База знаний студента. Реферат, курсовая, контрольная, диплом на заказ

курсовые,контрольные,дипломы,рефераты

Колебания системы " Атмосфера - Океан - Земля" и природные катаклизмы — Физика

Реферат по физике

На тему: «Колебания системы " Атмосфера - Океан - Земля" и природные катаклизмы».

Ученицы школы 1204

Иллариошиной Марии

Москва

2006 год.

ВВЕДЕНИЕ.

В настоящее время в средствах массовой печати, в научно-популярной литературе, да и в солидных изданиях все катаклизмы на земле (чрезвычайные события) стали объясняться воздействием какого-то одного фактора. Многие провидцы и просто гоняющиеся за сенсациями журналисты из псевдонаучных изданий выдвигают “теории” о наступающем “конце света”.  В мире все взаимосвязано и нельзя рассматривать одно в отрыве от другого. Я покажу на примере явления Эль-Ниньо то, как влияют межгодовые колебания системы Атмосфера-Океан-Земля на протекание различных физических явлений в атмосфере, в океане, на поверхности земли .

В последние месяцы в средствах массовой информации часто упоминаются чрезвычайные события (ураганы, наводнения,  засухи, небывалые морозы и т.д.), вызванные возникшим в марте 1997 года явлением Эль-Ниньо – потеплением поверхностных вод в центральной и восточной частях Тихого океана. Давайте разберем причины участившихся чрезвычайных событий.

          Явление Эль-ниньо неразрывно связано с явлением Южного колебания (перемещениями масс воздуха над тропическими частями Индийского и  Тихого океанов в южном полушарии), поэтому оба явления изучают как единое явление Эль-Ниньо - Южное колебание (ЭНЮК), подразумевая под ним механические и термические колебания тропической атмосферы и океана периодом 2-10 лет.        Будучи геофизическим явлением планетарного масштаба, ЭНЮК, как правило, приводит к тяжелым экологическим катастрофам, социально-экологические последствия которых ощушаются во всем мире.

          Можно показать, что это явление – лишь одно из проявлений межгодовых (с периодами 2-10) совместных колебаний системы атмосфера-океан-Земля.Чтобы понять, как это происходит, рассмотрим колебания каждой из компонент в отдельности.

          В системе Атмосфера – Океан - Земля имеют место автоколебания периодами 2-10лет. Первопричиной их являются, очевидно, флуктуации атмосферной циркуляции, которые обусловлены неравномерным разогревом атмосферы радиацией Солнца. Атмосферная циркуляция является основной причиной течений в океане. Взаимодействие атмосферной циркуляции с процессами в океане порождает колебания атмосферы и океана, которые раскачивают Землю. Поскольку Земля вращается вокруг своей оси, то ее колебания происходят не в плоскости какого-то меридиана, а по кругу – в виде нутаций. Географические полюсы Земли при этом совершают круговые движения. Движения полюсов вызывают полюсной прилив, который в свою очередь влияет на колебания атмосферы и океана. В итоге в системе атмосфера – океан Земля наблюдаются нелинейные колебания с характерными для них явлениями конкуренции, синхронизации и комбинационного резонанса. Вследствие нелинейности системы и изменений в климатической системе из-за деятельности человека или внешних факторов колебания носят нерегулярный характер.

          Видимыми проявлениями совместных колебаний системы атмосфера - океан - Земля являются Южное колебание, Эль-Ниньо и Ла-Нинья и движения географических полюсов Земли. Явление ЭНЮК оказывает существенное влияние на гидрологический режим Мирового океана и аномалии погоды по всему земному шару, на жизнь биосферы. Продуктивность биосферы из – за воздействия ЭНЮК испытывает вынужденные колебания тех же периодов 2 – 10 лет. Во время Эль-Ниньо складывается крайне неблагоприятная экологическая обстановка для холоднолюбивых форм планктона, рыб, морских животных и птиц. Биологическая продуктивность Мирового океана заметно снижается. В период Ла-Нинья экологические условия становятся благоприятными и продуктивность восстанавливается. Мировой сбор зерновых и технических культур падает при Эль-Ниньо и растет при Ла-Нинья. Опасные явления погоды (сильные ливни, ураганы, морозы, засухи и т.п.) и связанные с ними стихийные бедствия (наводнения, оползни, пожары, аварии и т.п.) усугубляют негативные последствия эль-Ниньо.

