,,,
1.
1.1
1.2 : , , ,
2.
2.1
2.2 .
2.3
2.4
1.
1.1
= f () 0 .
U(0) 0. 0 f () , U(0) 0, f () £ f (0).
: f () 0 , U(0) 0, f () ³ f (0).
, .
f () [, b] - . . b .
:
1, 3 , 2, 4 , = , = b .
, f() [a, b]. = ( f() [a, b]), = 3 .
1.2 : , , ,
, . , . .
(16011665) . . . . : ( n > 2 n + yn = zn , , z) ( , , -1 1 ).
. f () (, b) 0 Î (, b) . , 0 f '(x0), f '(x0) = 0.
.
, , 0 , f () ³ f (0), Î U(0).
f () 0 :
> 0:
< 0:
,
.
: 0 Î (, b) f () , , (0, f (0)), :
, (, b) .
1. = ç÷, Î (1; 1).
0 = 0 , . , ( 0).
2. = 3, Î [1; 1].
0 = 1 . , 0 = 1 Ï (1; 1).
(16521719) , . .
. f (x) [, b], (, b), f () = f(b). x, < x < b, , f '(x) = 0.
:
1) f (x) = const [a, b], f '() = 0, Î (a, b);
2) f (x) ¹ const [a, b], [a, b]
[a, b]. , max f (x) min f (x) x [a, b], , f '(x) = 0.
.
: [a, b] x, , f (x) (x, f (x)) ïï Ox (. ).
, .
3. f (x) = ç÷, Î [-1; 1]. f (-1) = f (1) = 1.
= 0 . , [1; 1] .
4.
f(0) = f(1) = 0,
(0; 1) 0, [0; 1].
(17891857) , , . , , , .
. f () g()
[a, b] (a, b), g'() ¹ 0, Î (a, b). (a, b) x, ,
. (1)
.
F() [a, b], (a, b), F() = F(b) = 0. , (a, b) x, , F'(x) = 0:
:
.
.
(17361813) , . , , , , . , (y', f '(x)).
. f() [a, b], (a, b). (a, b) x, ,
(2)
.
(1) g(x) = x (2).
.
(2) .
.
[a, b] x, , f (x) (x, f (x)) , (, f ()) (b, f(b)) (. ).
:
1. ( ). f (x) [a, b], (a, b). f '(x) = 0, Î (a, b), f (x) [a, b].
2. f (x) g() [a, b], (a, b), f '(x) = g'(), Î (a, b). f (x) = g() + , = const.
3. ( ). f(x) [a, b], (a, b). , f '(x) > 0, Î (a, b), f (x) (a, b). f '(x) < 0,
Î (a, b), f (x) (a, b).
2.
2.1
1 , , .
: f (x) 0 , f '(x0) = 0. , 0 f (x) , f '(x0) = 0. 0, f '(x0) = 0, . ,
.
1. = 3, ' = 32, '(0) = 0,
0 = 0 .
, f (x) (a, b), , 0 . 0 = 0:
f '(0) = 0 f '(0) $ f '(0) = ¥
, : ?.
1 ( ). f (x) U(x0) 0 ( , 0 ) 0. :
1) (1)
0 ;
2) (2)
0 .
.
(1) 3 ( ) , < 0 , > 0 ,
(3)
, (3) , 0 .
(2) :
f (x) f (x)
f '() ³ 0 f '() £ 0 f '() £ 0 f '() ³ 0
.
2. .
. :
Þ 2 1 = 0 Þ 1 = 1, 2 = 1.
, = 0. :
(¥; 1) | 1 | (1; 0) | 0 | (0; 1) | 1 | (1; +¥) | |
' | + | 0 | 0 | + | |||
2 | 2 |
max min
(¥; 1) (1; +¥), (1; 0), (0; 1),
1 = 1, max (1) = 2; 2 = 1,
min (1) = 2.
2 ( ). f (x) -. 0
(f ' (0) = 0), f '' (0) > 0, 0 . f '' (0) < 0, 0 .
. f '' (0) > 0.
