Writeln('Direkcionnii ygol i chetvert dly A');
Writeln(t2,' :');
Analiz (Dx,Dy,R,Alfa);
Writeln('Direkcionnii ygol i chetvert dly B');
Writeln(t2,' B:');
Analiz (Dx1,Dy1,R1,Alfa1);
End;
Begin
{ }
S:=sqrt((Sqr(Dx)+sqr(Dy)));
S1:=sqrt((Sqr(Dx1)+sqr(Dy1)));
{ }
Writeln('Gorizontalnoe Rasstoyanie mezdy tochkami Ravno(dly A):');
Writeln(t2,' ( ):');
Writeln(S:6:2);
Writeln(t2,S:6:2);
Writeln('Gorizontalnoe Rasstoyanie mezdy tochkami Ravno(dly B):');
Writeln(t2,' ( B):');
Writeln(S1:6:2);
Writeln(t2,S1:6:2);
End;
Begin
{ }
Gradyc (Alfa,AlfaGr,AlfaMi,AlfaS);
Gradyc (Alfa1,AlfaGr1,AlfaMi1,AlfaS1);
{ }
Writeln('Direkcionnii ygol raven(dly A):');
Writeln(t2,' ( ):');
Writeln(AlfaGr:6:0,' gradycov',AlfaMi:6:0,' minyt',AlfaS:6:0,' sekynd');
Writeln(t2,AlfaGr:6:0,' ',AlfaMi:6:0,' ',AlfaS:6:0,' ');
Writeln('Direkcionnii ygol raven(dly B):');
Writeln(t2,' ( B):');
Writeln(AlfaGr1:6:0,' gradycov',AlfaMi1:6:0,' minyt',AlfaS1:6:0,' sekynd');
Writeln(t2,AlfaGr1:6:0,' ',AlfaMi1:6:0,' ',AlfaS1:6:0,' ');
End;
Writeln('chtenie iz faila "dano.txt", zapis v "rezultat.txt"');
Close (t1);
Close (t2);
Readkey;
End.
1.6 dano.txt
:
1.
X:
5119.94
Y:
6157.33
2.
X:
7182.27
Y:
4976.39
B:
1.
X:
10932.84
Y:
6112.26
2.
X:
9115.24
Y:
4903.68
1.7
.1.3 Turbo Pascal.
rezultat.txt:
X
2062.33
Y
-1180.94
B
X
-1817.60
Y
-1208.58
0.520047
0.586801
:
IV
( ):
5.763
B:
III
( ):
3.728
( ):
2376.52
( B):
2182.74
( ):
330 12 12
( B):
213 37 16
1.8 MS Excel
.1.4 MS Excel.
. 1.5 MS Excel .
1.9 MathCad
. 1.6 MathCad 14.
1.10
, Turbo Pascal Microsoft Excel 2007 MathCad 14. , .
2.1
() - , (.2.1.).
P
. 2.1. .
, . , 30 150.
. , .
(2.1)
(2.2)
. 1 2 , 1 2.
(2.3)
(2.4)
(.2.1), , .. . , .
.
(2.5)
, (2.6)
XP k , YP k , k- .
2.2.
