. , , ,

,,,

,

:

, 2008


 

(. 1, ) , , , . . , , .. .

, .

, Q. .

, .. , , . , .. . . , .

. , . , , , . () .

. , , () . , . , . , () , , . , ; , .

. 2

 

 

 

 

 

 

 

 

 

 

 

. 3

 
. 1

.

(. 2, ) . .

(. 2, ) . . , .

(. 2, ) , . , , ( ), . , , . .

, , , . . , .

: ( ) (). , , .

, , , .

.

, (F, Me) (a, b, ℓ) . 1, . RB, RAX RAY. . ( x y , .. z) :

. (1)

(1) RAX = 0; : RB F RAY = 0 : RBℓ F·a Me = 0. , RB = (F·a + Me)/ℓ. , RB , , RAY = F RB = F (F·a + Me)/ℓ.

.

 

Q . .

, .. τ = f (Q). , . (. 3, ), , , , , ; (. 3, ) .

, . , .. σ = f (). , . , (. 3, ) , (. 3, ), . , , . , . . 1, : , 1-1 2-2 , .. 1-1 > 0 2-2 > 0.

Q , , .

(. 5.24, ) , , . Q , .. QB = F = RBY, B = F·ℓ= MRB.

Q , .. . , . Q = Q (x) = () , .. .

, . Q , . . Q = Q (x) = (), . Q , . : τ (. 5.23, ). z

, z . . , Iz = bh3/12;

.

(. 5.23, ) : τ= h/2 = τy = h/2 = 0; τ= 0 = 1,5 (Q/A).

. 1,5  , .

. τmax = (4/3)(Q/A), τmax = 2(Q/A).

τmax ≤ τadm, τadm . , , .

(. 4, ) , , θ . = y(x) θ = θ(x). .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

. 4

, θ . θ tg θ = dy/dx. , , (tgθ ≈ θ) θ ≈ ≈ dy/dx.

K , x0y:

. (2)

(dy/dx)2 = tg2θ = θ2 << 1, (2) ,

. (3)

(5.67), EIz:

K = 1/ρ = /(EIz). (4)

(3) (4), :

, (5)

. .

(. 4, , , , ) .

, .. y'' = d2y/dx2 > 0, (. 4, , ) (. 4, , ).

, (5) , .. y'' > 0  > 0, y'' < 0 < 0. 5)

d2y/dx2 = / (EIz). (6)

, , . ,

θ = dy/dx = . (7)

(5.80) ,

, (8)

D , , .

, , , , . , , .

.

( 4, ) , F. EI.

. , .

, ,  = F (ℓ x). EI(d2y/dx2) = F(ℓ x). , EI(dy/dx) = = F × [ℓx (x2/2)] + . ,

EIy = F [(ℓx2/2) (x3/6)] + Cx + D.

, =0 θ = dy/dx , , =0 D = 0. = ℓ, y = (Fℓ3)/(3EI) θ = dy/dx = (Fℓ2)/(2EI).

, , , .. , .


1. .., .., .. : . .: . ., 2001. 480 .

2. .. : . .: , 2004. 292

3. .. : . .: . ., 1999. 415 .

:

 

 

 

! , , , .
. , :