База знаний студента. Реферат, курсовая, контрольная, диплом на заказ

курсовые,контрольные,дипломы,рефераты

К решению теоремы Ферма — Математика

К решению теоремы Ферма

Статья посвящена исследованию доказательства теоремы Ферма в общем виде. Показано, что кроме уравнения второй степени уравнения Ферма не содержат  других решений в целых числах. Предложено к рассмотрению 4 метода доказательства теоремы при целых x, y. Проблему доказательства теоремы Ферма следует считать закрытой.

 


 

Более 350 лет профессиональные математики и любители пытаются доказать теорему Ферма. Однако до настоящнго времени  нет общепризнанного доказательства. Тем не менее, интерес к загадочной теореме не угасает и до настоящего времени остается высоким.

В настоящей статье предлагается к рассмотрению простой метод доказательства, основанный на разделении числового множества yn + xn =zn (1)

на два подмножества, из которых первое содержит только те x и y для всех показателей степени n, которые могут содержать решения уравнения (1) в целых числах x,y,z, а второе подмножество содержит только нецелые решения.

Отделить друг от друга упомянутые подмножества представляется возможным путем разложения уравнения (1) на составные части по биному Ньютона и составления на их основе уравнения с учетом принятых ограничений для поиска целых решений. Для этого представим уравнение (1) в виде, удобном для разложения :

(x - a)n + xn –(x+b)n = 0                                                                           (2)

Здесь: x – переменное число, а < xцелое число; nцелое число, показатель степени; bцелое или нецелое число, в зависимости от соотношения x,a, и n.

Сущность доказательства заключается в определении подходящих значений x,y,z для удовлетворения уравнений ( 1 ) и ( 2 ) методом последовательных приближений. Задача решается применительно к 450 сектору I  квадранта в плоскостных координатах (x,y), т.к. из-за недостатка информации координата z  равна 0. Полученные результаты могут быть распространены на остальные 7 секторов плоскости (x,y), определяя тем самым область распространения условий теоремы Ферма.

Итак, применяя формулу бинома Ньютона к выражению (2), получим:

(x–a)n + x= 2xn - nxn-1 a  + cn2 xn-2  a- cnxn-3   a3...... +an           

 (x+b)n       =  x+nxn-1 b  + cn2 xn-2 b2   + cn3 xn-3 b.......+bn                    

D           =  xn - nxn-1 (a+b) + cn2 xn-2 (a2-b2) - cn3 xn-3 (a3+b3)..+(an+bn) =0

                                                                                                                 (3)

Назовем выражение (3) основным уравнением в поисках целых решений уравнения (2). Подходящие значения x, y=(xa), z=(x+b), удовлетворяющие уравнениям (1) и (2), будем искать при условии a=b=1. Обоснование принятых  допущений (ограничений) изложено ниже. Полагая   a = b , уравнение (3) преобразуем к виду:

  xn - 2nxn-1 a - 2cn3 xn-3 a- 2cn5 xn-5 a- ... (an + an )=0                (4)

Обозначим через  P(a,n) =  2cnxn-3 a3 + 2cn5 xn-5 a5 +... ( an + an ) - добавку после первых двух членов  уравнения (4). Тогда уравнение (4) примет вид:

xn - 2nxn-1 a - P(a,n) = 0

Разделив все члены уравнения  на  xn-1, получим выражение для искомого x

 x=2na+P(a,n)/xn-1 , где  P(a,n)/xn-1  ³0                                             (5)

 При  a = b = 1 выражение  (5)  примет  вид:

 x=2n+P(1,n)/xn-1                                                                            (6)

Подходящие значения y=x-1 и z=x+1 определяются через известный х. Из формул (5) и (6) становится ясным, что при  n>2 согласование левых и правых частей уравнений (1) и (2) возможно только при учете добавки P(1,n)/xn-1 .

Исходя из изложенного, целые числа х и у из теоремы Ферма следует однозначно отнести ко второму подмножеству yn + xn =zn

Ниже, в таблице приведены результаты расчетов согласования  для n=2,3,4 и 5.

n

x

y=x-1

z=x+1

xn

yn

xn+ yn

zn

D%

2 4 3 5 16 9 25 25 -
3 6,055 5,055 7,055 221 129 350 350 -
4 8,125 7,125 9,125 4350 2540 6890 6890 -
5 10,200 9,200 11,200 107000 66000 173000 175000 1,25

На основании изложенного можно сделать следующие предварительные выводы:

1.    Согласование левых и правых частей уравнений (1) и (2)  невозможно без учета добавки P(a,n)/xn-1.

