,,,
, ,
.
,
. `` '',
--- ,
,
.
beginsection{ }
1741 ,
.
, ,
.
.
1755
, ,
:
$$ {partial uarg over partial t} + uarg scal nabla, uarg
= -nabla parg .$$
$uarg$ $parg$ ---
~$r$ ~$t$, $uargscalnabla$
. ---
, ---
,
. ---
.
,
, ,
, .
, ,
,
, .~.
.
1827 1845.
-:
$$ {partial uarg over partial t} + uarg scal nabla, uarg
= -nabla parg +nu nabla^2 uarg .$$
$nu$ --- ,
0.01 0.15 ${}^2$/.
, $u^2/2$
.
. ,
.
beginsection{ }
-
. ,
, , ,
.
$alpha$ $10^{-4}$ ,
$L$
/${}^2$) $nu, d^2u/dz^2 sim nu u/L^2$,
$usim 10^7$ /. ,
. .
$H$
$rho g H$. $Hsim 5times 10^4$ ,
,
$usim sqrt{2rho g H}simeq 10^4$ /.
. ,
- . $L$
$U$, $U^2/L$, ---
$nu U/L^2$. (Re)
$UL/nu$. Re~$ll 1$,
. -
.
.
.
(Re~$gg 1$),
-
. . ,
,
Re~$sim 10^7$.
,
. -- Re~$ll 1$ --
. -- Re~$sim 1$ --
. -- Re~$gg 1$ --
.
.
beginsection{ }
,
,
. $P(omega)$
- :
$$ u(omega)={1over T} intlimits_0^T dt, e^{2pi i omega t} u(t),$$
$$ P(omega)=|u(omega)|^2.$$
,
,
-- .
. (
,
--- . ).
.
- , ,
, (.~1).
{1. Re $=10^{-2}$}{r1.bmp}
, .~.
.
.
. ,
.~.
, $t rightarrow infty$
. ( ,
).
,
(.~2).
{2. Re $= 20$}{r2.bmp}
,
.
,
, , .
.
, , , .
, ,
(.~3).
{3. Re $=100$}{r3.bmp}
,
.
,
.
--- --- ,
.
:
,
. ,
,
.
.
(Re)
.
, .
`` ''. .
. (.~4).
{4. Re $=10^4$}{r4.bmp}
,
, $u(t)$, ,
.
, , .
.
.
~5.
{5. Re $=10^6$}{r5.bmp}
,
, .
, , .
.
,
, , .
beginsection{ }
,
,
,
. ,
, - .
,
$$dot {bf x}(t)={bf F}({bf x}),$$
${bf x}(t)$ --- $n$
$x^{(1)},x^{(2)},ldots ,x^{(n)}$, ; ${bf F}$
. $bf dot x$
$bf x$- ,
$bf x$-
footnote{$^{1)}$}{ $bf F$
. (
), .}:
$${rm div,} dot {bf x}(t)={rm div,} {bf F}=
partial F^{(i)}/partial x^{(i)}<0. $$
. ,
. .
, ,
,
.
, .
,
--- .
.
( ),
- --- .
.
, , , ,
.
, ,
. ,
,
, ;
:
. ,
.
---
. ,
. ,
({it .~.~, 1944; M.~Born, 1952/}).
({it E. Lorenz,
1963/}); it / rm it
/rmfootnote{$^{2)}$}{ (
, . .); ``''
.
`` '' ,
,
, ,
.}.
,
.
:
( ),
({it D.~Ruelle, F.~Takens, 1971}). , ,
( ) .
.
,
.
. ,
( );
:
.
, .
( !). ,
,
({it S.~Newhouse, D.~Ruelle, F.~Takens, 1978/}).
,
.
,
, ; ,
.
,
,
. , ,
, ( )
.
.
(
, ``'' ).
( --- )
;
. ,
() , --- ;
, ---
. ---
(
). ,
,
. ,
.
, .
(.~. ) ,
. $tlongrightarrowinfty $
--- ,
( ``'' ).
;
( {it /}).
.
,
{it /}.
$n$- $(n>3)$ .
. , ,
--- .
