. , , ,

,,,

, ,

.

,

. `` '',

--- ,

,

.

beginsection{ }

1741 ,

.

, ,

.

.

1755

, ,

:

$$ {partial uarg over partial t} + uarg scal nabla, uarg

= -nabla parg .$$

$uarg$ $parg$ ---

~$r$ ~$t$, $uargscalnabla$

. ---

, ---

,

. ---

.

,

, ,

, .

, ,

,

, .~.

.

1827 1845.

-:

$$ {partial uarg over partial t} + uarg scal nabla, uarg

= -nabla parg +nu nabla^2 uarg .$$

$nu$ --- ,

0.01 0.15 ${}^2$/.

, $u^2/2$

.

. ,

.

beginsection{ }

-

. ,

, , ,

.

$alpha$ $10^{-4}$ ,

$L$ 10 . $alpha g$ ($gsimeq 10^3$

/${}^2$) $nu, d^2u/dz^2 sim nu u/L^2$,

$usim 10^7$ /. ,

. .

$H$

$rho g H$. $Hsim 5times 10^4$ ,

,

$usim sqrt{2rho g H}simeq 10^4$ /.

. ,

- . $L$

$U$, $U^2/L$, ---

$nu U/L^2$. (Re)

$UL/nu$. Re~$ll 1$,

. -

.

.

.

(Re~$gg 1$),

-

. . ,

,

Re~$sim 10^7$.

,

. -- Re~$ll 1$ --

. -- Re~$sim 1$ --

. -- Re~$gg 1$ --

.

.

beginsection{ }

,

,

. $P(omega)$

- :

$$ u(omega)={1over T} intlimits_0^T dt, e^{2pi i omega t} u(t),$$

$$ P(omega)=|u(omega)|^2.$$

,

,

-- .

. (

,

--- . ).

.

- , ,

, (.~1).

{1. Re $=10^{-2}$}{r1.bmp}

, .~.

.

.

. ,

.~.

, $t rightarrow infty$

. ( ,

).

,

(.~2).

{2. Re $= 20$}{r2.bmp}

,

.

,

, , .

.

, , , .

, ,

(.~3).

{3. Re $=100$}{r3.bmp}

,

.

,

.

--- --- ,

.

:

,

. ,

,

.

.

(Re)

.

, .

`` ''. .

. (.~4).

{4. Re $=10^4$}{r4.bmp}

,

, $u(t)$, ,

.

, , .

.

.

~5.

{5. Re $=10^6$}{r5.bmp}

,

, .

, , .

.

,

, , .

beginsection{ }

,

,

,

. ,

, - .

,

$$dot {bf x}(t)={bf F}({bf x}),$$

${bf x}(t)$ --- $n$

$x^{(1)},x^{(2)},ldots ,x^{(n)}$, ; ${bf F}$

. $bf dot x$

$bf x$- ,

$bf x$-

footnote{$^{1)}$}{ $bf F$

. (

), .}:

$${rm div,} dot {bf x}(t)={rm div,} {bf F}=

partial F^{(i)}/partial x^{(i)}<0. $$

. ,

. .

, ,

,

.

, .

,

--- .

.

( ),

- --- .

.

, , , ,

.

, ,

. ,

,

, ;

:

. ,

.

---

. ,

. ,

({it .~.~, 1944; M.~Born, 1952/}).

({it E. Lorenz,

1963/}); it / rm it

/rmfootnote{$^{2)}$}{ (

, . .); ``''

.

`` '' ,

,

, ,

.}.

,

.

:

( ),

({it D.~Ruelle, F.~Takens, 1971}). , ,

( ) .

.

,

.

. ,

( );

:

.

, .

( !). ,

,

({it S.~Newhouse, D.~Ruelle, F.~Takens, 1978/}).

,

.

,

, ; ,

.

,

,

. , ,

, ( )

.

.

(

, ``'' ).

( --- )

;

. ,

() , --- ;

, ---

. ---

(

). ,

,

. ,

.

, .

(.~. ) ,

. $tlongrightarrowinfty $

--- ,

( ``'' ).

;

( {it /}).

.

,

{it /}.

$n$- $(n>3)$ .

. , ,

--- .

