. , , ,

,,,

 


1.

1.1

1.2 : , , ,

2.

2.1

2.2 .

2.3

2.4


1.

1.1

= f () 0 .

U(0) 0. 0 f () , U(0) 0, f () £ f (0).

: f () 0 , U(0) 0, f () ³ f (0).

, .

f () [, b] - . . b .

:

1, 3 , 2, 4 , = , = b .

, f() [a, b]. = ( f() [a, b]), = 3 .

1.2 : , , ,

, . , . .

(16011665) . . . . : ( n > 2 n + yn = zn , , z) ( , , -1 1 ).

. f () (, b) 0 Î (, b) . , 0 f '(x0), f '(x0) = 0.

.

, , 0 , f () ³ f (0), œ Î U(0).

f () 0 :

> 0:

< 0:

,

.

: 0 Î (, b) f () , , (0, f (0)), :


, (, b) .

1. = ç÷, Î (1; 1).

0 = 0 , . , ( 0).

 

 

2. = 3, Î [1; 1].

0 = 1 . , 0 = 1 Ï (1; 1).


(16521719) , . .

. f (x) [, b], (, b), f () = f(b). x, < x < b, , f '(x) = 0.

:

1) f (x) = const [a, b], f '() = 0, œ Î (a, b);

2) f (x) ¹ const [a, b], [a, b]

[a, b]. , max f (x) min f (x) x [a, b], , f '(x) = 0.

.

: [a, b] x, , f (x) (x, f (x)) ïï Ox (. ).

, .

3. f (x) = ç÷, Î [-1; 1]. f (-1) = f (1) = 1.

= 0 . , [1; 1] .

4.

f(0) = f(1) = 0,

(0; 1) 0, [0; 1].

(17891857) , , . , , , .

. f () g()

[a, b] (a, b), g'() ¹ 0, œ Î (a, b). (a, b) x, ,

. (1)

 

.

F() [a, b], (a, b), F() = F(b) = 0. , (a, b) x, , F'(x) = 0:

:

.


.

(17361813) , . , , , , . , (y', f '(x)).

. f() [a, b], (a, b). (a, b) x, ,

(2)

 

.

(1) g(x) = x (2).

.

(2) .

.

[a, b] x, , f (x) (x, f (x)) , (, f ()) (b, f(b)) (. ).

:

1. ( ). f (x) [a, b], (a, b). f '(x) = 0, œ Î (a, b), f (x) [a, b].


2. f (x) g() [a, b], (a, b), f '(x) = g'(), œ Î (a, b). f (x) = g() + , = const.

3. ( ). f(x) [a, b], (a, b). , f '(x) > 0, œ Î (a, b), f (x) (a, b). f '(x) < 0,

œ Î (a, b), f (x) (a, b).


2.

2.1

1 , , .

: f (x) 0 , f '(x0) = 0. , 0 f (x) , f '(x0) = 0. 0, f '(x0) = 0, . ,

.

 

 

 

 

 

 

 

 

 

1. = 3, ' = 32, '(0) = 0,

0 = 0 .

, f (x) (a, b), , 0 . 0 = 0:

f '(0) = 0 f '(0) $ f '(0) = ¥

, : ?.

1 ( ). f (x) U(x0) 0 ( , 0 ) 0. :

1) (1)

0 ;

2) (2)

0 .

.

(1) 3 ( ) , < 0 , > 0 ,

(3)

, (3) , 0 .

(2) :

 


f (x) f (x)

f '() ³ 0 f '() £ 0 f '() £ 0 f '() ³ 0

.

2. .

. :

Þ 2 1 = 0 Þ 1 = 1, 2 = 1.

, = 0. :

(¥; 1) 1 (1; 0) 0 (0; 1) 1 (1; +¥)
' + 0 0 +

2

2

max min

(¥; 1) (1; +¥), (1; 0), (0; 1),

1 = 1, max (1) = 2; 2 = 1,

min (1) = 2.