. $n$-
$varepsilon$ $varepsilon^n $. $N(varepsilon )$ ---
, .
$D$
$$D=lim_{varepsilonto 0}{ln N(varepsilon)over ln (1/varepsilon)}.$$
{it /} ( {it /}) .
$D$-
: $varepsilon$ $N(varepsilon)approx Vvarepsilon^{-D}$
( $V$ --- ), , $N(varepsilon )$
$D$- , $D$- $V$.
, ,
$n$ , ,
, ;
footnote{$^{3)}$} {
$n$- `` '';
$D , $N$
$N(varepsilon )= N$ $D=0$; $L$ : $N(varepsilon)=L/varepsilon ,
D=1;$ $S$ : $N(varepsilon )=S/varepsilon^2
, D=2 ,$ ..}. beginsection{
}
{it /} $mu$ ,
$t$
$t-T$, $T$ --- .
$mu$ .
() ,
.
1, .
,
1, .~. $mu$
.
-
, , , .~. $+1$ $-1.$
, ,
{it /}.
,
.
$-1$ $+1.$ $n$- $n-1$
$n-1$
(
). $pm 1$
$l$- . $n-2$
;
$n-2$
( $Sigma$), $l$-
. ,
$tlongrightarrowinfty $
( ---
$Sigma$ ).
$Sigma$ $sigma.$
, $sigma,$
( $x_j$)
$x_{j+1}.$ $x_{j+1}=f(x_j;R)$ {it
/} {it /};
$R$ ( --- footnote{$^{4)}$}{ ,
.}),
--- .
$Sigma$,
$sigma$ ,
;
$$ x_{j+1}=f(x_j;R),eqno(1) $$ $x$ footnote{$^{5)}$} { $x$ , ,
.}.
${j}$ , .
.
{it /} (1) --- $x_j=x_*$,
, .~. $x_{j+1}=x_j$.
$mu=dx_{j+1}/dx_j$, $x_j=x_*$.
$x_j=x_* +xi$ $x_*$ $x_{j+1}approx
x_* +muxi$. ( ), $|mu|<1$:
({it /}) -
$x_*$, (
$|mu|^r$, $r$ --- ). $mu >1$
.
$-1$. $mu=-1$ ,
$T_0$ ,
: $T_0$ .
, $mu$ $-1$
$T_0$ $2T_0$
--- {it /}.% (.~6)
$x=0,$ ,
$$ x_{j+1}=, -[1+(R-R_1)]x_j+x_j^2+beta x_j^3,eqno(2) $$ $beta >0 $footnote {$^{6)}$}{
$R-R_1$ $R$,
$x_j^2$ $+1$ $x_j$ (
(2)).}. $R , ,
(2) , .~.
( ) ;
, . (2) (
$x_j$ $R-R_1$) $$ x_{j+2} = x_j+2(R-R_1)x_j- 2(1+beta)x_j^3.eqno(3) $$ $x_*=0.$
$R ( $|dx_{j+2}/dx_j|<1$);
1 ( $T_0$) 2 --- .
$R=R_1$ $+1$ $R>R_1$
$x_*=0$ .
$$ x_*^{(1),(2)}
= pm left [{R-R_1over 1+beta}right ]^{1/2},eqno(4) $$
footnote {$^{7)}$}{,
, {it 2-./}
{it /}. }; (3)
, (2)
. ,
--- , . ``
'' 1: $x^{(1)}$
$x^{(2)}$ . $x^{(1)}-x^{(2)}$
2;
$(R-R_1)^{1/2}$.
.
, (
$R$) ;
$R_1, R_2,ldots$ ,
, .
,
({it M. J. Feigenbaum, 1978/})%footnote
{$^{1)}$}{ % (
$1, 2, ldots $) %
. % , ,
% ,
% .}
, ( $R$)
,
,
,
.
.
$x$ ``'',
$|df(x;lambda)/dx|>1;$ .
,
, ;
, .
$f(x;lambda),$ .~.
(1): $x_{j+1}$
$x_j,$ . ---
; $$ x_{j+1} = f(x_j;lambda) = 1-lambda x_j^2,eqno(5) $$ $lambda $ --- ,
( )
$R$footnote {$^{8)}$} {,
.