Дальнейшие эмпирические и теоретические исследования, способствующие созданию моделей колебаний системы атмосфера – океан – Земля, позволят предвычислять их фазу, делать успешные прогнозы возникновения Эль-Ниньо и предупреждать тяжелые экологические и социально – экономические последствия.

Для  исследования должны подвергаться анализу все сенсационные сообщения всех различных печатных изданий, однако анализ всех предсказаний нельзя проводить, используя изменения какого – то одного фактора, скажем, смещения магнитных полюсов. О влиянии на биосферу и цивилизацию надо анализировать по изменениям в Космосе, Океане, Земле.

КОЛЕБАНИЯ АТМОСФЕРЫ.

В 20-е гг. текущего столетия при анализе аномалий атмосферного давления в субтропической зоне Южного полушария было замечено, что, когда атмосферное  давление повышено над Тихим океаном, над Индийским оно понижено, и наоборот. Это явление и было названо Южным колебанием. Позже выяснилось, что движение гигантских масс воздуха вдоль тропической зоны океанов, вызывающее чередование знака этих аномалий давления, напоминает гигантские качели.


Рис. 1  Поле коэффициентов корреляции r между средними годовыми величинами атмосферного давления станции «Дарвин» (Австралия) и значениями давления в других пунктах Земли.

На рис. 1 показаны изолинии коэффициентов r ( увеличены в 10 раз). Для представленного случая в зоне от 300 с.ш. до 350 ю.ш. в Восточном полушарии коэффициенты корреляции положительные, а в Западном полушарии отрицательные.

Коэффициент корреляции r в рассматриваемом случае является мерой линейной статистической связи между многолетними величинами атмосферного давления в одном пункте (в нашем случае станция «Дарвин» (Австралия)) и другими пунктами земного шара. Чем ближе его величина к 1 или –1, тем теснее связь между величинами атмосферного давления в исследуемых пунктах.

Имеются своего рода два центра действия противоположного знака: австралийско – индонезийский и южнотихоокеанский. Оба расположены в тропиках Южного полушария ( отсюда и название Южное колебание).

Очаг наиболее тесной отрицательной корреляции (r < - 0,8 ) располагается вблизи станции «Таити» (170 ю.ш. , 1500 з.д.), поэтому в качестве индекса нужного колебания SOI ( South Oscillation Index) используют разность нормализованных аномалий давления на метеостанцях «Таити» и «Дарвин». При SOI £ 0 давление понижено над Тихим океаном и повышенно над Индийским океаном, при SOI ³ 0 картина обратная.

При первом взгляде на многолетние кривые индекса SOI, который фиксировался непрерывно с 1866 года, создается впечатление, что чередование его фаз носит случайный характер. Однако спектральный анализ показал наличие ярко выраженных преимущественных периодов: 6; 3,6; 2,8; 2,4 года ( рис. 2, красная кривая 1). Имеется также  небольшой пик около 12 лет. Важно, что все эти преобладающие периоды ( за исключением  периода 2,8 г.) примерно кратны периоду 1,2 г. ( номера гармоник nk = 5; 3; 2  и 10 соответственно).

                                                                3,6

                   6,0

10     11,2

2,4

                                            2,8

5


    70                     20                    10                      7                        5

Рис. 2    Спектры мощности двух самых длительных рядов индексов SOI с 1866 г. по 1996 г.       ( красная кривая) и сходных с ним индексов DT с 1851 г. по 1996 г. ( синяя кривая). По оси абсцисс приведены периоды в кварталах, по оси ординат – спектральная плотность.

КОЛЕБАНИЯ ОКЕАНА.

Явление Южного колебания тесно связано с процессами в океане. При положительных SOI ( ³ 0 ) северо – восточные и юго – восточные пассатные ветры, дующие в тропиках Тихого океана, нагоняют теплую воду в его западную часть. Там образуется толстый слой теплого перемешивания. Глубина термоклина – тонкого слоя воды, отделяющего верхний перемешанный слой от глубинных слоев океана, в котором температура очень быстро падает с глубиной, - составляет 200 – 300 м., а температура воды на поверхности достигает 27 – 300 С. Наоборот, в тропиках восточной части Тихого океана в результате сгона формируется холодный и тонкий слой перемешивания. Глубина термоклина не превышает 50 м., а температура воды колеблется от 20 – 250С в океане до 15 – 190С у побережья Южной Америки.

