. , , ,

,,,

. ..

:

 

550800

2004


充..3

1. ...3

1.1. - ; - , 腅..3

1.2. - ..6

1.3. - ....7

1.4. .11

1.5. ..12

1.6. 腅...13

1.7. ...16

1.8. .18

2. --..19

2.1. ....19

2.2. -- ..26

3. -- 酅....30

3.1. ..30

3.2. ......45 3.3. -- ⅅ....51

4. 充51

..52

......54


.

-- . .. . , --- --, .

-- . . . , . . . . --.


1.         .

 

1.1. - , - ,

. , .. , . , . , , , , .

.. .. - [1]. - , . , - - . .

:

f=n-+2=n, =2 1.1

, .. P=const T=const, f=0, , . , , , . - . . , ,

=

= 1.2

1 = 1

2 = 2

, , . , . - , , .

1 2.

, , . .

1.1 T=nst =nst.

V S

V2 S2

V1 S1

V2 S2 S1

V1

1 1 1,1 1 1 1,1

a) )

.1.1. ) V - , , =const ) S - , , =const

: , . , . - , . =nst , =nst . , - , . - , () V V S S. -, , -:

x1 dμ1+ x2 dμ2=0, y1 dμ1+ y2 dμ2=0. 1.3

.. .

1.2. - .

S G , [2, 3]:

H=T S + G 1.4

G , , S , ,

|T S| < |G| 1.5

|T S| > |G| 1.6

, H - G >0, - , ..

1.7 1.8

. , - S - x, y x1. - , . - , . : 0,5 (=0,5) , .. :

-R(x1lnx1+x2lnx2)= - R lnx1= -1,98 ln 0,5 =1,3724 /( ).

, - , , . . - , - .

1.3. - .

, . : < V(1) S(1) x(1)1 x(1)2 x(1)3 x(1)n-1>

<V(2) S(2) x(2)1 x(2)2 x(2)3 x(2)n-1>. . , , .

. , , . - .

. . , , [5]. , . .

. .. 1935. [4]. , .. , .. [5]. . 1.3 .

. node- . node : , - , - , , , . - ( ). Nodal , . Nodus - , , (). Con- , konjgtium - , (conjunct- ).

, , .

(1) = (2) == (m)

(1) = (2) == (m)

(1)1 = (2)1 = = (m)1 1.9

(1)2 = (2)2 == (m)2

(1)n= (2)n==(m)n

, , , .

, , . [6,7] . [8] . . -, , , -, , ?

, .. , .

. , , , (.1.4).

[4] .251 : , , =const V-x¸y ( ) (. 1.5).

, - [4].

1924 ²Chemical an introduction to general thermodynamics and its application to chemistry² [9]. , 1913. : Text book of thermodynamics with special reference to Chemistry. , 1924., , , .

[10] (. 49, 121, 125, 299, 504).

: , , , , , , . () - , . ( ). , , , .

[11] . 552 ²² , -, ( ) .

, - (.1.6). .

[12] . [13]. , 1900 1913 . 1961 .

1.4. .

[14, 15], . , , :

-S dT + Vd x1 dμ1 x2 dμ2-- xn dμn=0 1.10

. , , , , .

(, ), 1.10, . ? , . , , 1.10 :

(S- S) dT (V-V) d+ (y1- x1) dμ1 + (y2- x2) dμ2++(yn- xn) dμn=0 1.11

1.11 .

: <S- S, V-V, y1- x1, y2- x2 ,yn- xn>.

: <dT, d, dμ1, dμ2, dμn>.

, , .. :

(S- S) dT (V-V) d+ (x1- y1) dμ1 + (x2- y2) dμ2++(xn- yn) dμn=0 1.12

1.5. .

- , . , .

, . : , . , .

-:

S dT V d+ x1 dμ1 + x2 dμ2++xn dμn=0 1.13

S dT V d+ y1 dμ1 + y2 dμ2++yn dμn=0

:

=

=

μ1= μ1 1.14

μ2= μ2

μn= μn

.

. :

dU = dS - P dV + μ1 dx1+ μ2 dx2 ++ μn dxn 1.15

, , .

1.13, :

<-(S- S) dT +(V-V) d - (y1- x1) dμ1 - (y2- x2) dμ2--(yn- xn) dμn> 1.16

:

<- (S- S) dT +(V-V) d - (x1- y1) dμ1 - (x2- y2) dμ2--(xn- yn) dμn> 1.17

( 1.13)

< y1- x1, y2- x2,yn- xn> 1.18

< x1- y1, x2- y2, xn- yn>

1.10

< x1- y1, x2- y2, xn- yn> 1.19

< y1- x1, y2- x2,yn- xn>

, .., 1.13 1.10, .

1.6. .

i , dm dm .

.