. $n$-

$varepsilon$ $varepsilon^n $. $N(varepsilon )$ ---

, .

$D$

$$D=lim_{varepsilonto 0}{ln N(varepsilon)over ln (1/varepsilon)}.$$

{it /} ( {it /}) .

$D$-

: $varepsilon$ $N(varepsilon)approx Vvarepsilon^{-D}$

( $V$ --- ), , $N(varepsilon )$

$D$- , $D$- $V$.

, ,

$n$ , ,

, ;

footnote{$^{3)}$} {

$n$- `` '';

$D

, $N$ $N(varepsilon )= N$ $D=0$;

$L$ : $N(varepsilon)=L/varepsilon , D=1;$ $S$

: $N(varepsilon )=S/varepsilon^2 , D=2 ,$ ..}.

beginsection{ }

{it /} $mu$ ,

$t$ $t-T$,

$T$ --- .

$mu$ .

() ,

.

1, .

,

1, .~. $mu$

.

- , ,

, .~. $+1$ $-1.$

, ,

{it /}.

, .

$-1$ $+1.$

$n$- $n-1$

$n-1$

(

). $pm 1$

$l$- . $n-2$ ;

$n-2$

( $Sigma$),

$l$- .

,

$tlongrightarrowinfty $ (

--- $Sigma$

).

$Sigma$ $sigma.$ ,

$sigma,$

( $x_j$) $x_{j+1}.$

$x_{j+1}=f(x_j;R)$ {it /}

{it /}; $R$ (

--- footnote{$^{4)}$}{ ,

.}), ---

.

$Sigma$, $sigma$

,

;

$$

x_{j+1}=f(x_j;R),eqno(1)

$$

$x$

footnote{$^{5)}$} { $x$ , ,

.}. ${j}$

, .

. {it

/} (1) --- $x_j=x_*$, , .~.

$x_{j+1}=x_j$.

$mu=dx_{j+1}/dx_j$, $x_j=x_*$. $x_j=x_* +xi$

$x_*$

$x_{j+1}approx x_* +muxi$. (

), $|mu|<1$: ({it /})

- $x_*$,

( $|mu|^r$, $r$ ---

). $mu >1$ .

$-1$. $mu=-1$ ,

$T_0$ , :

$T_0$ . ,

$mu$ $-1$

$T_0$ $2T_0$ --- {it

/}.% (.~6)

$x=0,$

,

$$

x_{j+1}=, -[1+(R-R_1)]x_j+x_j^2+beta x_j^3,eqno(2)

$$

$beta >0 $footnote {$^{6)}$}{ $R-R_1$

$R$, $x_j^2$

$+1$ $x_j$ ( (2)).}.

$RR_1$ --- .

, ,

(2) , .~. ( )

;

, .

(2) (

$x_j$ $R-R_1$)

$$

x_{j+2} = x_j+2(R-R_1)x_j- 2(1+beta)x_j^3.eqno(3)

$$

$x_*=0.$ $R

( $|dx_{j+2}/dx_j|<1$); 1

( $T_0$) 2 --- . $R=R_1$

$+1$ $R>R_1$ $x_*=0$

.

$$

x_*^{(1),(2)} = pm left [{R-R_1over 1+beta}right ]^{1/2},eqno(4)

$$

footnote {$^{7)}$}{, ,

{it 2-./}

{it /}. }; (3)

, (2) . ,

---

, .

`` '' 1:

$x^{(1)}$ $x^{(2)}$

. $x^{(1)}-x^{(2)}$

2; $(R-R_1)^{1/2}$.

.

, ( $R$)

;

$R_1, R_2,ldots$ ,

,

. ,

({it M. J. Feigenbaum, 1978/})%footnote {$^{1)}$}{

% ( $1, 2, ldots $)

% .

% , ,

% ,

% .}

,

( $R$) ,

,

, .

. $x$

``'', $|df(x;lambda)/dx|>1;$

.

, ,

;

, .

$f(x;lambda),$ .~.

(1): $x_{j+1}$

$x_j,$ . ---

;

$$

x_{j+1} = f(x_j;lambda) = 1-lambda x_j^2,eqno(5)

$$

$lambda $ --- ,

( ) $R$footnote {$^{8)}$}

{,

.