2.    Если уравнение  yn + xn =zn с учетом добавки P(a,n) выразить в числовых отрезках и спроектировать на плоскость (х,у), то на ней при n>2 образуется остроугольный треугольник, все стороны которого при a=b=1 выражены нецелыми числами: х=2n+P(1,n)/хn-1; у=2n-1+ P(1,n)/хn-1; z=2n+1+ P(1,n)/хn-1, что находит подтверждение при следующем рассмотрении добавки P(1,n)/хn-1 .

Для выяснения этого вопроса представим ее после сокращений в следующем виде

P(1,n)/хn-1=2cn3/ x2 + 2cn5 / x4 +2cn7 / x6... ( 1 + 1 )/xn-1

В числителе каждого члена разложения представлены сочетания cnk, распределение которых симметрично, наподобие гаусовскому, относительно центра (n+1)/2. В знаменателе функция x2, возрастающая с каждым членом по квадратичному закону.

Первый член разложения, из-за малости x2 имеет наибольшую величину и может выражаться целым числом со значащими цифрами после запятой (для n=15 – 1,1…; для n=25 – 1,8…; и т.п.). Последний член имеет наименьшую величину из-за большого знаменателя xn-1 (для n=3 – 2/62 ; для n=15– порядка 2/3014  ; для n=25– 2/5024  и т.п.)

Первая половина разложения по сумме значительно превышает вторую за счет резкого увеличения числителей. Все члены разложения второй половины меньше 1 за счет уменьшения числителей и дальнейшего возрастания знаменателей, и интенсовно уменьшаются по мере удаления от центра. В результате общая сумма разложения для n>14 (для n<=14 добавка <1) всегда будет определяться целыми числами со значащими цифрами после запятой, т.е. все эти числа будут нецелыми, что свидетельствует о достоверности и доказуемости теоремы Ферма.

3.    Известно, что уравнение второй степени  y2 + x2 =z2 решается в целых числах, а её проекцией на плоскость (х,у) является прямоугольный треугольник. Можно предположить, что для более высоких степеней n найдется прямоугольная проекция, при которой решение уравнения Ферма будет происходить при целых x,y,z. Такое предположение оправдано для степени n=3 в объемных прямоугольных координатах x,y,z, в которых для уравнения (x-2a)3 +(x-a)3 +x3 =(x+ b)3 , существуют целые числа 3,4,5,6 и им кратные, которые удовлетворяют условию 33 +43 +53 =63 .

Физически эти числа выражают сумму кубов в целых числах, по аналогии с n=2, где сумма квадратов означает сумму площадей. По сути мы получили новый вариант теоремы Ферма.

4.    Искажения проекций (треугольников) по мере возрастания n обусловлены отражением на плоскости (х,у) несвойственных ей структур более высокого порядка. Отсюда можно заключить, что решения теоремы Ферма в целых числах связаны с наличием прямоугольных проекций, а при нецелых решениях- с искаженными проекциями в виде остроугольных треугольников.


Это подтверждается следующими математическими выкладками. Предварительно решим треугольник АВС из теоремы косинусов относительно cosC, где C –угол между сторонами а и b

сosC= (a2+ b2 -c2)/2ab. Подставим вместо сторон а, b и с их аналоги из треугольных проекций при а = b  =1:

а → x; b → y=x-1; c → z=x+1, где x=2n+P(1,n)/xn-1

После выполнения операций преобразования получим:

cosCn= 0,5-1,5/ xn-1                                        (7)

По полученной формуле проведены расчеты
n 2 3 4 5 10
x-1 3 5.054 7.125 9.200 19.0..

cosC

0 0.202 0.289 0.337 0.421 0.5

Co

90 78 73 70 65 60

Из которых следует :

-      искажение треугольников при n>2 обусловлено изменением угла С от 90о  при n=2 до 60о  при n∞ при этом треугольники превращаются из прямоугольных в остроугольные и в пределе – в равносторонние.

-      В остроугольных треугольниках нет целых решений уравнений Ферма т.к. их стороны сформированы нецелыми числами.