1.         i :

[16]

dmi = d(m xi) 1.20

dmi= yidm 1.21

, :

d(m xi) = yidm 1.22

.. m dxi+ xi dm = yidm 1.23

m dxi = (yi -xi) dm

, dt= dln m 1.24

i=1 Ki>1,

yi >xi dt>0, dxi>0

dt<0, dxi<0

i=2 Ki<1,

yi <xi dt>0, dxi<0

dt<0, dxi>0

2. [17]

:

m xi =(m-dm)( xi -dxi) + yi dm 1.25

m xi = m xi -m dxi- xi dm + dm dxi + yi dm

:

m dxi=( yi -xi)dm

; dt= dln m<0

dm , :

yi dm + m xi = (m+dm)( xi +dxi) 1.26

yi dm + m xi = m xi + m dxi +xi dm + dm dxi

dm (yi - xi) = m dxi 1.27

; dt= dln m>0 1.28

, : , , .

i , , dm xi . :

1.   :

xi dm= d(m yi) 1.29

xi dm= yi dm + m dyi 1.30

dm (xi- yi) = m dyi 1.31

1.32

2. :

m yi =(m-dm)( yi -dyi) + xi dm 1.33

m yi = m yi -m dyi- yi dm + dm dyi + xi dm

m dyi=(xi -yi)dm 1.34

, dt= dln m<0 1.35

( dt>0)

m yi + xi dm = (m+dm)( yi +dyi) 1.36

m yi + xi dm = m yi + m dyi-+ yi dm + dm dyi 1.37

dm (xi- yi ) = m dyi 1.38

, dt= dln m>0 1.39

. dt>0 dt<0.

. , dm , , - . .

1.7. .

[1]. m , ( ) dm . dt= dln m. :

1.40

1.41

, 1.40 1.41 :

1.42

1.43

1.44

1.45

1.46

1.47

,

y1>x1 , dt>0 dx1>0

y2<x2 , dt>0 dx2<0

, , i , , i . , 1 , 2 . , () () . , dt<0 ( ) 1 2 .

.

1.48

1.49

( ) dm

, 1.48 1.49

1.50

1.51

,

x1< y1, dt>0, dy1<0,

x2> y2, dt>0, dy2>0,

, , i . 2, .. . , i . . , , , . , , , , . , , .

.

dx1+dx2=0, , dx1= -dx2 , 1-1= -(2-2), :

1.52

1.53

, . y1 = x1 σ1 σ2 = 0, σ1 = 0 σ2 = 0. , , , .

1.8.

-- .


2. --.

 

2.1. .

, . . 2.1 V x, y [18]

, , , .

, , , , ( ). , , , . ( ), , . m dm , dm . , dm , . 1, y1, : y1>x1. , dm . ( 2.2):

dm , , . ( i) d(mxi).

yi dm.

d(mxi)= yi dm

xi dm + m dxi= yi dm 2.1

m dxi=( yi - xi) dm

, dt=dlnm

, dt>0, dlnm>0 , dt<0, dlnm<0 . : dt>0 , dt<0 - . i 1, .. , :

y1> x1 dt<0 , d1<0

y1> x1 dt>0 , d1>0

, , , dm , 1 , , .

i=2

y2< x2 dt<0 , d2>0

y2< x2 dt>0 , d2<0

, dm , 2 , , .

, , dm , dm . 2.2

2.2

, .. , dt, ( ).

(.2.1), , , , . 1, V, , - . , . , , . - , .. , , V. , , .. β.

, , :

1.         - 1, V.

2.         1=const, ().

3.         , (. . 2.1)

1, V. . , - (.2.3),

- . , dt<0 , , . dm , , .

, . .

2.2. -- .

-- g- [14].

, [14]

S dT V d+ x1 dμ1 + x2 dμ2=0 2.7

g-, ,

dg= -S dT +V d+ μ1d1+ μ2 d2 2.8

S dT V d+ 1 dμ1 + 2 dμ2=0 2.9

dg= -S dT +V d+ μ1d1+ μ2 d2 2.10

[14] . . :

U= TS-PV+ μ1x1+ μ2x2 2.11

dU= TdS + SdT PdV VdP + μ1 dx1 + x1dμ1 + μ2 dx2 + x2dμ2 2.12

dU= TdS - PdV+ μ1 dx1 + μ2 dx2 2.13

SdT-VdP+ x1dμ1+ x2dμ2 =0 2.14 , , , ,

-SdT+VdP- x1dμ1- x2dμ2 =0 2.15

[14] 2.14 2.15, 2.15, , , .

,

< S, V, x1, x2 >

< dT, dP, dμ1, dμ2 >

, , - .

, < dT, dP, dμ1, dμ2 > , , < S, V, x1, x2 > < S, -V, x1, x2 > <- S, V, -x1, - x2 >

, . =nst.

