,,,
. ..
:
550800
充..3
1. ...3
1.1. - ; - , 腅..3
1.2. - ..6
1.3. - ....7
1.4. .11
1.5. ..12
1.6. 腅...13
1.7. ...16
1.8. .18
2. --..19
2.1. ....19
2.2. -- ..26
3. -- 酅....30
3.1. ..30
3.2. ......45 3.3. -- ⅅ....51
4. 充51
..52
......54
.
-- . .. . , --- --, .
-- . . . , . . . . --.
1.1. - , - ,
. , .. , . , . , , , , .
.. .. - [1]. - , . , - - . .
:
f=n-+2=n, =2 1.1
, .. P=const T=const, f=0, , . , , , . - . . , ,
=
= 1.2
1 = 1
2 = 2
, , . , . - , , .
1 2.
, , . .
1.1 T=nst =nst.
V S
V2 S2
V1 S1
V2 S2 S1
V1
1 1 1,1 1 1 1,1
: , . , . - , . =nst , =nst . , - , . - , () V V S S. -, , -:
x1 dμ1+ x2 dμ2=0, y1 dμ1+ y2 dμ2=0. 1.3
.. .
1.2. - .
S G , [2, 3]:
H=T S + G 1.4
|T S| > |G| 1.6
1.7 1.8
. , - S - x, y x1. - , . - , . : 0,5 (=0,5) , .. :
-R(x1lnx1+x2lnx2)= - R lnx1= -1,98 ln 0,5 =1,3724 /( ).
, - , , . . - , - .
1.3. - .
, . : < V(1) S(1) x(1)1 x(1)2 x(1)3 x(1)n-1>
<V(2) S(2) x(2)1 x(2)2 x(2)3 x(2)n-1>. . , , .
. , , . - .
. . , , [5]. , . .
. .. 1935. [4]. , .. , .. [5]. . 1.3 .
. node- . node : , - , - , , , . - ( ). Nodal , . Nodus - , , (). Con- , konjgtium - , (conjunct- ).
, , .
(1) = (2) == (m)
(1) = (2) == (m)
(1)1 = (2)1 = = (m)1 1.9
(1)2 = (2)2 == (m)2
(1)n= (2)n==(m)n
, , , .
, , . [6,7] . [8] . . -, , , -, , ?
, .. , .
. , , , (.1.4).
[4] .251 : , , =const V-x¸y ( ) (. 1.5).
, - [4].
1924 ²Chemical an introduction to general thermodynamics and its application to chemistry² [9]. , 1913. : Text book of thermodynamics with special reference to Chemistry. , 1924., , , .
[10] (. 49, 121, 125, 299, 504).
: , , , , , , . () - , . ( ). , , , .
[11] . 552 ²² , -, ( ) .
, - (.1.6). .
[12] . [13]. , 1900 1913 . 1961 .
1.4. .
[14, 15], . , , :
-S dT + Vd x1 dμ1 x2 dμ2-- xn dμn=0 1.10
. , , , , .
(, ), 1.10, . ? , . , , 1.10 :
(S- S) dT (V-V) d+ (y1- x1) dμ1 + (y2- x2) dμ2++(yn- xn) dμn=0 1.11
1.11 .
: <S- S, V-V, y1- x1, y2- x2 ,yn- xn>.
: <dT, d, dμ1, dμ2, dμn>.
, , .. :
(S- S) dT (V-V) d+ (x1- y1) dμ1 + (x2- y2) dμ2++(xn- yn) dμn=0 1.12
1.5. .
- , . , .
, . : , . , .
-:
S dT V d+ x1 dμ1 + x2 dμ2++xn dμn=0 1.13
S dT V d+ y1 dμ1 + y2 dμ2++yn dμn=0
=
=
μ1= μ1 1.14
μ2= μ2
μn= μn
.
. :
dU = dS - P dV + μ1 dx1+ μ2 dx2 ++ μn dxn 1.15
, , .
1.13, :
<-(S- S) dT +(V-V) d - (y1- x1) dμ1 - (y2- x2) dμ2--(yn- xn) dμn> 1.16
<- (S- S) dT +(V-V) d - (x1- y1) dμ1 - (x2- y2) dμ2--(xn- yn) dμn> 1.17
( 1.13)
< y1- x1, y2- x2,yn- xn> 1.18
< x1- y1, x2- y2, xn- yn>
1.10
< x1- y1, x2- y2, xn- yn> 1.19
< y1- x1, y2- x2,yn- xn>
, .., 1.13 1.10, .
1.6. .
i , dm dm .
.