-      Решение теоремы Ферма в целых числах присуще только прямоугольным проекциям на плоскость (х,у) числовых отрезков уравнений y2 + x2 =z2

5.    Второй сектор квадранта является аналогом первого- зеркальным отражением первого при y>x со всеми вытекающими из этого результатами.

6.    В процессе проведения анализа по доказательству теоремы Ферма в общем виде получены 4 компактных метода доказательства теоремы при целых x, y, когда требуется показать , что при n>2  число z является нецелым.

Первый метод доказательства следует из рассмотрения остроугольного треугольника, для которого Z02= x2 +y2 –2xycosc. Требуется доказать, что Z0 является нецелым числом. В нем известны x и y – целые числа, а cosc определен с учетом ограничений a=b=1. Он изменяется в пределах 0< cosc < 0,5 (см. ф-лу (7) и табл. на  стр.3) и является функцией нецелого, иррационального числа х. Значит и соsc является также нецелым числом со множеством значащих цифр после запятой. Благодаря этому нецелым становится выражение 2xycosc, что в свою очередь делает нецелым Z02 и извлеченный из него квадратный корень Z0.

В основу второго метода также заложено рассмотрение остроугольного треугольника. Его Z02= x2 +y2 –2xycosc всегда меньше соответствующего Zп2= x2 +y2 прямоугольного треугольника и числовой отрезок Z02 находится внутри числового отрезка Zп2=x2 +y2.

Учитывая, что при принятых ограничениях y=x-1, т.е. отличается на единицу, то корень, извлеченный из Z02 будет иметь нецелое значение, т.к. между числами x-1 и x нет других целых чисел.

Третий метод основан на другом принципе. Его сущность заключается в следующем.

Для последовательности целых чисел 1,2,3,4 и т.д. составляется ряд их квадратов:

1     4    9   16   25   36    49    64    81   100   121    144    169   196  и т.д.

   2    4    6     8    10   12   14    16    18    20      22      24      26 и т.д.

Между числами первого ряда размещается нижний ряд, представляющий собой количество целых чисел (порядковых номеров), размещенных между двумя смежными квадратами чисел x и x+1. Эти целые (и нецелые) числа z1 не могут иметь при извлечении из них  корней целых значений, т.к. находятся между числами, отличающимися на единицу, а будут иметь значения x+D, где D=z1/Dx2

Учитывая, что при n>2 для остроугольных треугольников z02 всегда меньше zп2 или соответствующего Dx2 в ряду квадратов, необходимо вставить числовой отрезок z02 в числовой отрезок Dx2  и убедиться, что извлеченный корень из числа z02 является нецелым числом.

Рассмотрим доказательство на примере для  n=5.

Примем: x=2n=10; y=2n-1=9;cos C=0,337 (см. Формулы 6 и 7).

z02 =10+92-2*10*9*0,337=120,34.

В ряду квадратов это число находится между числами 100 и 121, являющимися квадратами целых чисел 10 и 11.

Кв. корень из числа 120,34 равен 10.97 – нецелое число.

Проверка: 10+9=159049. Корень пятой степени из числа 159049 равен 10,97. В случае необходимости z02 может быть уточнено путем повторного (многократного) определения cos C по трем известным сторонам треугольника.

Примечание. Числа ряда квадратов относятся к остроугольным треугольникам различных степеней n . Числа второго ряда, отмеченные жирным шрифтом и поделенные на 4, указывают на степень n, к которой относится пара чисел, выбранная из условия ограничения a=b=1, в соответсвии с формулой (6).

Четвертый метод основан на том, что аналогичные степенные ряды могут быть построены для любых n . Тогда для произвольно выбранной степени n=k  представляется возможным непосредственно убедиться в том , что извлеченный корень степени k из числа zk =xk+yk является нецелым числом.

P.S. Встает вопрос: при каких условиях нецелое число 10,97... , возведенное в степень n=5 , превратится в целое число 159049 ? Напрашивается ответ: число 10.97... должно быть иррациональным т.е иметь после запятой неограниченное количество значащих цифр.

Остановимся на обосновании принятых в статье допущений (ограничений).

Принятие a=1 обусловлено получением  максимальных  , (*) при которых для всех  a <1 нет  решений уравнений Ферма в целых числах, а zn   наиболее близок к 2xn.
 

