,,,
..λ
3
______________________ ..
. ,
, ..-.. ______________________ ..
2008
,
‑ , , . .
, , , , , , .. , , . , , . , , , .. - . , , : ; , ; ; , ; ; , .. . -.
, ‑ .
, , , (, , , ..).
:
-
-
- -
-
- -
-
-
, . , .
: . , , :
1.[1],
2. [2],
; (.. ) , . [1] [2].
,
, , : , , ( , ), , , .
, .
, , , ( , , .)
, :
1. , , .
2. ( , ) , , .
, .
,
, ( ), , .
( ) , . . , , .
, , , , , ( , , ).
1. :
[3], (1)
, - .
, , .
:
2. :
[4], (2)
, -
, ,.
:
,
1. ,
, () (, , (y,z)), .
: , y=z, .
3. , , : :
ε=0.2 , .
, :
-
-
, , .
:
[5],
F(x) , .
:
1. ,
2. ,
, (1) e = 1.165, (2) e = 1.151. , , , .
. , , . . , . . . [1-3].
1. .. , .. , .. , , , 76, 2 (2006) 1-9.
2. Raul Toral, Claudio R. Mirasso, E. Hernandez-Garcia and Oreste Piro Analytical and Numerical Studies of Noise-induced Synchronization of Chaotic Systems, CHAOS, 11, 3 (2001) 665-673.
3. A.E. Hramov, A.A. Koronovskii, O.I. Moskalenko Are generalized synchronization a noise-induced synchronization identical types of synchronous behavior of chaotic oscillators, Phys. Lett. A, 354, 5-6 (2006) 423-427.
4. ..
5. Amos Martian, Jayanth R. Banavar Chaos, Noise, and Synchronization, Phys. Rev. letters, volume 72, number 10 (1994) 1451-1454
[1] [1]
[2] [2]
[3] [1]
[4] [2]
[5] [4]
..λ
Copyright (c) 2024 Stud-Baza.ru , , , .