P 4 . (2 )
2.3
. 2.1
X, | Y, | B1, DDD MM SS | B2, DDD MM SS | |
11 | 5935.51 | 5441.24 | 98 4 30 | |
22 | 5687.41 | 5172.76 | 63 0 12 | 41 54 46 |
33 | 5142.93 | 5460.08 | 54 19 48 |
2.4. Turbo Pascal
|
||||||
|
||||||
*
**
***
****
|
2.5
Program Zadacha2;
Uses CRT;
Var
GB1P1,MB1P1,SB1P1,GB1P2,MB1P2,SB1P2,GB2P2,MB2P2,SB2P2,GB2P3,MB2P3,SB2P3:integer;
x1,y1,x2,y2,x3,y3:real;
Dx12,Dy12,Dx23,Dy23,R12,R23,Alfa12,Alfa23:real;
AlfaG12,AlfaGr12,AlfaG23,AlfaGr23,AlfaM12,AlfaMi12,AlfaM23,AlfaMi23,AlfaS23,AlfaS12:real;
RB1P1,RB1P2,RB2P2,RB2P3,xP12,yP12,xP23,yP23,SRx,SRy:real;
t1,t2:text;
{ }
procedure Prir (var k1:real; var k2:real; var Dd:real);
begin
Dd:=k2-k1;
end;
{ }
procedure Gradyc (var A,AGr,AMi,AS:real);
Var
AG,AM:real;
begin
AG:=180*(A/Pi);
AGr:=int(AG);
AM:=60*(AG-AGr);
AMi:=int(AM);
AS:=int(60*(AM-AMi));
end;
{ }
procedure Rymb (var X,Y,R:real);
begin
R:=arctan(abs(Y/X));
end;
{ }
procedure Analiz (var X,Y,R,A:real);
begin
If (X>0) and (Y>0) Then
Begin
A:=R;
Writeln('I chetvert');
Writeln(t2,'I ');
Writeln('Direkcionnii ygol raven(v radianax):');
Writeln(t2,' ( ):');
Writeln(A:6:3);
Writeln(t2,A:6:3);
End;
If (X<0) and (Y>0) Then
Begin
A:=(Pi)-R;
Writeln('II chetvert');
Writeln(t2,'II ');
Writeln('Direkcionnii ygol raven(v radianax):');
Writeln(t2,' ( ):');
Writeln(A:6:3);
Writeln(t2,A:6:3);
End;
If (X<0) and (Y<0) Then
Begin
A:=(Pi)+R;
Writeln('III chetvert');
Writeln(t2,'III ');
Writeln('Direkcionnii ygol raven(v radianax):');
Writeln(t2,' ( ):');
Writeln(A:6:3);
Writeln(t2,A:6:3);
End;
If (X>0) and (Y<0) Then
Begin
A:=(2*(Pi)-R);
Writeln('IV chetvert');
Writeln(t2,'IV ');
Writeln('Direkcionnii ygol raven(v radianax):');
Writeln(t2,' ( ):');
Writeln(A:6:3);
Writeln(t2,A:6:3);
End;
end;
Begin
ClrScr;
Assign (t1,'in.txt');
Assign (t2,'out.txt');
Reset (t1);
Rewrite (t2);
{ }
Readln(t1);
Readln(t1);
Readln(t1,x1);
Readln(t1);
Readln(t1,y1);
Readln(t1);
Readln(t1);
Readln(t1,GB1P1);
Readln(t1);
Readln(t1,MB1P1);
Readln(t1);
Readln(t1,SB1P1);
Readln(t1);
Readln(t1);
Readln(t1);
Readln(t1,x2);
Readln(t1);
Readln(t1,y2);
Readln(t1);
Readln(t1);
Readln(t1,GB1P2);
Readln(t1);
Readln(t1,MB1P2);
Readln(t1);
Readln(t1,SB1P2);
Readln(t1);
Readln(t1);
Readln(t1,GB2P2);
Readln(t1);
Readln(t1,MB2P2);
Readln(t1);
Readln(t1,SB2P2);
Readln(t1);
Readln(t1);
Readln(t1);
Readln(t1,x3);
Readln(t1);
Readln(t1,y3);
Readln(t1);
Readln(t1);
Readln(t1,GB2P3);
Readln(t1);
Readln(t1,MB2P3);
Readln(t1);
Readln(t1,SB2P3);
Begin
{ }
Prir (y1,y2,Dy12);
Prir (x1,x2,Dx12);
Prir (y2,y3,Dy23);
Prir (x2,x3,Dx23);
{ }
Writeln('Prirasheniya');{ ""}
Writeln(t2,'');{ ""}
Writeln('Po oci X dly 1-2');{ " X"}