$Sigma $ (

), :

( $x_j$

$x_{j+1}$).

---

(

``'' ---

, ).}.

$[-1,+1]$ $x;$ $lambda $ 0~ 2

(5) $x$ .

(5) ---

$x_* = 1-lambda x_*^2$.

$lambda >Lambda_1,$ $Lambda_1$ --- $lambda ,$

$mu = -2lambda x_* = -1;$

$Lambda_1 =3/4.$ ---

$lambda ,$ :

2-.

,

, ;

.

(5) ,

$$

x_{j+2} = 1-lambda +2lambda^2 x_j^2-lambda^3 x_j^4,eqno(6)

$$

--- $x_j.$

footnote {$^{9)}$}{

$lambda =1 $ (

(6) : $x_*=0$). ,

,

$Lambda_2.$}

$$

x_jto x_j/alpha_0, quad alpha_0 = 1/(1-lambda)

$$

$$

x_{j+2}= 1-lambda_1 x_j^2,

$$

(5) $lambda$

$$

lambda_1 = phi (lambda)equiv 2lambda^2(lambda-1).eqno(7)

$$

$alpha_1= 1/(1-lambda_1),ldots ,$

:

$$

x_{j+2^m}= 1-lambda_m x_j^2,quad lambda_m =phi (lambda_{m-1}).eqno(8)

$$

(8) $2^m$-footnote{$^{10)}$}

{ ,

(8)

$|x|le |alpha_1 alpha_2ldotsalpha_{m-1}|$ ( $|x|le 1,$

(5),(6)). (8)

.}. , (5),

, $2^m$- ($m=1,2,3,ldots$)

$lambda_m =Lambda_1 =3/4.$

$Lambda_m$ $lambda$

$$

Lambda_1 =phi (Lambda_2),quadLambda_2 =phi (Lambda_3),ldots ,

Lambda_{m-1} =phi (Lambda_m).

$$

% , .~7.

,

$mlongrightarrow infty $

$Lambda_infty$ --- $Lambda_infty =phi (Lambda_infty);$

$Lambda_infty =(1+sqrt 3)/2approx 1{,}37.$

: $alpha_mtoalpha,$

$alpha =1/(1-Lambda_infty)approx -2{,}8.$

, $Lambda_m$

$Lambda_infty$ $m.$ $Lambda_m =phi (Lambda_{m+1}$

$Lambda_infty -Lambda_m $

$$

Lambda_infty -Lambda_{m+1} ={1overdelta}(Lambda_infty -Lambda_m),eqno(9)

$$

$delta =phi '(Lambda_infty) =4+sqrt 3 approx 5{,}73.$ ,

$Lambda_infty -Lambda_msimdelta^m,$ .~. $Lambda_m$

.

: (9)

$$

Lambda_{m+2} -Lambda_{m+1}={1overdelta}(Lambda_{m+1}-Lambda_m).eqno(10)

$$

, , $lambda $

,

,

$R_infty .$ ,

(9),(10) (

$delta $), $Lambda_m .$

: ,

$Lambda_infty $ (9),(10);

$alpha .$

, , . (

(5)) $delta$

({it /}) $alpha$:

$$

delta =4{,}6692ldots ,quadalpha =-2{,}5029ldotseqno(11)

$$

$Lambda_infty =1{,}401$footnote{$^{11)}$}{

$Lambda_infty $ ,

--- $f(x;lambda)$

( $delta$ $alpha$ ).}.

$delta ;$ ,

.

,

$x_j^2,$ , (8)

,

$2^m$-footnote{$^{12)}$}{

$2^m$

$x_*^{(1)},x_*^{(2)},ldots ,$

() (31.5)

( ) $2^m$- .

, $dx_{j+2^m}/dx_j$

$x_*^{(1)},x_*^{(2)},ldots $ (

$-1$ ).}.

(5) $x_j^2,$

.

$x_j$ ,

$x_j=0$ (

).

, $delta$ $alpha$,

$x_{j+1}=f(x_j;lambda) :$

, $f(x;lambda)$

( $x=0$);

.

{it /}

. .