1. i :
[16]
dmi = d(m xi) 1.20
dmi= yidm 1.21
, :
d(m xi) = yidm 1.22
.. m dxi+ xi dm = yidm 1.23
m dxi = (yi -xi) dm
, dt= dln m 1.24
i=1 Ki>1,
yi >xi dt>0, dxi>0
dt<0, dxi<0
i=2 Ki<1,
yi <xi dt>0, dxi<0
dt<0, dxi>0
2. [17]
:
m xi =(m-dm)( xi -dxi) + yi dm 1.25
m xi = m xi -m dxi- xi dm + dm dxi + yi dm
:
m dxi=( yi -xi)dm
; dt= dln m<0
dm , :
yi dm + m xi = (m+dm)( xi +dxi) 1.26
yi dm + m xi = m xi + m dxi +xi dm + dm dxi
dm (yi - xi) = m dxi 1.27
; dt= dln m>0 1.28
, : , , .
i , , dm xi . :
1. :
xi dm= d(m yi) 1.29
xi dm= yi dm + m dyi 1.30
dm (xi- yi) = m dyi 1.31
1.32
2. :
m yi =(m-dm)( yi -dyi) + xi dm 1.33
m yi = m yi -m dyi- yi dm + dm dyi + xi dm
m dyi=(xi -yi)dm 1.34
, dt= dln m<0 1.35
( dt>0)
m yi + xi dm = (m+dm)( yi +dyi) 1.36
m yi + xi dm = m yi + m dyi-+ yi dm + dm dyi 1.37
dm (xi- yi ) = m dyi 1.38
, dt= dln m>0 1.39
. dt>0 dt<0.
. , dm , , - . .
1.7. .
[1]. m , ( ) dm . dt= dln m. :
1.40
1.41
, 1.40 1.41 :
1.42
1.43
1.44
1.45
1.46
1.47
,
y1>x1 , dt>0 dx1>0
y2<x2 , dt>0 dx2<0
, , i , , i . , 1 , 2 . , () () . , dt<0 ( ) 1 2 .
.
1.48
1.49
( ) dm
, 1.48 1.49
1.50
1.51
,
x1< y1, dt>0, dy1<0,
x2> y2, dt>0, dy2>0,
, , i . 2, .. . , i . . , , , . , , , , . , , .
.
dx1+dx2=0, , dx1= -dx2 , 1-1= -(2-2), :
1.52
1.53
, . y1 = x1 σ1 σ2 = 0, σ1 = 0 σ2 = 0. , , , .
1.8.
-- .
2. --.
2.1. .
, . . 2.1 V x, y [18]
, , , .
, , , , ( ). , , , . ( ), , . m dm , dm . , dm , . 1, y1, : y1>x1. , dm . ( 2.2):
dm , , . ( i) d(mxi).
yi dm.
d(mxi)= yi dm
xi dm + m dxi= yi dm 2.1
m dxi=( yi - xi) dm
, dt=dlnm
, dt>0, dlnm>0 , dt<0, dlnm<0 . : dt>0 , dt<0 - . i 1, .. , :
y1> x1 dt<0 , d1<0
y1> x1 dt>0 , d1>0
, , , dm , 1 , , .
i=2
y2< x2 dt<0 , d2>0
y2< x2 dt>0 , d2<0
, dm , 2 , , .
, , dm , dm . 2.2
2.2
, .. , dt, ( ).
(.2.1), , , , . 1, V, , - . , . , , . - , .. , , V. , , .. β.
, , :
1. - 1, V.
2. 1=const, ().
3. , (. . 2.1)
1, V. . , - (.2.3),
- . , dt<0 , , . dm , , .
, . .
2.2. -- .
-- g- [14].
, [14]
S dT V d+ x1 dμ1 + x2 dμ2=0 2.7
g-, ,
dg= -S dT +V d+ μ1d1+ μ2 d2 2.8
S dT V d+ 1 dμ1 + 2 dμ2=0 2.9
dg= -S dT +V d+ μ1d1+ μ2 d2 2.10
[14] . . :
U= TS-PV+ μ1x1+ μ2x2 2.11
dU= TdS + SdT PdV VdP + μ1 dx1 + x1dμ1 + μ2 dx2 + x2dμ2 2.12
dU= TdS - PdV+ μ1 dx1 + μ2 dx2 2.13
SdT-VdP+ x1dμ1+ x2dμ2 =0 2.14 , , , ,
-SdT+VdP- x1dμ1- x2dμ2 =0 2.15
[14] 2.14 2.15, 2.15, , , .
,
< S, V, x1, x2 >
< dT, dP, dμ1, dμ2 >
, , - .
, < dT, dP, dμ1, dμ2 > , , < S, V, x1, x2 > < S, -V, x1, x2 > <- S, V, -x1, - x2 >
, . =nst.
< S, x1, x2 > <- S, -x1, - x2 > S
S 1 2 1
-2 2
-
-S -1 -2
-1
- S
.2.10.