2 ( ). f (x) -. 0

(f ' (0) = 0), f '' (0) > 0, 0 . f '' (0) < 0, 0 .

. f '' (0) > 0.

:

< 0, f ' () < 0,

> 0, f ' () > 0.

1 0 .

.

3. .

. 2 1 = 1, 2 = 1.

:

.

Þ 1 = 1 ;

Þ 2 = 1 ( 2).

, 1 . 2 , , 1 : , , .

2.2 .

f () (a, b) 1, 2 . (1, f (1)) (2, f (2)) f () , . = ().

f () (a, b), 1, 2 Î (a, b), £ 1 < 2 £ b, , . . f () £ (), œ Î [1, 2] Ì (a, b):


, . .

f () (a, b), 1, 2 Î (a, b), £ 1 < 2 £ b, , . . f () ³ (), œ Î [1, 2] Ì (a, b):

3 ( ). f () (a, b)

1) f ''() > 0, œ Î (a, b), (a, b) f () ;

2) f ''() < 0, œ Î (a, b), (a, b) f () .

0 f (), $ d - 0, Î (0 d, 0) , Î (0, 0 + d) -, f () 0, 0 f (), 0 f () :


0 d 0 0 + d

4 ( ). f () 0 f '' 0 , f '' (0) = 0.

.

f '' (0) < 0 f '' (0) > 0, 3 0 f () . , f ''(0) = 0.

.

5 ( ). f () 0 0 f ''() , 0 f ().

 

 

 

 

 

 

 

 

4. = 3.

. ' = 32, '' = 6 = 0 Þ 0 = 0 , .

0 = 0 = 3 :

(¥; 0) 0 (0; +¥)
'' 0 +
0

 

5. .

. 3 . . :

(¥; 0) 0 (0; +¥)
'' +

2.3

, . .

= 0 f (), f (0 0) f (0 + 0) .

6. :


) ) )

 

. = 0, 0 , .

) = 3 . , ;

) = 2, = 4 . ,

,

;

) = 0 , .

= kx + b f () +¥ ¥, f () = kx + b + α(), , f () , f () = kx + b 0 +¥ ¥.

6. = kx + b f () +¥ ¥, :


(4)

, , .

7.

. (4):

, k = 1.

, b = 0.

,

= kx + b = 1 + 0 = .

: = .

8. .

.

) 1 = 1, 2 = 1. , 1 = 1, 2 = 1 .

, .


;

) = kx + b.

, = 2 + 1 .

: 1 = 1, 2 = 1 , = 2 + 1 -

.

2.4

1. .

2. , .

3. .

4. .

5. .

6. .

7. .

, .

= f () , , , () - f () = f (). .

= f () , , () - , f () = f (). - .

9. .

. , .

1. D () = (¥; 0) È (0; +¥).

2. , . .

3. (. 2). :

(¥; 1) 1 (1; 0) 0 (0; 1) 1 (1; +¥)
' + 0 0 +

2

2

max min

4. (. 5). .

(¥; 0) 0 (0; +¥)
'' +

, = 0, , .

5. (. 6 7). :

) = 0 ;

) = .

6. , , Î ú, = 0 Ï D().

7. :

10. .

.

1. D() = (¥; 1) È (1; 1) È (1; +¥).

2. . , .

3. :

32 4 = 0, 2 (3 2) = 0, 1 = 0, 2 = , 3 = .

(¥;)

(; 0)

1 (1; 0) 0 (0; 1) 1

(1; )

(; +¥)

' 0 + + 0 + + 0

2,6

0

2,6

4. :

= 0 , .

(¥; 1) 1 (1; 0) 0 (0; 1) 1 (0; +¥)
'' + 0 +

0

5. :

) = 1, = 1 .

:


) = kx + b.

,

Þ = 1 + 0 = .

6. :

= 0 Þ = 0 Þ (0; 0) .

7. :


1.       . . . .: , 1998. 415 .

2.       . . . . : - . .: , 2007. 20 .

1. 1.1 1.2 : , , ,

 

 

 

! , , , .
. , :