, $f(x)$ ( $f(x;lambda)$

$lambda$ -- . ), $f(0)=1.$

, $f(f(x)).$

, $x$ $alpha_0 =1/f(1)$ ;

$$

f_1(x)=alpha_0f(f(x/alpha_0)),

$$

$f_1(0)=1.$ ,

,

$$

f_{m+1}(x)=alpha_m f_m(f_m(x/alpha_m))equivwidehat Tf_m,quad alpha_m =1/f_m(1).eqno(12)

$$

$mlongrightarrowinfty$

$f_infty(x)equiv g(x),$

`` '' (12) $widehat T,$

.~.

$$

g(x)=widehat TGequivalpha g(g(x/alpha)),quadalpha =1/g(1),quad g(0)=1.eqno(13)

$$

$f(x),$ $g(x)$

$x=0;$

$f(x)$ (13)

. ,

( $|alpha_m|>1$)

$x$ $-infty$ $+infty$ (

$-1le xle +1$). $g(x)$

$x;$ ,

$f(x)$ ,

.

(13) (

);

, ;

$alpha$ $g(x).$

$[-1,1]$,

$widehat T.$

, $widehat T$ (12)

$f_{m+1}(x)$ $[-1,1]$ $f_m(x)$

$|alpha_m|approx |alpha|$ .

, $g(x)$

$[-1,1]$ ( $x$)

; ,

, footnote{$^{13)}$}{

(13)

. ( $[-1,1]$)

$x^2;$ ,

$x$ ( )

$widehat T.$ $[-1,1] $

$g(x)$ , $g(x)=1-1,528x^2$ (

; (13)

$g$).}.

$g(x)$ ,

.

$f(x;lambda)$

$lambda =Lambda_infty .$ , ,

$f(x;lambda)$ (12),

$g(x)$ $lambda .$

, $widehat T$

,

$lambda$ $Lambda_infty .$

$delta$ ---

$f(x).$

$alpha$ --- ---

( )

;

$x.$ , ,

,

. ,

footnote{$^{14)}$}{ $[-1,1],$

$x,$

. $alpha$ ,

$x=0.$}. ,

,

$|alpha|$ ;

--- $alpha^2$ .

( $lambda =Lambda_m$) () $2^m$-

--- ,

,

$lambda$ .

(.~.

$x_{j+1}=f(x_j;lambda)$,

$2^m$ . ,

,

.

$2^{m+1}$- ,

, $x_{m+1}(t)$ $t$ (

$T_0$) $t/T_0 =1,2,ldots ,2^{m+1}.$

$2^m$- .

$$

xi_{m+1}(t)=x_{m+1}(t)-x_{m+1}(t+T_m),eqno(14)

$$

$T_m=2^mT_0=T_{m+1}/2$ --- $2^m$-, .~.

$2^{m+1}$-. $sigma_m (t)$ --- ,

(14)

footnote {$^{15)}$}{

$lambda$ ( $(Lambda_{m-1},Lambda_m)$

$(Lambda_m,Lambda_{m+1})),$ (14)

, (15) .

$lambda ,$ ``'';

.}:

$$

{xi_{m+1}(t)overxi_m(t)}=sigma_m(t).eqno(15)

$$

,

$$

xi_{m+1}(t+T_m)=-xi_{m+1}(t),eqno(16)

$$

$$

sigma_m(t+T_m)=-sigma_m(t).eqno(17)

$$

$sigma_m(t)$ , ,

( $m$)

:

$$

sigma_m(t)=left {

eqalign {&1/alpha cr

&1/alpha^2cr}right.

eqalign {

&hbox{rm } quad 0

&hbox{rm } quad T_m /2

$$

( $t$)footnote{$^{16)}$}{

,

$sigma_m(t)$. . {it ~./} --- , 1983, .141, .343

[Los Alamos Science, 1980, v. 1, p. 4].}.

() , .

$x_m(t)$

. $T_m$ $x_m(t)$

( $t$!) $komega_m$ ($k=1,2,3,ldots$) ---

$omega_m =2pi/T_m$ .