Writeln(t2,' X 1-2');{ " X"}
Writeln(Dx12:6:2);{ X }
Writeln(t2,Dx12:6:2);{ X }
Writeln('Po oci Y dly 1-2');{ " Y"}
Writeln(t2,' Y 1-2');{ " Y"}
Writeln(Dy12:6:2);{ Y }
Writeln(t2,Dy12:6:2);{ Y }
Writeln('Po oci X dly 2-3');{ " X"}
Writeln(t2,' X 2-3');{ " X"}
Writeln(Dx23:6:2);{ X }
Writeln(t2,Dx23:6:2);{ X }
Writeln('Po oci Y dly 2-3');{ " Y"}
Writeln(t2,' Y 2-3');{ " Y"}
Writeln(Dy23:6:2);{ Y }
Writeln(t2,Dy23:6:2);{ Y }
End;
Begin
{ }
Rymb (Dx12,Dy12,R12);
Rymb (Dx23,Dy23,R23);
{ }
Writeln('Rymb 1-2');{ ""}
Writeln(t2,' 1-2');{ ""}
Writeln(R12:6:6);{ }
Writeln(t2,R12:6:6);{ }
Writeln('Rymb 2-3');{ ""}
Writeln(t2,' 2-3');{ ""}
Writeln(R23:6:6);{ }
Writeln(t2,R23:6:6);{ }
End;
Begin
Writeln('Dly 1-2');
Writeln(t2,' 1-2');
Analiz (Dx12,Dy12,R12,Alfa12);
Writeln('Dly 2-3');
Writeln(t2,' 2-3');
Analiz (Dx23,Dy23,R23,Alfa23);
End;
Begin
{ }
Gradyc (Alfa12,AlfaGr12,AlfaMi12,AlfaS12);
Gradyc (Alfa23,AlfaGr23,AlfaMi23,AlfaS23);
{ }
Writeln('Direkcionnii ygol 1-2 raven:');
Writeln(t2,' 1-2 :');
Writeln(AlfaGr12:6:0,' gradycov',AlfaMi12:6:0,' minyt',AlfaS12:6:0,' sekynd');
Writeln(t2,AlfaGr12:6:0,' ',AlfaMi12:6:0,' ',AlfaS12:6:0,' ');
Writeln('Direkcionnii ygol 2-3 raven:');
Writeln(t2,' 2-3 :');
Writeln(AlfaGr23:6:0,' gradycov',AlfaMi23:6:0,' minyt',AlfaS23:6:0,' sekynd');
Writeln(t2,AlfaGr23:6:0,' ',AlfaMi23:6:0,' ',AlfaS23:6:0,' ');
End;
Begin
{ }
RB1P1:=(((Pi)/180)*(GB1P1+(MB1P1/60)+(SB1P1/3600)));
RB1P2:=(((Pi)/180)*(GB1P2+(MB1P2/60)+(SB1P2/3600)));
RB2P2:=(((Pi)/180)*(GB2P2+(MB2P2/60)+(SB2P2/3600)));
RB2P3:=(((Pi)/180)*(GB2P3+(MB2P3/60)+(SB2P3/3600)));
xP12:=x1+(((y2-y1)*sin(RB2P2))/(sin(Alfa12)*sin(RB1P1+RB2P2)))*cos(Alfa12-RB1P1);
yP12:=y1+(((y2-y1)*sin(RB2P2))/(sin(Alfa12)*sin(RB1P1+RB2P2)))*sin(Alfa12-RB1P1);
xP23:=x2+(((y3-y2)*sin(RB2P3))/(sin(Alfa23)*sin(RB1P2+RB2P3)))*cos(Alfa23-RB1P2);
yP23:=y2+(((y3-y2)*sin(RB2P3))/(sin(Alfa23)*sin(RB1P2+RB2P3)))*sin(Alfa23-RB1P2);
Writeln('koordinaty iskomogo pynkta');
Writeln(t2,' ');
Writeln('x1-2=');
Writeln(t2,'x1-2=');
Writeln(xP12:6:2);
Writeln(t2,xP12:6:2);
Writeln('y1-2=');
Writeln(t2,'y1-2=');
Writeln(yP12:6:2);
Writeln(t2,yP12:6:2);
Writeln('x2-3=');
Writeln(t2,'x2-3=');
Writeln(xP23:6:2);
Writeln(t2,xP23:6:2);
Writeln('y2-3=');
Writeln(t2,'y2-3=');
Writeln(yP23:6:2);
Writeln(t2,yP23:6:2);
srX:=(xP12+xP23)/2;
srY:=(yP12+yP23)/2;
Writeln('Srednee X');
Writeln(t2,' X');
Writeln(srX:6:2);
Writeln(t2,srX:6:2);
Writeln('Srednee Y');
Writeln(t2,' Y');
Writeln(srY:6:2);
Writeln(t2,srY:6:2);
Writeln('chtenie iz faila "in.txt", zapic v "out.txt"');
End;
Close (t1);
Close (t2);
Readkey;
End.