, , .
-- . , =nst , . 2.14 =nst:
S dT + 1 dμ1 + 2 dμ2=0 2.16
S dT + x1 dμ1 + x2 dμ2=0 2.17
:
(S- S) dT + (1- 1)dμ1 +(2- x2)dμ2=0 2.18
, , - < S- S, 1- 1, 2- x2> < dT, dμ1, dμ2 >, , , .
1+2=1 1+2=1,
1- 1+ 2- x2=0
.. 2- x2= -(1- 1) 2.19
, 2.19
(S- S) dT + (1- 1) (dμ1-dμ2)=0 2.20
2.20 dT d(μ1-μ2) .
g d(μ1-μ2), 1 (=nst)
d(μ1-μ2) = 2.21
2.20 d(μ1-μ2) 2.21,
2.22
. , , . ( ).
2.23
2.24
, 2.23 2.24
- 2.25
2.26
, , 2.25 2.26
2.27
2.28
, , .
3. -- .
.
3.1 - 3.4 - , . , , -- 0 = 0. - . () - , . . y1 - x1 = 0. ,
3.1
3.2
, , y1 = x1. : .
- . , , - , - . - , : . x, y . - . .
, , , . .
, , , , - ( ). , , , . ( ), - . (. 2.2). dm m , dm . , dm , .
- x, y y1>x1. , dm .
dm , .
( i)
xidm + mdxi = yidm
mdxi = (yi xi) dm
; dt = d(lnm) 3.3
, dt >0 , d(lnm) >0 , dt <0, d(lnm) <0 . . dt >0, , dt <0 . i = 1, . . ,
y1 > x1 dt >0, dx1 >0
y1 < x1 dt <0, dx1 <0
, , , dm , 1 , .
i = 2, y2 < x2, dt <0, dx2 >0
y2 < x2, dt >0, dx2 <0
, dm , 2 , .
, - , dm , dm .
3.4
, , dt ( ).
, (. 3.1) , . x1, V, - . , <V V, y1 x1>. , . - , , x, y , V. , , , .
, , .
1. - x1, V.
2. y1 = const
(. ).
3. .
(x1, V). . -, (V-V, y1-x1). , :
V-V > 0, y1-x1 > 0, > 0
> 0
( 3.1):
> 0 3.5
:
V-V > 0, y1-x1 < 0, < 0
> 0
> 0 3.6
:
> 0 3.7
. :
> 0 3.8
3.2.
3.3 . :
V-V < 0, x1-y1 < 0, > 0
< 0
< 0 3.9
V-V < 0, x1-y1 > 0, < 0
< 0 3.10
:
< 0 3.11
(. 3.4):
< 0 3.12
3.4.
( 3.5 3.8)
3.13
- (), , . , , . . (. 3.5):
V-V > 0, y1-x1 < 0, < 0
> 0
> 0 3.14
V - V > 0, y1-x1 > 0, > 0
> 0 3.15
,
> 0 3.16
(. 3.7)
> 0 3.17
( 3.6). :
V-V < 0, x1-y1 > 0, < 0
< 0
< 0 3.18
V-V < 0, x1-y1 < 0, > 0
< 0
< 0 3.19
(. 3.8):
< 0 3.20
3.2. -- .
3.10 3.13 .
--
3.21
3.22
3.23
. :
3.24
3.25
3.26
3.27
. = const
3.28
3.29
3.30
,
3.31
3.32
3.3. -- .
-- :
3.33
3.34
3.35
3.36
3.37
, , , 3.38
4. .
1. .
2. , .
3. -- .
:
1. .. . . . 1967.
.1 2. 448.
2. .., .. . 1992. 40.
3. .., .., .. .// 1996. . 30, 6. .611-617.
4. Findley A. The phase rule and its applications, seventh edition. Longmans, green and Co, London, New York, Toronto 1931. .. 1935.
5. .., ... . . 1961. 407.
6. .., .., ., .., .. . 1987. 192.
7. .. . .:1968. 432.
8. .., . . . . 1966 . 510.
9. .., .. . . . .. .1932. . . . -. 384.
10. .., .., .. - . 1976. 504.
11. .. . 1971., 784.
12. .., .. . . 1964. 456.
13. .. , . . . 1982. 584.
14. . . . . . .. 1971. 296.
15. .. . // 2001., . 3. .4-12
16. .. . 1956. 105.
17. .. . . 1947 . 312.
18. .., . . . 1980 . 288 .
.
V | |
V | |
S | |
S | |
yi | i |
xi | i |
, | |
, | |
i | |
H | |
S | |
G | - |
R | |
P | |
T | |
m | |
Ki | i |
t | , d lnm |
i | |
i | |
Copyright (c) 2025 Stud-Baza.ru , , , .