$Sigma $ (
),
: (
$x_j$ $x_{j+1}$).
---
( ``'' ---
, ).}.
$[-1,+1]$ $x;$
$lambda $ 0~ 2 (5) $x$
. (5) ---
$x_* = 1-lambda x_*^2$.
$lambda >Lambda_1,$ $Lambda_1$ ---
$lambda ,$ $mu = -2lambda x_* = -1;$
$Lambda_1 =3/4.$ ---
$lambda ,$
: 2-.
,
,
; . (5) , $$ x_{j+2} = 1-lambda +2lambda^2 x_j^2-lambda^3
x_j^4,eqno(6) $$ ---
$x_j.$ footnote
{$^{9)}$}{ $lambda =1 $ (
(6) :
$x_*=0$). , ,
$Lambda_2.$} $$ x_jto
x_j/alpha_0, quad alpha_0 = 1/(1-lambda) $$ $$ x_{j+2}= 1-lambda_1 x_j^2, $$ (5) $lambda$ $$ lambda_1
= phi (lambda)equiv 2lambda^2(lambda-1).eqno(7) $$ $alpha_1= 1/(1-lambda_1),ldots ,$
: $$ x_{j+2^m}= 1-lambda_m x_j^2,quad lambda_m =phi
(lambda_{m-1}).eqno(8) $$ (8)
$2^m$-footnote{$^{10)}$} { ,
(8)
$|x|le |alpha_1 alpha_2ldotsalpha_{m-1}|$
( $|x|le 1,$ (5),(6)).
(8)
.}.
, (5), , $2^m$-
($m=1,2,3,ldots$) $lambda_m =Lambda_1 =3/4.$
$Lambda_m$ $lambda$
$$ Lambda_1 =phi (Lambda_2),quadLambda_2 =phi
(Lambda_3),ldots , Lambda_{m-1}
=phi (Lambda_m). $$ % , .~7. , $mlongrightarrow infty $
$Lambda_infty$ ---
$Lambda_infty =phi (Lambda_infty);$ $Lambda_infty =(1+sqrt
3)/2approx 1{,}37.$ : $alpha_mtoalpha,$
$alpha =1/(1-Lambda_infty)approx -2{,}8.$ ,
$Lambda_m$ $Lambda_infty$ $m.$ $Lambda_m
=phi (Lambda_{m+1}$ $Lambda_infty -Lambda_m $ $$ Lambda_infty
-Lambda_{m+1} ={1overdelta}(Lambda_infty -Lambda_m),eqno(9) $$
$delta =phi '(Lambda_infty) =4+sqrt 3 approx 5{,}73.$ , $Lambda_infty
-Lambda_msimdelta^m,$ .~. $Lambda_m$ .
:
(9) $$ Lambda_{m+2}
-Lambda_{m+1}={1overdelta}(Lambda_{m+1}-Lambda_m).eqno(10) $$ , ,
$lambda $ ,
,
$R_infty .$ ,
(9),(10) ( $delta $), $Lambda_m .$
: ,
$Lambda_infty $ (9),(10);
$alpha .$
, , . (
(5))
$delta$ ({it /})
$alpha$: $$ delta
=4{,}6692ldots ,quadalpha =-2{,}5029ldotseqno(11) $$ $Lambda_infty
=1{,}401$footnote{$^{11)}$}{ $Lambda_infty $ ,
---
$f(x;lambda)$ ( $delta$ $alpha$
).}. $delta ;$
,
. ,
$x_j^2,$ , (8)
,
$2^m$-footnote{$^{12)}$}{ $2^m$ $x_*^{(1)},x_*^{(2)},ldots ,$ ()
(31.5) ( ) $2^m$-
. , $dx_{j+2^m}/dx_j$ $x_*^{(1)},x_*^{(2)},ldots $ (
$-1$ ).}.
(5)
$x_j^2,$ .
$x_j$
, $x_j=0$ (
). , $delta$ $alpha$,
$x_{j+1}=f(x_j;lambda) :$ ,
$f(x;lambda)$ (
$x=0$);
. {it /}
.