2.6. in.txt
1:
X:
5935.51
Y:
5441.24
B1:
98
4
30
-------------------------------
2:
X:
5687.41
Y:
5172.76
B1:
63
0
12
B2:
41
54
46
-------------------------------
3:
X:
5142.93
Y:
5460.08
B2:
54
19
48
-------------------------------
2.7
.2.3 Turbo Pascal.
rezultat.txt
X 1-2
-248.10
Y 1-2
-268.48
X 2-3
-544.48
Y 2-3
287.32
1-2
0.824829
2-3
0.485558
1-2
III
( ):
3.966
2-3
II
( ):
2.656
1-2 :
227 15 33
2-3 :
152 10 46
x1-2=
5695.54
y1-2=
5735.63
x2-3=
5695.50
y2-3=
5735.70
X
5695.52
Y
5735.67
2.8 MS Excel
.2.4 MS Excel.
. 2.5 MS Excel .
2.9 MathCad
. 2.6 MathCad 14.
2.10
, 2 ( ) Turbo Pascal Microsoft Excel 2007 MathCad 14. , .
3.
3.1
(xi, yi ). , . ( ) , (.3.1).
P
A1
A2
A3
. 3.1.
, . , , , , .
.
n m.
(3.1)
(3.2)
.
(3.3)
(3.4)
3.2
. P ( 2 P).
3.3
. 3.1.
X | Y | ||
0 0 0 | 12480.95 | 10219.13 | |
100 32 56 | 10241.98 | 12270.54 | |
192 56 33 | 8586.56 | 10552.15 | |
266 31 50 | 9655.10 | 8220.95 |
3.4. Turbo Pascal
Program Zadacha3;
Uses CRT;
Var
g1,m1,s1,g2,m2,s2,g3,m3,s3,g4,m4,s4:integer;
x1,y1,x2,y2,x3,y3,x4,y4,vm1,vn1,vm2,vn2:real;
ra1,ra2,ra3,ra4,yg21,yg32,yg43,ct21,ct32,ct43:real;
Fi1,Fi2,Fi3,Fi4,De1,De2,De3,De4:real;
kipX1,kipX2,CredX,kipY1,kipY2,CredY:real;
t1,t2:text;
Begin
ClrScr;
Assign (t1,'data.txt');
Assign (t2,'result.txt');
Reset (t1);
Rewrite (t2);
{ }
Readln(t1);
Readln(t1);
Readln(t1,g1,m1,s1);
Readln(t1);
Readln(t1,x1);
Readln(t1);
Readln(t1,y1);
Readln(t1);
Readln(t1);
Readln(t1,g2,m2,s2);
Readln(t1);
Readln(t1,x2);
Readln(t1);
Readln(t1,y2);
Readln(t1);
Readln(t1);
Readln(t1,g3,m3,s3);
Readln(t1);
Readln(t1,x3);
Readln(t1);
Readln(t1,y3);
Readln(t1);
Readln(t1);
Readln(t1,g4,m4,s4);
Readln(t1);
Readln(t1,x4);
Readln(t1);
Readln(t1,y4);
Writeln(t2,':');
Writeln(t2,' 1');
Writeln(t2,': ',g1,' ',m1,' ',s1,' ;');
Writeln(t2,'X=',x1:6:2,'; Y=',y1:6:2,';');
Writeln(t2,' 2');
Writeln(t2,': ',g2,' ',m2,' ',s2,' ;');
Writeln(t2,'X=',x2:6:2,'; Y=',y2:6:2,';');
Writeln(t2,' 3');
Writeln(t2,': ',g3,' ',m3,' ',s3,' ;');
Writeln(t2,'X=',x3:6:2,' Y=',y3:6:2,';');
Writeln(t2,' 4');
Writeln(t2,': ',g4,' ',m4,' ',s4,' ;');
Writeln(t2,'X=',x4:6:2,'; Y=',y4:6:2,' .');
Writeln('Dano:');
Writeln('Pynkt #1');
Writeln('Hapravlenie: ',g1,' gradysov ',m1,' minyt ',s1,' sekynd;');
Writeln('X=',x1:6:2,'; Y=',y1:6:2,';');
Writeln('Pynkt #2');
Writeln('Hapravlenie: ',g2,' gradysov ',m2,' minyt ',s2,' sekynd;');