:
< 0, f ' () < 0,
> 0, f ' () > 0.
1 0 .
.
3. .
. 2 1 = 1, 2 = 1.
:
.
Þ 1 = 1 ;
Þ 2 = 1 ( 2).
, 1 . 2 , , 1 : , , .
2.2 .
f () (a, b) 1, 2 . (1, f (1)) (2, f (2)) f () , . = ().
f () (a, b), 1, 2 Î (a, b), £ 1 < 2 £ b, , . . f () £ (), Î [1, 2] Ì (a, b):
, . .
f () (a, b), 1, 2 Î (a, b), £ 1 < 2 £ b, , . . f () ³ (), Î [1, 2] Ì (a, b):
3 ( ). f () (a, b)
1) f ''() > 0, Î (a, b), (a, b) f () ;
2) f ''() < 0, Î (a, b), (a, b) f () .
0 f (), $ d - 0, Î (0 d, 0) , Î (0, 0 + d) -, f () 0, 0 f (), 0 f () :
0 d 0 0 + d
4 ( ). f () 0 f '' 0 , f '' (0) = 0.
.
f '' (0) < 0 f '' (0) > 0, 3 0 f () . , f ''(0) = 0.
.
5 ( ). f () 0 0 f ''() , 0 f ().
4. = 3.
. ' = 32, '' = 6 = 0 Þ 0 = 0 , .
0 = 0 = 3 :
(¥; 0) | 0 | (0; +¥) | |
'' | 0 | + | |
0 | |||
5. .
. 3 . . :
(¥; 0) | 0 | (0; +¥) | |
'' | + | ||
2.3
, . .
= 0 f (), f (0 0) f (0 + 0) .
6. :
) ) )
. = 0, 0 , .
) = 3 . , ;
) = 2, = 4 . ,
,
;
) = 0 , .
= kx + b f () +¥ ¥, f () = kx + b + α(), , f () , f () = kx + b 0 +¥ ¥.
6. = kx + b f () +¥ ¥, :
(4)
, , .
7.
. (4):
, k = 1.
, b = 0.
,
= kx + b = 1 + 0 = .
: = .
8. .
.
) 1 = 1, 2 = 1. , 1 = 1, 2 = 1 .
, .
;
) = kx + b.
, = 2 + 1 .
: 1 = 1, 2 = 1 , = 2 + 1 -
.
2.4
1. .
2. , .
3. .
4. .
5. .
6. .
7. .
, .
= f () , , , () - f () = f (). .
= f () , , () - , f () = f (). - .
9. .
. , .
1. D () = (¥; 0) È (0; +¥).
2. , . .
3. (. 2). :
(¥; 1) | 1 | (1; 0) | 0 | (0; 1) | 1 | (1; +¥) | |
' | + | 0 | 0 | + | |||
2 | 2 |
max min
4. (. 5). .
(¥; 0) | 0 | (0; +¥) | |
'' | + | ||
, = 0, , .
5. (. 6 7). :
) = 0 ;
) = .
6. , , Î ú, = 0 Ï D().
7. :
10. .
.
1. D() = (¥; 1) È (1; 1) È (1; +¥).
2. . , .
3. :
32 4 = 0, 2 (3 2) = 0, 1 = 0, 2 = , 3 = .
(¥;) |
(; 0) |
1 | (1; 0) | 0 | (0; 1) | 1 |
(1; ) |
(; +¥) |
|||
' | 0 | + | + | 0 | + | + | 0 | ||||
2,6 | 0 | 2,6 |
4. :
= 0 , .
(¥; 1) | 1 | (1; 0) | 0 | (0; 1) | 1 | (0; +¥) | |
'' | + | 0 | + | ||||
|
|
0 |
|
||||
5. :
) = 1, = 1 .
:
) = kx + b.
,
Þ = 1 + 0 = .
6. :
= 0 Þ = 0 Þ (0; 0) .
7. :
1. . . . .: , 1998. 415 .
2. . . . . : - . .: , 2007. 20 .
1. 1.1 1.2 : , , ,
Copyright (c) 2025 Stud-Baza.ru , , , .