. , , ,

,,,

: .



  1. . . . . . . . . . . . . . . . . . . . 3.

  2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.

  3. . . . . 11.

  4. . . . . . . . . . . . . . . 13.

  5. . . . . . . . . . . . . . . . . . . . . . . . 14.

  6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.

  7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17.


1.

( ) . . , , , (, ), , .

( ). , , , .

.

, ( ): ( ), ( ), (), ( ).

: (t) ;

i- (t);

xi(tj) (t), (i- j- . (t), xi (tj) .

.1 , t.

: , , . . , , . . . , , , , .

xi (t), i=1, 2, ..., , , ..

N

[X (t)]=lim 1/N  g[xi(t)], (1)

N  i =1

g [Xi (t)] , . , , g [Xi (t)]= xi (t). , .

k- xk (t)

T

 [X(t)]= lim 1/T g[xi(t)]dt. (2)

T

,


T

M [X (t)]= lim 1/T  xk (t) dt. (3)

T  0

(1) (2) . (1) , . (2) , .

, . , , ; , .

, , ( ), ( ). , ( ), ( ). ( ), : , , , .

.

, , , , .

, , :


* [X (t)]= KSdg [X (t)]; (4)


* [X (t)]= Sd Kg [X (t)]; (5)


* [X (t)]= Sd gK [X (t)]; (6)


Sd ; ʗ ;

* [X (t)]  [X (t)].

. () [. (4)], g, [. (5)] , , [. (6)]. . 2.

, , (4) (6), . , g , , ; Sd ( ); ʗ ( ), ̗, (., g., x.)


. 2, : {xi (t)} ( xi, (t)-, g {g[xi (t)]}; Sd {g[xi (t)]}, , , *[X(t)].

, , . 2, , , {g [xi (t)]} , , go; {g* [xi (ti)]} . Sd * [X (t)].

(. 2, ) (t), g . - () (). , g Sd,

* [X(t)]=*[X(t)]-  [ X(t)]. (7)

, , . (7) , , . , .

2.

, , .

. , , , . . 3 ,

t

M* [X (t)]= 1/T xk (t) dt.

t-T


ė (); , ; ; , ;

(, );

ϗ ( ).

e , ,

:

1/2

 =[2D[X(t)]  k/T]

M

T


1/2

 =[D[X(t)]/N]

M


N. D[X (t)] X(t),k . . ,

T 2

D[X(t)]= lim 1/T  [xk (t)-[X(t)]] dt

T 0

N 2

D[X(t)]= lim 1/N  [xi(t)-[X(t)]] dt

N i=1

. . 4 , . .

t t 2

D* [X(t)]=1/T  [xk (t)- 1/T1  xk (t)dt] dt

t-T t-T1

; 1 2 ; ӗ ; ӗ ; ; ; .

- (t)

2 1/2

 =[2D[X (t)]  k/T]

M


, D[X2 (t)] (t); T .

N

2 1/2

 =[D[X (t)] /N]

D


3.

F (X) , , . . Xi (ti) X. F (X) :


F (X)= lim Sd [ [x (t) ,X]],

d


1 x (t)  X

[x(t) ,X]=

0 x (t) > X


F (X) w (X)

X

w (X) =(dF (X))/dX ; F (X)=  w (X) dX

-

w (X) = lim ((F(X+X)-F (X))/X)= lim ((Sd [[x(t) ,X]])/X)

X X


1 X < x (t)  X+X

 [x(t) ,X]=

0 x (t)  X, x (t) > X+X


. ,

t

F* (X)=1/T   [xk(t) ,X]dt ,

t-T


. 5, , X k (t}X; ӗ ; ȗ, F* (X) ; ;

; .

- F {X)


2 1/2

 =[2(F - F )  k/T]

F


2 1/2

 =[2(F - F )/N]

F

. (X) :

2 1/2

 =[2(w - w X)  k/T]

w


2 1/2

 =[(w - w X)/N]

w


F w X.


4.

:

Rx (s,) = lim Sd[xi (t) xi-s (t-)],

d

 s .

, . . , . ,

t

Rx () = lim 1/T x (t) x (t-)dt,

T 0


.

, , . 6. :

t

R*x () = 1/T xk (t) xk (t-)dt,

t-T


, , , . , .

, (t), :


1/2

 ={2D[xk (t) xk (t-)]  k/T}

R


1/2

 ={D[xk (t) xk (t-)]/N}

R


.


5.

, :

2

Sx(w) = lim 1/T  xiT (w) 

T

t -jwt’

XiT (w) =  xi (t’) e dt’

t-T

. 7 (t).

i- xi (t) , , . .

. 790, 7016, 6-4/, 36 37, 4326, 4327, 7058 . , , . 256 4096 . 5 %.

, , . . , (, .).

. . , , , , .









:


1. . ..\.: ,1986.


2., . . ..

.: , 1986.


3. . . . \ .: , 1996.


: . . . . . . . . . . . . . . . . . . . . 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

 

 

 

! , , , .
. , :