Writeln('X=',x2:6:2,'; Y=',y2:6:2,';');
Writeln('Pynkt #3');
Writeln('Hapravlenie: ',g3,' gradysov ',m3,' minyt ',s3,' sekynd;');
Writeln('X=',x3:6:2,' Y=',y3:6:2,';');
Writeln('Pynkt #4');
Writeln('Hapravlenie: ',g4,' gradysov ',m4,' minyt ',s4,' sekynd;');
Writeln('X=',x4:6:2,'; Y=',y4:6:2,' .');
Begin
{ }
ra1:=((Pi)/180)*(g1+(m1/60)+(s1/3600));
ra2:=((Pi)/180)*(g2+(m2/60)+(s2/3600));
ra3:=((Pi)/180)*(g3+(m3/60)+(s3/3600));
ra4:=((Pi)/180)*(g4+(m4/60)+(s4/3600));
End;
Writeln(t2); Writeln(t2); Writeln(t2); Writeln(t2,':'); Writeln(t2);
Writeln(t2,' 1 :',ra1:6:2,';');
Writeln(t2,' 2 :',ra2:6:2,';');
Writeln(t2,' 3 :',ra3:6:2,';');
Writeln(t2,' 4 :',ra4:6:2,' .');
Writeln; Writeln('Reshenie:'); Writeln;
Writeln('Napravlenie 1 v radianax:',ra1:6:2,';');
Writeln('Napravlenie 2 v radianax:',ra2:6:2,';');
Writeln('Napravlenie 3 v radianax:',ra3:6:2,';');
Writeln('Napravlenie 4 v radianax:',ra4:6:2,' .');
Begin
{}
yg21:=ra2-ra1;
yg32:=ra3-ra2;
yg43:=ra4-ra3;
End;
Writeln(t2);
Writeln(t2,' 2-1 ( )=',yg21:6:2,';');
Writeln(t2,' 3-2 ( )=',yg32:6:2,';');
Writeln(t2,' 4-3 ( )=',yg43:6:2,' .');
Writeln;
Writeln('Ygol 2-1 (v radianax)=',yg21:6:2,';');
Writeln('Ygol 3-2 (v radianax)=',yg32:6:2,';');
Writeln('Ygol 4-3 (v radianax)=',yg43:6:2,' .');
Begin
{ }
ct21:=(cos(yg21)/sin(yg21));
ct32:=(cos(yg32)/sin(yg32));
ct43:=(cos(yg43)/sin(yg43));
End;
Writeln(t2);
Writeln(t2,' 2-1 =',ct21:6:2,';');
Writeln(t2,' 3-2 =',ct32:6:2,';');
Writeln(t2,' 4-3 =',ct43:6:2,' .');
Writeln;
Writeln('Kotangens ygla 2-1 =',ct21:6:2,';');
Writeln('Kotangens ygla 3-2 =',ct32:6:2,';');
Writeln('Kotangens ygla 4-3 =',ct43:6:2,' .');
Begin
{ }
vm1:=y1*ct21+y2*(-(ct21)-(ct32))+y3*ct32+x1-x3;
vm2:=y2*ct32+y3*(-(ct32)-(ct43))+y4*ct43+x2-x4;
vn1:=x1*ct21+x2*(-(ct21)-(ct32))+x3*ct32-y1+y3;
vn2:=x2*ct32+x3*(-(ct32)-(ct43))+x4*ct43-y2+y4;
End;
Writeln(t2);
Writeln(t2,' m1 = ',vm1:6:2,';');
Writeln(t2,' n1 = ',vn1:6:2,';');
Writeln(t2,' m2 = ',vm2:6:2,';');
Writeln(t2,' n2 = ',vn2:6:2,' .');
Writeln;
Writeln('Vspomogatelnaya velichina m1 = ',vm1:6:2,';');
Writeln('Vspomogatelnaya velichina n1 = ',vn1:6:2,';');
Writeln('Vspomogatelnaya velichina m2 = ',vm2:6:2,';');
Writeln('Vspomogatelnaya velichina n2 = ',vn2:6:2,' .');
Begin
{ }
Fi1:=arctan(vm1/vn1);
Fi2:=(sin(Fi1)/cos(Fi1));
Fi3:=arctan(vm2/vn2);
Fi4:=(sin(Fi3)/cos(Fi3));
De1:=Fi1-yg21;