Принятие  b=1 обусловлено тем, что 1 является единственным для всех n целым числом. Это подтверждается следующими соображениями. Из уравнения (*) имеем:                        , откуда b£x(nÖ2-1). Подставляя вместо х его близкое целое значение 2n, получим формулу b£ 2n(nÖ2-1) для практических расчетов, которые свидетельствуют о том, что вблизи начала координат ( на удалении х для каждой степени n) b изменяется от 1,65 при n=2 до 0 при возрастании n до ¥. Отсюда вывод: в растворе 450  сектора всюду b является нецелым числом, исключающим получение целых x,y,z при решении уравнений (1) и (2), за исключением одной точки, где b =1, которую следует проверять на наличие решения в целых числах x,y,z, что и было проделано выше с отрицательным результатом.

Расчеты при a=b=2,3,4…. относятся к точкам на значительном удалении от начала координат, кратным коэффициентам a=2,3,4….

Результаты расчетов при этом аналогичны выполненным при а=b=1, за исключением случаев, когда х определяется целым числом с конечным числом значащих цифр после запятой. Тогда можно подобрать такой коэффициент пропорциональности а умножение на который нецелых чисел х,у,z сделает их целыми числами, для которых будет справедливо (x*a)n +(y*a)n =(z*a)n.

В этом случае теорема Ферма станет недостоверной или имеющей исключения при n>2. В принципе теорема Ферма может считаться достоверной, если добавка P(a,n)/xn-1 является иррациональным числом. Тогда невозможно использовать коэффициент пропорциональности a.

В иррациональности добавки P(1,n)/xn-1 можно убедиться, если проводить  многократное уточнение  величины х методом последовательных приближений, ибо при делении целых числителей в добавке на нецелые, многократно уточняемые знаменатели, в составе добавки найдется хотябы один иррациональный результат деления, который превратит всю добавку в иррациональное число.

Наконец, анализируя расположение секторов на плоскости (x,y) и , учитывая, что нечетные функции xn и yn могут принимать положительные и отрицательные значения, можно составить следующую схему расположения этих функций на плоскости (x,y), т.е. в области распостранения условий теоремы Ферма:

-      вся плоскость (x,y) - для четных показателей степени n

-      квадрант I - для положительных x и y

-      квадрант III- для отрицательных x и y

-      в квадрантах II и IV для нечетных n будут иметь место разности типа xn - yn или yn - xn, рассмотрение которых теоремой Ферма не предусмотрено.

ВЫВОДЫ

1.    Разработан метод доказательства теоремы Ферма в общем виде. Определены основное уравнение (3) и рабочие формулы (2), (5), (6), (7) для проведения анализа и расчетов.

2.    Решение уравнений Ферма в нецелых числах при n>2 обусловлено образованием на плоскости (x,y) искаженных (остроугольных) проекций функции yn + xn =zn . При проекциях в виде прямоугольных треугольников решения получаются в целых числах.

3.    Теорема Ферма распространяется на всю плоскость (x,y), кроме II и IV квадрантов при нечетных n.

Николай Иванович Пичугин, ветеран ВОВ и ВС,

Москва 2001 – 2004 год

Т. 396 –90-24

e –meil:hrendy@rumbler.ru

К решению теоремы Ферма Статья посвящена исследованию доказательства теоремы Ферма в общем виде. Показано, что кроме уравнения второй степени уравнения Ферма не содержат  других решений в целых числах

 

 

 

Внимание! Представленная Статья находится в открытом доступе в сети Интернет, и уже неоднократно сдавалась, возможно, даже в твоем учебном заведении.
Советуем не рисковать. Узнай, сколько стоит абсолютно уникальная Статья по твоей теме:

Новости образования и науки

Заказать уникальную работу

Похожие работы:

Краткое доказательство великой теоремы Ферма
Роль математики в развитии человечества
Формулы, возможно неизвестные, для решений уравнения Пифагора
На чём стоит математика
Великая теорема Ферма – два коротких доказательства
Доказательство великой теоремы Ферма
Доказательство великой теоремы Ферма
Теорема Ферма. Бесконечный спуск для нечетных показателей n
Неединственность преобразований Лоренца.
Современные представления о строении Солнечной системы

Свои сданные студенческие работы

присылайте нам на e-mail

Client@Stud-Baza.ru