< S, x1, x2 > <- S, -x1, - x2 > S

S 1 2 1

-2 2

-

-S -1 -2

-1

- S

.2.10.

, , .

-- . , =nst , . 2.14 =nst:

S dT + 1 dμ1 + 2 dμ2=0 2.16

S dT + x1 dμ1 + x2 dμ2=0 2.17

:

(S- S) dT + (1- 1)dμ1 +(2- x2)dμ2=0 2.18

, , - < S- S, 1- 1, 2- x2> < dT, dμ1, dμ2 >, , , .

1+2=1 1+2=1,

1- 1+ 2- x2=0

.. 2- x2= -(1- 1) 2.19

, 2.19

(S- S) dT + (1- 1) (dμ1-dμ2)=0 2.20

2.20 dT d(μ1-μ2) .

g d(μ1-μ2), 1 (=nst)

d(μ1-μ2) = 2.21

2.20 d(μ1-μ2) 2.21,

2.22

. , , . ( ).

2.23

2.24

, 2.23 2.24

- 2.25

2.26

, , 2.25 2.26

2.27

2.28

, , .


3. -- .

 

             .

 

3.1 - 3.4 - , . , , -- 0 = 0. - . () - , . . y1 - x1 = 0. ,

3.1

3.2

, , y1 = x1. : .

- . , , - , - . - , : . x, y . - . .

, , , . .

, , , , - ( ). , , , . ( ), - . (. 2.2). dm m , dm . , dm , .

- x, y y1>x1. , dm .

dm , .

( i)

xidm + mdxi = yidm

mdxi = (yi xi) dm

; dt = d(lnm) 3.3

, dt >0 , d(lnm) >0 , dt <0, d(lnm) <0 . . dt >0, , dt <0 . i = 1, . . ,

y1 > x1 dt >0, dx1 >0

y1 < x1 dt <0, dx1 <0

, , , dm , 1 , .

i = 2, y2 < x2, dt <0, dx2 >0

y2 < x2, dt >0, dx2 <0

, dm , 2 , .

, - , dm , dm .

3.4

, , dt ( ).

, (. 3.1) , . x1, V, - . , <V V, y1 x1>. , . - , , x, y , V. , , , .

, , .

1.         - x1, V.

2.         y1 = const

(. ).

3.         .

(x1, V). . -, (V-V, y1-x1). , :

V-V > 0, y1-x1 > 0, > 0

> 0

( 3.1):

> 0 3.5

:

V-V > 0, y1-x1 < 0, < 0

> 0

> 0 3.6

:

> 0 3.7

. :

> 0 3.8

3.2.

3.3 . :

V-V < 0, x1-y1 < 0, > 0

< 0

< 0 3.9

V-V < 0, x1-y1 > 0, < 0

< 0 3.10

:

< 0 3.11

(. 3.4):

< 0 3.12

3.4.

( 3.5 3.8)

3.13

- (), , . , , . . (. 3.5):

V-V > 0, y1-x1 < 0, < 0

> 0

> 0 3.14

V - V > 0, y1-x1 > 0, > 0

> 0 3.15

,

> 0 3.16

(. 3.7)

> 0 3.17

( 3.6). :

V-V < 0, x1-y1 > 0, < 0

< 0

< 0 3.18

V-V < 0, x1-y1 < 0, > 0

< 0

< 0 3.19

(. 3.8):

< 0 3.20

3.2. -- .

 

3.10 3.13 .

--

3.21

3.22

3.23

. :

3.24

3.25

3.26

3.27

. = const

3.28

3.29

3.30

,

3.31

3.32

3.3. -- .

-- :

3.33

3.34

3.35

3.36

3.37

, , , 3.38


4.         .

1.            .

2.            , .

3.            -- .


:

1.         .. . . . 1967.

.1 2. 448.

2.         .., .. . 1992. 40.

3.         .., .., .. .// 1996. . 30, 6. .611-617.

4.         Findley A. The phase rule and its applications, seventh edition. Longmans, green and Co, London, New York, Toronto 1931. .. 1935.

5.         .., ... . . 1961. 407.

6.         .., .., ., .., .. . 1987. 192.

7.         .. . .:1968. 432.

8.         .., . . . . 1966 . 510.

9.         .., .. . . . .. .1932. . . . -. 384.

10.      .., .., .. - . 1976. 504.

11.      .. . 1971., 784.

12.      .., .. . . 1964. 456.

13.      .. , . . . 1982. 584.

14.      . . . . . .. 1971. 296.

15.      .. . // 2001., . 3. .4-12

16.      .. . 1956. 105.

17.      .. . . 1947 . 312.

18.      .., . . . 1980 . 288 .


.

V
V
S
S
yi i
xi i

,

,

i
H
S
G -
R
P
T
m
Ki i
t , d lnm

i

i

. ..

 

 

 

! , , , .
. , :