Когда индекс SOI уменьшается и становится отрицательным, направленный к западу градиент давления тоже уменьшается, вплоть до обращения знака, пассатные ветры ослабевают и иногда меняют направление на противоположное: появляются западные ветры. Теплая вода, накопившаяся в западной части Тихого океана, не испытывая сопротивления ветра, устремляется на восток в форме внутренней экваториальной волны, распространяющейся со скоростью 2 – 4 м/с. Когда эта волна достигает берегов Южной Америки, вода накапливается, повышается уровень моря, углубляется граница термоклина, волна движется далее, отворачивая к полюсам, и в виде отраженной волны на запад. В  результате этого область теплой воды быстро расширяется. Такие случаи потепления вод в центральной и восточной частях экваториальной зоны Тихого океана и получили название явления Эль-Ниньо.

В отличие от термина Эль-Ниньо, которым пользуются рыбаки Перу для описания локального сезонного теплого течения у берегов Перу и Эквадора, явление Эль-Ниньо охватывает всю центральную и восточную части экваториальной зоны Тихого океана и экваториальную зону Индийского океана, что придает ему глобальное значение.

Эль-Ниньо неразрывно связано с Южным колебанием. Установлено, что чем больше SOI, тем ниже температура поверхности восточной и центральной частей Тихого океана. В явлении ЭНЮК поэтому выделяют две крайние фазы: теплую фазу (Эль-Ниньо) при SOI £ 0 и холодную фазу (Ла-Нинья) при SOI ³ 0.

При Эль-Ниньо уровень моря в восточной части Тихого океана примерно на 50 см. выше, чем в западной части, при Ла-Нинья – картина обратная. Это значит, что в тропической зоне имеются межгодовые колебания уровня моря между восточной и западной частями Тихого океана амплитудой примерно 50 см. Спектр этих колебаний аналогичен спектру SOI.

Со времени пионерских работ Дж. Бьеркнеса считается, что ЭНЮК есть самоподдерживающееся колебание, в котором аномалии температуры поверхности экваториальной части Тихого океана влияют на интенсивность пассатных ветров. Последние управляются океаническими течениями, а те в свою очередь формируют аномалии температуры поверхности океана.

Обычно строятся нелинейные модели взаимодействия океана с пассатными ветрами и исследуется поведение моделей в зависимости от амплитуды сезонного цикла температуры воды и скорости течения, параметров, характеризующих силу трения атмосферы с океаном, вариаций термоклина и т.п. В частности, показано, что при изменении во времени параметров сцепления и сезонного воздействия на экваторе возникают совместные колебания аномалий температуры океана, скорости течения и глубины термоклина с периодом 3 – 4 года и их гармоники. Когда температура воды и скорости течения изменяются в течение года, предельный цикл становится странным аттрактором – зоной фазового пространства, к которой притягиваются фазовые траектории и в которой изображающая точка совершает хаотическое движение, лишенное свойства повторяемости. Наличие хаоса расширяет и размазывает главные энергетические пики в спектре и сдвигает их в сторону низких частот. Годовые вариации основного состояния не только порождают нерегулярности периода колебаний, но и приводят к синхронизации колебаний с годовым циклом, в результате чего появляются субгармоники с периодом 3,4 и 5 лет.

Таким образом, все современные модели трактуют ЭНЮК как автоколебания совместной системы океан – атмосфера, не обращая внимания на то, что в спектре присутствуют составляющие, кратные не 1 году, а 1,2 года. Период 1,2 года, названный по имени его первооткрывателя периодом Чандлера, - это период свободного движения географических полюсов Земли. Он определяется сжатием и упругими свойствами Земли, поэтому естественно было предположить, что колебания ЭНЮК есть колебания не двойной системы океан – атмосфера, а тройной: атмосфера – океан – Земля.

ДИНАМИКА ВРАЩАЮЩИХСЯ ТЕЛ.

Прежде чем перейти к рассмотрению значения колебаний Земли в механизме явления ЭНЮК рассмотрим свойства нашей планеты как вращающегося тела. Нам необходимо ввести понятия прецессии и нутации.

Рассмотрим быстро вращающийся волчок. Пусть его ось вращения отклонена от вертикали на угол Q ( см. рис 3)

                                                                                                dH

                                                                dj                   

                                                                               H

                                                     w

                                                                           W

                                                    R

                                        Q

                                        0                 P               Рис. 3 Прецессия волчка.


 

На волчок действует сила тяжести P = mg, где m – масса волчка, g – ускорение силы тяжести. Невращающееся тело под действием силы тяжести падает. В случае волчка падения не наблюдается. Ось его вращения непрерывно смещается, но не в направлении силы тяжести, а в перпендикулярном ей направлении, описывая конус вокруг вертикали. Это движение оси волчка называется прецессией. Чтобы понять, почему так ведет себя волчок, проанализируем его динамику.