. , $f(x)$
( $f(x;lambda)$ $lambda$ -- .
), $f(0)=1.$ , $f(f(x)).$
, $x$ $alpha_0 =1/f(1)$ ;
$$ f_1(x)=alpha_0f(f(x/alpha_0)), $$ $f_1(0)=1.$
, ,
$$ f_{m+1}(x)=alpha_m
f_m(f_m(x/alpha_m))equivwidehat Tf_m,quad alpha_m =1/f_m(1).eqno(12) $$
$mlongrightarrowinfty$ $f_infty(x)equiv g(x),$
`` '' (12)
$widehat T,$ .~. $$ g(x)=widehat
TGequivalpha g(g(x/alpha)),quadalpha =1/g(1),quad g(0)=1.eqno(13) $$ $f(x),$
$g(x)$
$x=0;$ $f(x)$ (13)
. ,
( $|alpha_m|>1$)
$x$ $-infty$
$+infty$ ( $-1le xle +1$). $g(x)$
$x;$ ,
$f(x)$ ,
. (13)
( );
,
; $alpha$ $g(x).$
$[-1,1]$,
$widehat T.$ , $widehat T$
(12) $f_{m+1}(x)$ $[-1,1]$
$f_m(x)$ $|alpha_m|approx |alpha|$
. ,
$g(x)$ $[-1,1]$ ( $x$)
;
, ,
footnote{$^{13)}$}{ (13)
. ( $[-1,1]$)
$x^2;$
, $x$ ( )
$widehat T.$
$[-1,1] $ $g(x)$ ,
$g(x)=1-1,528x^2$ ( ;
(13) $g$).}. $g(x)$
,
.
$f(x;lambda)$ $lambda =Lambda_infty .$ , ,
$f(x;lambda)$
(12), $g(x)$
$lambda .$ ,
$widehat T$ ,
$lambda$ $Lambda_infty .$
$delta$ --- $f(x).$ $alpha$ ---
--- ( )
;
$x.$ ,
, ,
. ,
footnote{$^{14)}$}{
$[-1,1],$
$x,$ . $alpha$
,
$x=0.$}. ,
,
$|alpha|$ ;
--- $alpha^2$ . ( $lambda =Lambda_m$)
() $2^m$- --- ,
,
$lambda$ .
(.~.
$x_{j+1}=f(x_j;lambda)$,
$2^m$ . ,
, . $2^{m+1}$- ,
, $x_{m+1}(t)$
$t$ ( $T_0$)
$t/T_0 =1,2,ldots ,2^{m+1}.$ $2^m$-
. $$ xi_{m+1}(t)=x_{m+1}(t)-x_{m+1}(t+T_m),eqno(14) $$ $T_m=2^mT_0=T_{m+1}/2$ --- $2^m$-, .~.
$2^{m+1}$-. $sigma_m (t)$ ---
, (14)
footnote {$^{15)}$}{
$lambda$ (
$(Lambda_{m-1},Lambda_m)$ $(Lambda_m,Lambda_{m+1})),$
(14) , (15)
. $lambda ,$
``'';
.}: $$ {xi_{m+1}(t)overxi_m(t)}=sigma_m(t).eqno(15) $$ , $$ xi_{m+1}(t+T_m)=-xi_{m+1}(t),eqno(16) $$ $$ sigma_m(t+T_m)=-sigma_m(t).eqno(17) $$ $sigma_m(t)$ ,
, ( $m$)
: $$ sigma_m(t)=left { eqalign {&1/alpha
cr &1/alpha^2cr}right. eqalign { &hbox{rm } quad 0 &hbox{rm } quad T_m
/2 $$ (
$t$)footnote{$^{16)}$}{ ,
$sigma_m(t)$. . {it ~./} --- , 1983,
.141, .343 [Los
Alamos Science, 1980, v. 1, p. 4].}.
() ,
. $x_m(t)$
. $T_m$
$x_m(t)$ ( $t$!)
$komega_m$ ($k=1,2,3,ldots$) --- $omega_m =2pi/T_m$ .
