,,,
1998.
- .
1. [1,2] .
2. .
3. .
4. .
,
(1)
N0 - ; - ; u(t) - ; s(t) - ;
(1) u(t) s(t) . (1), . , (1) u(t) . .
.
(2)
s(t) - Fs(jw); n(t) Fn(w).
.
(3)
t0.
(4)
K(jw) - - .
t0
(5)
(6)
(4) (6) Fs,(jw) Fn,(w) .
(5) (6) t0
(7)
, , . , /.
-
(8)
(w) (w), (8) . , (8) ,
(9)
- ; * (w) - , - (w). (8)
(10) |
, ,
(11)
(9) , /
(12)
Fs*(jw) - - .
- , (12), , .
(12) , : , . , . , / , .
, N0/2. -
(13)
/
(14)
- .
(13), .
/ (14) . / . , , , .
-
|Fs(jw)| j(w) - .
(15) |
,
(16)
|K(jw)| - - ; Y(w) - .
(15) (16)
(17)
(18)
(17) , .
. - j(w) , . . t=t0 , , . , , .
- wt0 t0. , t0 .
(19) |
(19) , . , .
u(t) t=t0.. , t0 , .. u(t) .
h(t) . , h(t) K(jw) ,
(20)
(20) , ts(t) t=t0/2 (.1).
SEQ * ARABIC 1
h(t)=0 t<0, ,
s(t0-t)=0 |
t<0 |
(21) |
s(t)=0 |
t>t0 |
(21) , t0 tc. t0=tc.
, :
(22)
(20)
(23)
t=t0
|
(24)
, (24) (1), .. , , . , - .
t=t0, (23)
.. .
, , . , s(t), , (20), , s(t-t1), s(t) t1. .
-
-. . -, , .
x1?x2...xn,...xi,...xL,
a0xi=aÅa1xi-1Åa2xi-2Å...Åanxi-n, (25)
ai G(0,1....p-1), . n - , - , L, xL+i=xi - , . .
(25) . ai , , MOD 2,
0Å0=0 |
0Å1=1 |
1Å0=1 |
1Å1=0 |
, n ,.. (25)
. =2, n=4, 1111, x1=xi-3Åxi-4. x5=x2Åx1=1Å1=0, x6=x3Åx2=1Å1=0.
(25) , . , n , , .
. 2 .
SEQ * ARABIC 2
n , , [1]
f(s1,...sn)=Åaisi,
si - i- (i- ), 0 1. , .
, .
. sn, sn-1,...s1 x1, x2,...xn. . x1 , . sn, sn-1,...s1 x2, x3, x4,... xn+1, xn+1=Åaixn+1-i
x2, xn+2=Åaixn+2-i sn, sn-1,...s1 x3, x4,...xn+2. .
. sn, sn-1,...s1. , , , . 2n-1 n - . 2n-1 , -. xi=aixi-1Å...Åanxi-n , f(x)=anxnÅan-1xn-1Å...Åa1xÅ1 [2]
, n j(L) - , L>0 , L L, .
n=5:
f1(x)=x5Åx3Å1,
f2(x)=x5Åx2Å1,
f3(x)=x5Åx4Åx3Åx2Å1,
f4(x)=x5Åx4Åx3Å1,
f5(x)=x5Åx4Åx2Å1,
f6(x)=x5Åx3Åx2Å1.
-.
, f(x)=x5Åx3Å1 xi=xi-3Åxi-5.
, f(x), .
, - , .
1. - 2n-1 n - , .
2. , , , . , - - .
3. - , i , i=1,2,...L-2, , ,
. 3
SEQ * ARABIC 3
, - 111100010011010, 111..., , .
(. 4) , , , () , t0 - .
SEQ * ARABIC 4
t0. , - .
, .
, .
( ), , , .
1. .
2. .
3. .
4. .
5. .
6. .
7. / .
8. .
9. .
1. :
;
.
2. :
;
.
.
1. ( ).
2. , .
3. .
1. ?
2. / ?
3. - ?
4. .
5. ?
6. ?
7. , t0 .
8. , .
1. . ., . ., . . . . 2. .: , 1973. 142 .
2. . . . .: , 1983. 320 .
[1] f(S1,...Sn), (0 1) n - , .
[2] f(x) n , x2n-1Å1 xNÅ1 N<2n-1.
Copyright (c) 2025 Stud-Baza.ru , , , .