. , , ,

,,,

..λ

3

______________________ ..

. ,

, ..-.. ______________________ ..

2008


,


‑ , , . .

, , , , , , .. , , . , , . , , , .. - . , , : ; , ; ; , ; ; , .. . -.

, ‑ .


, , , (, , , ..).

:

-                    

-                    

-                     -

-                    

-                     -

-                    

-                    

, . , .

: . , , :

1.[1],

2. [2],

; (.. ) , . [1] [2].

,

, , : , , ( , ), , , .

, .

, , , ( , , .)

, :

1.                , , .

2.                ( , ) , , .

, .


,

, ( ), , .

( ) , . . , , .

, , , , , ( , , ).


1.                :

[3], (1)

, - .

, , .

:

2.                :

[4], (2)

, -

, ,.

:

,

1. ,

, () (, , (y,z)), .

: , y=z, .

3.             , , : :

ε=0.2 , .

, :

-

-

, , .

:

[5],

F(x) , .

:

1. ,

2. ,

, (1) e = 1.165, (2) e = 1.151. , , , .


. , , . . , . . . [1-3].


1.             .. , .. , .. , , , 76, 2 (2006) 1-9.

2.             Raul Toral, Claudio R. Mirasso, E. Hernandez-Garcia and Oreste Piro Analytical and Numerical Studies of Noise-induced Synchronization of Chaotic Systems, CHAOS, 11, 3 (2001) 665-673.

3.             A.E. Hramov, A.A. Koronovskii, O.I. Moskalenko Are generalized synchronization a noise-induced synchronization identical types of synchronous behavior of chaotic oscillators, Phys. Lett. A, 354, 5-6 (2006) 423-427.

4.             ..

5.             Amos Martian, Jayanth R. Banavar Chaos, Noise, and Synchronization, Phys. Rev. letters, volume 72, number 10 (1994) 1451-1454



[1] [1]

[2] [2]

[3] [1]

[4] [2]

[5] [4]

..λ

 

 

 

! , , , .
. , :