De2:=(sin(De1)/cos(De1));
De3:=Fi3-yg32;
De4:=(sin(De3)/cos(De3));
End;
Writeln(t2);
Writeln(t2,' 1 = ',Fi1:6:2,'; 1 = ',De1:6:2,';');
Writeln(t2,' 2 = ',Fi2:6:2,'; 2 = ',De2:6:2,';');
Writeln(t2,' 3 = ',Fi3:6:2,'; 3 = ',De3:6:2,';');
Writeln(t2,' 4 = ',Fi4:6:2,'; 4 = ',De4:6:2,' .');
Writeln;
Writeln('Fi 1 = ',Fi1:6:2,'; Delta 1 = ',De1:6:2,';');
Writeln('Fi 2 = ',Fi2:6:2,'; Delta 2 = ',De2:6:2,';');
Writeln('Fi 3 = ',Fi3:6:2,'; Delta 3 = ',De3:6:2,';');
Writeln('Fi 4 = ',Fi4:6:2,'; Delta 4 = ',De4:6:2,' .');
Begin
{ }
kipX1:=(x1*De2-x2*Fi2+y2-y1)/(De2-Fi2);
kipX2:=(x2*De4-x3*Fi4+y3-y2)/(De4-Fi4);
{ X}
CredX:=(kipX1+kipX2)/2;
kipY1:=(kipX1-x2)*Fi2+y2;
kipY2:=(kipX2-x3)*Fi4+y3;
{ Y}
CredY:=(kipY1+kipY2)/2;
End;
Writeln(t2);
Writeln(t2,' X 1: ',kipX1:6:2,';');
Writeln(t2,' X 2: ',kipX2:6:2,';');
Writeln(t2,' X: ',CredX:6:2,';');
Writeln(t2,' Y 1: ',kipY1:6:2,';');
Writeln(t2,' Y 2: ',kipY2:6:2,';');
Writeln(t2,' Y: ',CredY:6:2,' .');
Writeln;
Writeln('Koordinata X ickomogo pynkta 1: ',kipX1:6:2,';');
Writeln('Koordinata X ickomogo pynkta 2: ',kipX2:6:2,';');
Writeln(' Srednee znachenie X: ',CredX:6:2,';');
Writeln('Koordinata Y ickomogo pynkta 1: ',kipY1:6:2,';');
Writeln('Koordinata Y ickomogo pynkta 2: ',kipY2:6:2,';');
Writeln(' Srednee znachenie Y: ',CredY:6:2,' .');
Writeln('chtenie iz faila "data.txt", zapic v "result.txt"');
Close (t1);
Close (t2);
Readkey;
End.
3.6 data.txt
#1()
({}{}{}):
0 0 0
X:
10798.58
Y:
12689.72
#2()
({}{}{}):
73 15 40
X:
8921.43
Y:
11123.49
#3()
({}{}{}):
180 17 23
X:
9787.11
Y:
8585.19
#4()
({}{}{}):
282 28 14
X:
12484.41
Y:
10294.53
-----------------------------------------------------
3.7
.3.3 Turbo Pascal.
result.txt
:
1
: 0 0 0 ;
X=10798.58; Y=12689.72;
2
: 73 15 40 ;
X=8921.43; Y=11123.49;
3
: 180 17 23 ;
X=9787.11 Y=8585.19;
4
: 282 28 14 ;
X=12484.41; Y=10294.53 .
:
1 : 0.00;
2 : 1.28;
3 : 3.15;
4 : 4.93 .
2-1 ( )= 1.28;
3-2 ( )= 1.87;
4-3 ( )= 1.78 .
2-1 = 0.30;
3-2 = -0.31;
4-3 = -0.22 .
m1 = 2259.94;
n1 = -3805.11;
m2 = -4709.38;
n2 = -1146.05 .
1 = -0.54; 1 = -1.81;
2 = -0.59; 2 = 4.02;
3 = 1.33; 3 = -0.54;
4 = 4.11; 4 = -0.59 .
X 1: 10217.52;
X 2: 10217.50;
X: 10217.51;
Y 1: 10353.71;
Y 2: 10353.76;
Y: 10353.73 .
3.8 MS Excel
.3.4 MS Excel.
. 3.5 MS Excel .
3.9 MathCad
. 3.6 MathCad 14.
3.10
3 ( ) Turbo Pascal Microsoft Excel 2007 MathCad. , .