Вектор момента импульса волчка равен H = JW, где J – момент инерции волчка относительно его оси вращения, W - вектор угловой скорости. Сила тяжести Р создает момент силы L относительно точки опора О:  L = [ R x P ], где R – радиус – вектор центра тяжести. Под действием момента силы L момент импульса волчка

                                                dH

изменяется со скоростью                 = L. Поскольку вектор L направ-

                                                dt

лен перпендикулярно векторам R и Р, и вектор Н совпадает по направлению с R , то конец вектора Н и с ним ось вращения волчка смещаются в направлении, перпендикулярном направлению силы тяжести Р. При отсутствии трения вектор Н меняется только по направлению, т.е вращается, описывая конус с вершиной в точке опоры О.

Какова угловая скорость w прецессии волчка? За промежуток времени dt вектор Н получает перпендикулярное себе приращение dН = L dt, лежащее в горизонтальной плоскости. Отношение dН к проекции вектора Н на горизонтальную плоскость НsinQ дает угол dj  поворота этой проекции за время dt:

                                            L

                             dj  =                 dt

                                        НsinQ

Производная dj / dt является искомой угловой скоростью прецессии:

                               

                  L           mgRsinQ         mgR

w =                 =                        =

           HsinQ          JW sinQ           JW

Итак, угловая скорость прецессии прямо пропорциональна величине момента силы тяжести и обратно пропорциональна моменту импульса волчка. Направление прецессии определяется правилом: момент силы L заставляет отрезок RsinQ вращаться около точки О в направлении к вектору L.

Более строгое рассмотрение показывает, что, помимо прецессии, ось волчка совершает быстрые колебания малой амплитуды. Эти колебания  ( дрожание оси ) называются нутацией   ( от лат. Nutatio – колебание ). Удвоенная амплитуда Q - Qи период t нутации волчка приближенно равны:

                               2АmgRsinQ0                                          2pA

Q - Q0   »                            ;      t  »   

                                (JW)2                                          JW

где Q и Q- пределы изменения угла Q в результате нутации, А – момент инерции волчка относительно оси, проходящей через точку О перпендикулярно оси вращения.

Как известно, Земля вращается вокруг своей оси со скоростью 7,29 . 10-5 рад /с. Угол наклона этой оси к плоскости земной орбиты – эклиптике – равен 660 33. Момент инерции Земли огромен – 8,04 . 1037 кгм2 . Фигура Земли близка к фигуре эллипсоида вращения. Когда Луна и Солнце не лежат в плоскости земного экватора, их силы притяжения  стремятся развернуть Землю так, чтобы экваториальные вздутия располагались по линии, соединяющей центр масс Земли с Луной и Солнцем. Но так же, как волчок, Земля не поворачивается в этом направлении, а под действием момента пары сил, действующих на экваториальные вздутия, прецессирует. Земная ось медленно описывает конус вокруг перпендикуляра к плоскости эклиптики (рис. 4).

                                                                               Прецессия

 

          Нутация

                                                                                                                Прецессия и нутация

                             Экватор                                 Земли

Рис. 4  Схема движения оси вращения Земли в пространстве.


                    

Вершина конуса совпадает с центром Земли. Так как момент импульса Земли очень велик (59 . 1032 кг . м2 . с-1 ), скорость прецессии очень мала ( период равен примерно 26 тыс. лет). Угол наклона земной оси к эклиптике при прецессии не меняется, оставаясь равным 660 33, и географические координаты пунктов на Земле остаются без изменений.

Моменты сил притяжения, которые действуют на экваториальные вздутия, меняются в зависимости от изменения положения Луны и Солнца по отношению к Земле. Когда Луна и Солнце находятся в плоскости земного экватора, моменты сил исчезают, а когда склонения Луны и Солнца максимальны, достигают наибольшей величины. Вследствие таких колебаний моментов сил тяготения наблюдается нутация земной оси. Нутационное движение складывается из ряда небольших периодических колебаний. Главнейшее из них имеет период 18,6 года – период обращения лунных узлов (точек пересечения орбиты Луны с эклиптикой). Движение с этим периодом происходит по эллипсу. Большая ось эллипса перпендикулярна направлению прецессионного движения и равна 16,4” (рис. 4). Малая ось параллельна направлению прецессионного движения и равна 13,7”. Таким образом, ось вращения земли описывает на небесной сфере волнообразную траекторию, точки которой находятся на угловом расстоянии в среднем около 230 27 от полюса эклиптики.