$x_{m+1}(t)$ $T_{m+1}=2T_m .$ Ÿ

, $komega_m ,$

$omega_m$ --- ' $lomega_m /2, l=1,3,5,ldots$

$x_{m+1}(t)$

$$

x_{m+1}(t)={1over 2}{ xi_{m+1}(t)+eta_{m+1}(t)},

$$

$xi_{m+1}$ --- (14),

$$

eta_{m+1}(t)=x_{m+1}(t) + x_{m+1}(t+T_m).

$$

$eta_{m+1}(t)$ $komega_m$;

,

$$

{1over T_{m+1}}intlimits_0^{T_{m+1}} eta_{m+1}(t), e^{ipi lt/T} dt=

{1over 2T_m}intlimits_0^{T_m} [eta_{m+1}(t)-eta_{m+1}(t+T_m)] e^{ipi lt/T} dt

$$

$eta_{m+1}(t+T_m)=eta_{m+1}(t)$.

, $eta_m(t)$

: $eta_{m+1}(t)approx eta_m(t)$; ,

$komega_m$ .

$xi_{m+1}(t)$ , ,

$lomega_m/2$ --- , $(m+1)$-

.

$$

I_{m+1}={1over T_{m+1}}intlimits_0^{T_{m+1}} xi_{m+1}^2(t) dt.eqno(19)

$$

$xi_{m+1}(t)$ $xi_m(t)$,

$$

I_{m+1}={1over 2T_m}2intlimits_0^{T_m} sigma_m^2(t) xi_m^2(t) dt.

$$

(16--18)

$$

I_{m+1}={1over 2}left( {1over alpha^2}+{1over alpha^4}right){1over T_m}

intlimits_0^{T_m} xi_m^2(t) dt =

{1over 2}left({1over alpha^2}+{1over alpha^4}right) I_m,

$$

$$

I_m/I_{m+1}approx 10{,}8.eqno(20)

$$

, ,

,

, , .

({it M.~J. Feigenbaum, 1979/})

footnote{$^{17)}$}{

, . ,

$m$- , ( )

$(m+1)$- .

(20). 10{,}48.

$lambda=Lambda_infty$

$g(x)$;

15 . . {it Nanenberg~M.,

Rudnick~J./} --- Phys. Rev., 1981, v. 24B, p. 493.}.

beginsection{ }

, ,

$mu=+1$.

( )

$x_{j+1}=f(x_j;R)$,

( ), $R=R_0$, $x_{j+1}=x_j$.

$x_j=0$,

footnote{$^{18)}$}{ $R-R_0$ ()

$x_j^2$ $R$~ $x_j$,

(22).}.

$$

x_{j+1}=(R-R_0)+x_j+x_j^2.eqno(21)

$$

$R

$$

x_*^{(1),(2)}=mp (R_0-R)^{1/2},

$$

($x_*^{(1)}$) , ($x_*^{(2)}$) ---

. $R=R_0$

$+1$,

$R>R_0$ ( ).

(21) $x_{j+1}=x_j$

( $x_j=0$). $x$, ,

(21) ,

. ,

, .

() .

, ,

({it P.~Manneville, Y.~Pomeau, 1980/}).

,

, ;

. , ,

,

, . $R

.

$R>R_0$ ,

``'' ( ---

{it /}).

- .

.

(21) .

$x_j$ ,

$x_{j+1}-x_j$ $dx/dt$ $t$:

$$

dx/dt=(R-R_0)+x^2.

$$

$tau$, $x_1$~

$x_2$, $x=0$ ,

$(R-R_0)^{1/2}$, (21).

$$

tau=(R-R_0)^{-1/2}left.{rm arctg}[x(R-R_0)^{-1/2}]right|_{x_1}^{x_2},

$$

$$

tau sim (R-R_0)^{-1/2},

$$

;

.

,

.

beginsection{ }

rightline{ Big whirls have little whirls that feed on their velocity,}

rightline{ and little whirls have lesser whirls and so on to viscosity}

rightline{ --- in the molecular sense.}

rightline{it Richardson L.}

medskipnoindent

,

({it /});

.

,

.

. ,

, .

,

.

.

~$u.$ $v'=v-u$

,

, {it /} .

,

.

({it /})

, , (

,

).

; ,

.

.