$x_{m+1}(t)$
$T_{m+1}=2T_m .$ Ÿ ,
$komega_m ,$ $omega_m$ --- '
$lomega_m /2, l=1,3,5,ldots$ $x_{m+1}(t)$ $$ x_{m+1}(t)={1over 2}{ xi_{m+1}(t)+eta_{m+1}(t)}, $$ $xi_{m+1}$ --- (14), $$ eta_{m+1}(t)=x_{m+1}(t) + x_{m+1}(t+T_m). $$ $eta_{m+1}(t)$
$komega_m$; , $$ {1over T_{m+1}}intlimits_0^{T_{m+1}} eta_{m+1}(t),
e^{ipi lt/T} dt= {1over 2T_m}intlimits_0^{T_m}
[eta_{m+1}(t)-eta_{m+1}(t+T_m)] e^{ipi lt/T} dt $$
$eta_{m+1}(t+T_m)=eta_{m+1}(t)$. , $eta_m(t)$
: $eta_{m+1}(t)approx eta_m(t)$; ,
$komega_m$ . $xi_{m+1}(t)$
, , $lomega_m/2$ --- ,
$(m+1)$- .
$$ I_{m+1}={1over T_{m+1}}intlimits_0^{T_{m+1}}
xi_{m+1}^2(t) dt.eqno(19) $$ $xi_{m+1}(t)$ $xi_m(t)$, $$ I_{m+1}={1over
2T_m}2intlimits_0^{T_m} sigma_m^2(t) xi_m^2(t) dt. $$ (16--18) $$ I_{m+1}={1over
2}left( {1over alpha^2}+{1over alpha^4}right){1over T_m} intlimits_0^{T_m}
xi_m^2(t) dt = {1over
2}left({1over alpha^2}+{1over alpha^4}right) I_m, $$ $$ I_m/I_{m+1}approx 10{,}8.eqno(20) $$ ,
, ,
, ,
. ({it M.~J. Feigenbaum, 1979/}) footnote{$^{17)}$}{
, .
, $m$- ,
( )
$(m+1)$- .
(20).
10{,}48.
$lambda=Lambda_infty$ $g(x)$;
15 . . {it Nanenberg~M., Rudnick~J./}
--- Phys. Rev., 1981, v. 24B, p. 493.}. beginsection{
} , ,
$mu=+1$. (
) $x_{j+1}=f(x_j;R)$,
( ), $R=R_0$,
$x_{j+1}=x_j$. $x_j=0$,
footnote{$^{18)}$}{ $R-R_0$
() $x_j^2$
$R$~ $x_j$, (22).}. $$ x_{j+1}=(R-R_0)+x_j+x_j^2.eqno(21) $$ $R $$ x_*^{(1),(2)}=mp (R_0-R)^{1/2}, $$ ($x_*^{(1)}$) ,
($x_*^{(2)}$) --- . $R=R_0$
$+1$,
$R>R_0$ (
). (21)
$x_{j+1}=x_j$ ( $x_j=0$). $x$,
, (21)
,
. ,
, .
()
. , ,
({it P.~Manneville, Y.~Pomeau, 1980/}). ,
, ;
.
, ,
, , . $R . $R>R_0$
, ``'' (
--- {it /}).
- .
. (21)
. $x_j$ ,
$x_{j+1}-x_j$ $dx/dt$
$t$: $$ dx/dt=(R-R_0)+x^2. $$ $tau$,
$x_1$~ $x_2$, $x=0$
, $(R-R_0)^{1/2}$,
(21). $$ tau=(R-R_0)^{-1/2}left.{rm
arctg}[x(R-R_0)^{-1/2}]right|_{x_1}^{x_2}, $$ $$ tau sim (R-R_0)^{-1/2}, $$ ; .
, . beginsection{ } rightline{ Big whirls have little whirls that feed on
their velocity,} rightline{ and little whirls have lesser whirls and so
on to viscosity} rightline{ --- in the molecular sense.} rightline{it Richardson L.} medskipnoindent
,
({it
/});
.
, .
. , , . ,
.
. ~$u.$
$v'=v-u$ ,
, {it
/} .
, .
({it
/}) , , (
,
).
; ,
.
.
, --- ,
, ;
{it /} ( {it /})
~$l.$
.