4.
4.1
. .
, :
(4.1)
,, , . , , . , : .
.
(4.1) . ( , ). :
,
( ).
.
(4.2)
(4.2)
.
. ,
(4.3)
.
(4.1) (4.3), :
(4.4)
, , . , ; , .. , . , .
. , , ( , , ).
.
(4.4) .
.
,
(4.5)
(4.4) (4.5), :
(4.6)
(4.6) - .
(4.6), . . , ( ), :
(4.7)
.
, , .
n n-. , (4.8).
(4.8)
( ) :
(4.9)
4.2
.
4.3
4.4 -
|
4.5
Program Zadacha6;
Uses CRT;
Type matrix=array [1..10,1..10] of real;
vector=array [1..10] of real;
Var
i,j:integer;
a:matrix;
x,b:vector;
t1,t:text;
Procedure Gaus (Var a:matrix; Var b:vector; x:vector);
Var k,i,j,q:integer;
d:real;
t:text;
Begin
For i:=1 to 4 do
a[i,5]:=B[i];
Assign(t,'reshenie.txt');
Rewrite(t);
Writeln('Reshenie sistemu lineinix algebraicheskix yravnenii');
Writeln('(kolichestvo yravnenii 4)');
Writeln('sistema yravnenii:');
Writeln(t,' ');
Writeln(t,'( 4)');
Writeln(t,' :');
For i:=1 to 4 do
Begin
For j:=1 to 4 do
Write(t,a[i,j]:6:1);
Writeln(t,b[i]:6:1);
End;
For i:=1 to 4 do
Begin
For j:=1 to 4 do
Write(a[i,j]:6:1);
Writeln(b[i]:6:1);
End;
For i:=1 to 4 do Begin
d:=a[i,i];{ }
q:=i;
For j:=i to 4 do
If abs(a[j,i])>abs(d) then
Begin
D:=a[j,i];
q:=j;
End;
{ }
If i<>q Then
Begin
For j:=i to 5 do
Begin
D:=a[i,j];
a[i,j]:=a[q,j];
a[q,j]:=d;
End;
End;
{ }
For j:=5 downto i do
a[i,j]:=a[i,j]/a[i,i];
{ , }
For k:=i+1 to 4 do
For j:=5 downto i do
a[k,j]:=a[k,j]-a[i,j]*a[k,i];
End;{ }
x[4]:=a[4,5];
For i:=4-1 downto 1 do begin
D:=0;
For j:=4 downto i+1 do
d:=d+a[i,j]*x[j];
x[i]:=a[i,5]-d;
end;
Writeln(t,' :');
Writeln('Vector X:');
For i:=1 to 4 do
Write(t, x[i]:5:3,' ');
Writeln(t);
close(t);
Begin
For i:=1 to 4 do
Write(x[i]:5:3,' ');
Writeln;
End;
End;
Begin
Clrscr;
assign(t1,'clay.txt');
reset(t1);
For i:=1 to 4 do
For j:=1 to 4 do
Read(t1,a[i,j]);
For i:=1 to 4 do read(t1,b[i]);
Gaus(a,b,x);
Readkey; End.
4.6 clay.txt
1 -2 2 0
0 2 5 5
7 5 4 9
3 2 1 3
13 29 50 17
{ ("" 44)}
{ ("b" 14)}
4.7
. 4.2 Turbo Pascal.
reshenie.txt
( 4)
:
1.0 -2.0 2.0 0.0 13.0
0.0 2.0 5.0 5.0 29.0
7.0 5.0 4.0 9.0 50.0
3.0 2.0 1.0 3.0 17.0
:
3.000 -0.500 4.500 1.500
4.8 MS Excel
. 4.3 MS Excel
. 4.4 MS Excel
4.9 MathCad
. 4.5 MathCad 14.
4.10
6 ( ) Turbo Pascal Microsoft Excel 2007 MathCad. , .
, 4 Turbo Pascal, Excel MathCad 14.
1) : " " / - -. .: .. , .. , .. , , 2004 . 51 .
2) . . .. . ., 2001.
3) / - -. . .. , .. , - , 2004, 50 .
4) . MathCad. / (), . .. , , 2005, 46 .
5) Turbo Pascal . .:1991.
- . .. ( ) :
Copyright (c) 2024 Stud-Baza.ru , , , .