,

--- , ,

;

{it /} ( {it /})

~$l.$

. $Delta u$

$l$ (

, ,

;

,

)footnote {$^{18)}$}{ , ,

, $l$, ---

, $Delta u.$}. ,

--- $u/l$ $u$ (

$Delta u $) $l.$ ,

,

.

$u.$

, ,

.

,

.

.

(

). ( $l$)

$Delta u.$ (

$l$)

$Delta u $ (

). ,

.

( ~$Tsim l/u$)

;

~$simDelta u.$

$R$, ,

$l.$

. $lambda$ --- , $v_lambda$ ---

, $R_lambdasim v_lambdalambda /nu .$

, .

$R$ $R_lambda$

. .

, ,

, .

.

, $R_lambdasim 1$ ( $lambda_0$

). ,

,

.

, ,

({it L. Richardson, 1922/}). '

,

. ,

- , .~. .

, .~. ,

. ( ,

, .)

, ``''

,

.

, ,

$lambdagglambda_0,$ $nu$ ( ,

$nu$ ,

). ,

,

,

.

. $varepsilon$ ,

footnote {${19)}$}{

$varepsilon$ ,

!}. ,

, ,

~$simlambda_0.$ , ,

,

$varepsilon$ ,

. $rho,$

$l$ $Delta u.$

, , $varepsilon$, .~.

/$cdot$c$=$$^2$/$^3.$ :

$$

varepsilonsim {(Delta u)^3over l} ,eqno(1)

$$

.

, , , {it /}

$nu_{turb}$, $nu .$

, $nu_{turb}$

$rho ,, Delta u ,, l .$

$Delta ucdot l,$

$$

nu_{turb}simDelta ucdot l .eqno(2)

$$

$$

{nu_{turb}/nu}sim R,eqno(3)

$$

.~. footnote {$^{20)}$}{

.

, $l$ $Delta u$

. :

$$

{nu_{turb}/nu}sim R/R_0,

$$

, $nu_{turb}$ $nu$

$Rsim 1$, $Rsim R_0 .$}.

$nu_{turb}$

$$

varepsilonsimnu_{turb}(Delta u /l)^2 ,eqno(4)

$$

. $nu$

,

($simDelta u /l$)

.

, , $Delta p$

:

$$

Delta psimrho(Delta u)^2 .eqno(5)

$$

--- ,

$rho , l , $~ $Delta u.$

$lambda,$

$l.$

.

,--- , ,

$lambda.$

,

. , ,

$l,$ ; ,

. ,

,

,

, ,

.

({it .~. , 1941;

.~. , 1941/}).

,

, , $l,$

$lambda_0,$

; .

$rho$ , ,

--- $varepsilon$,

. , $varepsilon$

'

. ,

,

$varepsilon$ ' .

$l$ $Delta u$ ,

, ( $rho$ $varepsilon$)

. $nu$

(

$lambdagglambda_0$).

$v_lambda$

$lambda .$

$varepsilon$ , , footnote {$^{21)}$}{

$varepsilon$ /($cdot$)$=$$^2/$$^3,$

; ,

, $rho.$

, .}$lambda .$

:

$$

(varepsilonlambda)^{1/3}.eqno(6)

$$

,

({it -/}). $v_lambda$

~$lambda$:

,

.

(6) , ---

$varepsilon$ --- ,

~$lambda .$ $epsilon$

$v_lambda$

$nu_{turblambda}simlambda v_lambda :$

$$

varepsilonsimnu_{turblambda}left(v_lambdaoverlambdaright )^2

sim {v_lambda^3overlambda} ,

$$

(6).

. $v_tau$

,

$tau$,

$Tsim l/u$ . ,

$tau$

$tau u$

$u$ $tau .$

$tau$ ,

$utau .$ $v_tau$ ,

, , (6) $tau u$ $lambda :$

$$

v_tausim(varepsilon utau)^{1/3}.eqno(7)

$$

$v_tau$ $v'_tau$

. , ,

$varepsilon$, , ,

$tau .$ $varepsilon$ $tau$

,

$$

v'_tausim(varepsilontau)^{1/2}.eqno(8)

$$

, $tau .$ , $taull T$

$v'_tau$ $v_tau$footnote {$^{22)}$}{

$v'_taull v_tau$ , , (7).}.