$Delta u$ $l$ (
, ,
;
,
)footnote {$^{18)}$}{ ,
, ,
$l$, --- , $Delta u.$}.
, --- $u/l$ $u$
( $Delta u $) $l.$ ,
,
.
$u.$ ,
, .
,
.
.
( ). (
$l$)
$Delta u.$
( $l$)
$Delta u $ (
).
,
. ( ~$Tsim l/u$)
;
~$simDelta u.$ $R$,
, $l.$
. $lambda$ ---
, $v_lambda$ --- , $R_lambdasim
v_lambdalambda /nu .$ , . $R$
$R_lambda$ .
. , ,
,
.
.
, $R_lambdasim 1$ (
$lambda_0$ ).
,
, . , ,
({it L. Richardson, 1922/}).
'
, . ,
- , .~.
. , .~.
, . (
, , .) , ``'' ,
.
, ,
$lambdagglambda_0,$ $nu$ (
, $nu$
, ).
, ,
, .
. $varepsilon$
,
footnote {${19)}$}{ $varepsilon$
, !}. ,
,
, ~$simlambda_0.$
, , ,
$varepsilon$
, .
$rho,$ $l$ $Delta u.$
, ,
$varepsilon$, .~. /$cdot$c$=$$^2$/$^3.$ : $$ varepsilonsim {(Delta u)^3over l} ,eqno(1) $$
.
, , , {it
/} $nu_{turb}$,
$nu .$ , $nu_{turb}$
$rho ,, Delta u ,, l .$
$Delta ucdot l,$ $$ nu_{turb}simDelta ucdot l .eqno(2) $$ $$ {nu_{turb}/nu}sim R,eqno(3) $$ .~. footnote {$^{20)}$}{
. , $l$ $Delta u$
.
: $$ {nu_{turb}/nu}sim R/R_0, $$ , $nu_{turb}$ $nu$
$Rsim 1$, $Rsim R_0 .$}. $nu_{turb}$ $$ varepsilonsimnu_{turb}(Delta u /l)^2 ,eqno(4) $$ .
$nu$
,
($simDelta u /l$) . , , $Delta p$
: $$ Delta psimrho(Delta u)^2 .eqno(5) $$ ---
, $rho , l , $~ $Delta u.$
$lambda,$ $l.$
.
,--- ,
, $lambda.$
,
. , ,
$l,$
; ,
. , ,
,
, ,
.
({it .~. , 1941; .~. , 1941/}). ,
, ,
$l,$ $lambda_0,$
;
. $rho$ , ,
--- $varepsilon$,
. ,
$varepsilon$ '
. ,
, $varepsilon$
' . $l$ $Delta u$
, , ( $rho$
$varepsilon$) .
$nu$ (
$lambdagglambda_0$). $v_lambda$
$lambda .$
$varepsilon$ , ,
footnote {$^{21)}$}{ $varepsilon$
/($cdot$)$=$$^2/$$^3,$ ; ,
, $rho.$
,
.}$lambda .$
: $$ (varepsilonlambda)^{1/3}.eqno(6) $$ ,
({it -/}). $v_lambda$
~$lambda$:
, . (6) ,
--- $varepsilon$ --- ,
~$lambda .$ $epsilon$
$v_lambda$
$nu_{turblambda}simlambda v_lambda :$ $$ varepsilonsimnu_{turblambda}left(v_lambdaoverlambdaright
)^2 sim {v_lambda^3overlambda} , $$ (6). .
$v_tau$ ,
$tau$,
$Tsim l/u$ . ,
$tau$
$tau u$ $u$ $tau .$
$tau$ ,
$utau .$
$v_tau$ , , , (6) $tau u$
$lambda :$ $$ v_tausim(varepsilon utau)^{1/3}.eqno(7) $$
$v_tau$ $v'_tau$ .