(1) $varepsilon$ (6),(7)

$$

{v_lambdaoverDelta u}simleft (lambdaover lright )^{1/3},qquad

{v_tauoverDelta u}simleft (tauover Tright )^{1/3}.eqno(9)

$$

:

(, ).

, .

$lambda_0$

( $lambda_0$

{it /}

$l$). `` '':

$$

R_lambdasim{v_lambdalambdaovernu}sim

{Delta ucdotlambda^{4/3}overnu l^{1/3}}sim

Rleft (lambdaover lright )^{4/3},

$$

$RsimDelta ucdot l/nu$--- .

$lambda_0$ , $R_{lambda_0}sim 1.$

$$

lambda_0sim l/R^{3/4}.eqno(10)

$$

,

$varepsilon$ $nu :$

$$

lambda_0sim (nu^3/varepsilon)^{1/4}.eqno(11)

$$

,

.

$$

v_{lambda_0}simDelta u/R^{1/4}. eqno(12)

$$

$R$footnote {$^{23)}$}{ (10)-(12)

$R$.

, $R/R_0$

$R$.}.

$lambdasim l$ {it /};

. $lambda

lelambda_0$ {it /} ---

.

$R$ ,

{it /},

$$

lambda_0lllambdall l;

$$

.

--

( ) . $lambda$

`` '' $ksim 1/lambda ,$ $E(k)dk$

( ), $k$

$dk.$ $E(k)$ $^3/$$^2$;

$varepsilon$ $k$,

$$

E(k)simvarepsilon^{2/3}k^{-5/3}.eqno(13)

$$

(6) , ,

$v_lambda$ ,

$lambda .$

, (13)

$$

intlimits_k^infty E(k)dksim {varepsilon^{2/3}over k^{2/3}}sim {(varepsilonlambda)^{2/3}}sim v_lambda^2 .

$$

,

--- .

$sim u/l .$

$$

omega_0sim{uoverlambda_0}sim{{uover l}R^{3/4}},eqno(14)

$$

.

$$

{uover l}llomegall {uover l}R^{3/4}.

$$

$omegagg u/l$ ,

.

(13) $ksimomega /u:$

$$

E(omega)sim (uepsilon)^{2/3}omega^{-5/3}, eqno(15)

$$

$E(omega)domega$ , $domega$.

$omega$

, . Ÿ

( $omega '$),

.

$u$,

$varepsilon$ $omega ' .$

,

$$

E(omega ')sim{varepsilon/omega '^2 .}

$$

(15), (8) (7).

,

.

( ) $lambda .$

, ,

$$

{dlambdaover dt}sim (varepsilonlambda)^{1/3}.

$$

, , $tau$,

, $lambda_1$ ,

$lambda_2gglambda_1 ,$

$$

tausim {lambda_2^{4/3}/varepsilon^{1/3}}.

$$

:

$lambda .$ ,

, $lambda$,

$le lambda$;

.

, $lambdalllambda_0.$

. $v_lambda$ $lambda$ ,

, $v_lambda ={rm const}cdotlambda$.

, $lambdasimlambda_0$

$v_lambdasim v_{lambda_0}$.

$$

v_lambdasim {{v_{lambda_0}overlambda_0}lambda}sim {{Delta uover l}lambda R^{1/2}}.

$$

$varepsilon$: $(Delta u)^3/l$ (1), $varepsilon$

, $nu (v_lambda /lambda)^2$,

, .

beginsection{}

,

;

{it /}, $varepsilon$- - ,

. `` ,

'', ,

.

%supereject

vfill

break

beginsection{ }

frenchspacing

item{[1]}{it . . /} `` ''

: {it Kadanoff L. P.} --- Physics Today, December 1983, p. 43.

. {bf }. . . ,

``'', 1985.

item{[2]}{it . . , . . /} . VI.

``'', , ``'', 1988.

item{[3]}{it V. S. L'vov, I. Procaccia/} ``Turbulence: a universal problem.''

Physics World, 9 (8) 35-40 (1996).

item{[4]}{it . . , . . /} `` . 2'',

-, ``'', 1996.

bye

, , . ,

 

 

 

! , , , .
. , :