, , $varepsilon$, , ,
$tau .$ $varepsilon$
$tau$ , $$ v'_tausim(varepsilontau)^{1/2}.eqno(8) $$
, $tau .$
, $taull T$ $v'_tau$
$v_tau$footnote {$^{22)}$}{ $v'_taull v_tau$ , ,
(7).}. (1) $varepsilon$
(6),(7) $$ {v_lambdaoverDelta u}simleft (lambdaover lright
)^{1/3},qquad {v_tauoverDelta u}simleft (tauover Tright
)^{1/3}.eqno(9) $$
:
(, ). ,
. $lambda_0$
( $lambda_0$ {it /}
$l$). ``
'': $$ R_lambdasim{v_lambdalambdaovernu}sim {Delta ucdotlambda^{4/3}overnu l^{1/3}}sim Rleft (lambdaover lright )^{4/3}, $$ $RsimDelta ucdot l/nu$---
. $lambda_0$ ,
$R_{lambda_0}sim 1.$ $$ lambda_0sim l/R^{3/4}.eqno(10) $$ ,
$varepsilon$ $nu :$ $$ lambda_0sim (nu^3/varepsilon)^{1/4}.eqno(11) $$ ,
. $$ v_{lambda_0}simDelta u/R^{1/4}. eqno(12) $$ $R$footnote
{$^{23)}$}{ (10)-(12) $R$.
,
$R/R_0$ $R$.}. $lambdasim l$ {it
/};
. $lambda lelambda_0$ {it /} --- .
$R$ ,
{it /}, $$ lambda_0lllambdall l; $$ . --
( ) .
$lambda$ `` '' $ksim 1/lambda ,$
$E(k)dk$ ( ),
$k$ $dk.$ $E(k)$
$^3/$$^2$; $varepsilon$
$k$, $$ E(k)simvarepsilon^{2/3}k^{-5/3}.eqno(13) $$ (6)
, , $v_lambda$
,
$lambda .$ , (13) $$ intlimits_k^infty E(k)dksim {varepsilon^{2/3}over
k^{2/3}}sim {(varepsilonlambda)^{2/3}}sim v_lambda^2 . $$
, --- .
$sim u/l .$
$$ omega_0sim{uoverlambda_0}sim{{uover
l}R^{3/4}},eqno(14) $$ .
$$ {uover l}llomegall {uover l}R^{3/4}. $$ $omegagg u/l$ ,
.
(13) $ksimomega /u:$ $$ E(omega)sim (uepsilon)^{2/3}omega^{-5/3}, eqno(15) $$ $E(omega)domega$ ,
$domega$. $omega$
,
. Ÿ ( $omega '$),
.
$u$,
$varepsilon$
$omega ' .$ , $$ E(omega ')sim{varepsilon/omega '^2 .} $$ (15),
(8) (7).
, .
( ) $lambda .$
, ,
$$ {dlambdaover dt}sim (varepsilonlambda)^{1/3}. $$ , , $tau$,
,
$lambda_1$ , $lambda_2gglambda_1 ,$
$$ tausim {lambda_2^{4/3}/varepsilon^{1/3}}. $$ :
$lambda .$
, , $lambda$,
$le lambda$;
. ,
$lambdalllambda_0.$
. $v_lambda$
$lambda$ , , $v_lambda ={rm
const}cdotlambda$. ,
$lambdasimlambda_0$ $v_lambdasim v_{lambda_0}$. $$ v_lambdasim {{v_{lambda_0}overlambda_0}lambda}sim
{{Delta uover l}lambda R^{1/2}}. $$
$varepsilon$: $(Delta u)^3/l$ (1),
$varepsilon$ , $nu (v_lambda
/lambda)^2$, ,
. beginsection{} ,
;
{it /}, $varepsilon$-
- ,
. ``
, '',
, . %supereject vfill break beginsection{ } frenchspacing item{[1]}{it . . /} `` '' : {it Kadanoff L. P.} --- Physics
Today, December 1983, p. 43. . {bf }. .
. , ``'', 1985. item{[2]}{it . . , . . /}
. VI. ``'',
, ``'', 1988. item{[3]}{it V. S. L'vov, I. Procaccia/} ``Turbulence:
a universal problem.'' Physics World, 9
(8) 35-40 (1996). item{[4]}{it . . , . . /}
`` . 2'', -, ``'', 1996. bye
Copyright (c) 2024 Stud-Baza.ru , , , .