Помимо лунно-солнечной прецессии и нутации, ось вращения Земли изменяет свое положение также и относительно тела Земли. Это явление называется движением полюсов. Оно приводит к изменению координат пунктов на Земле.

КОЛЕБАНИЯ ЗЕМЛИ.

Происходящее в процессе ЭНЮК перераспределение воздушных и водных масс приводит к тому, что ось наибольшего момента инерции отклоняется по меридиану Австралии при Эль-Ниньо и по меридиану Таити при Ла-Нинья. Земля, являясь гироскопом, преобразует качания этой оси в движение оси наибольшего момента инерции Земли по конусу относительно оси суточного вращения. Из-за этого точки, в которых ось вращения пересекает земную поверхность – мгновенные полюсы Земли, - движутся. Они перемещаются по земной поверхности вокруг своего среднего положения в направлении вращения Земли, т.е. с запада на восток. Фигура, строение и физические свойства Земли таковы, что период свободных колебаний полюсов Земли равен 1,2 года. Помимо этого, чандлерова, движения полюсов имеется еще и вынужденное движение полюсов периодом 1 год. Сложение этих двух движений порождает биения, в результате которых радиус траектории полюса меняется от максимального до минимального с периодом примерно 6 лет ( рис. 5).


 

Рис. 5  Траектория движения Северного географического полюса Земли в 1990 – 1996  

гг. с отметками начала каждого года.

Наибольшее удаление мгновенного полюса от среднего значения не превышает 15 м. (0,5).

Движение полюсов порождает прилив в атмосфере и Мировом океане (полюсной прилив), амплитуда которого зависит от величины смещения полюса. Волна полюсного прилива движется в атмосфере и океане вслед за полюсами Земли и, несмотря на свою малость, приводит к синхронизации колебаний системы атмосфера – океан с циклами движения полюса. В результате в спектре ЭНЮК появляются гармоники с периодами, кратными чандлерову. Возникает явление комбинационного резонанса, при котором даже воздействия малой мощности способны возбудить наблюдаемое движение полюсов. Отсутствие в спектре ЭНЮК гармоник с периодами 1,2; 4,8; 7,2 года и т.д., вероятно, связано с явлением конкуренции – подавления одних гармоник другими в процессе их взаимодействия друг с другом.

Изменения интенсивности явления ЭНЮК во времени приводит к нестабильности процесса возбуждения чандлеровского движения полюсов, к изменению его характеристик (амплитуды, фазы, декремента затухания и т.д.). Например, в 1925 – 1945 гг. наблюдалось значительное затухание этого движения (в несколько раз уменьшилась его амплитуда, удлинился период и изменилась фаза). В этот же интервал времени имелись значительные аномалии в повторяемости теплых фаз ЭНЮК. Фазы с SOI < 0 стали возникать реже, а в период с 1930 по 1940 гг. длительных интервалов с SOI < 0 вообще не было. Около 1910 и 1955 гг. наблюдались максимальные амплитуды чандлерова движения полюсов. За 10 – 15 лет до этих моментов фазы SOI < 0 были наиболее длительными, интенсивными и, главное, кратными периоду Чандлера. Эти факты демонстрируют согласованность ЭНЮК с движением географических полюсов, т.е. с колебаниями оси Земли относительно оси суточного вращения.

Цикличность ЭНЮК тесно связана с цикличностью скорости вращения Земли. Механизм связи такой. В результате повышения температуры поверхности океана и выделения скрытого тепла конденсации при явлении Эль-Ниньо экваториальная тропосфера разогревается, увеличиваются разности температур между экватором и полюсами, что приводит к усилению западных ветров, к росту момента импульса атмосферы и как следствие к замедлению скорости вращения Земли (момент импульса системы атмосфера - Земля должен сохраняться). Во время Ла-Нинья аномалии температуры поверхности океана вдоль большей части экватора отрицательны, скрытого тепла выделяется меньше и температура экваториальной тропосферы понижается. Ослабевает контраст температуры между экватором и полюсами, падает сила западных ветров, момент импульса атмосферы уменьшается, и скорость вращения Земли увеличивается. Так как фазы ЭНЮК повторяются чаще всего через 6; 3,6; и 2,4 года, то в итоге имеет место аналогичная цикличность изменения скорости вращения Земли.

ВЛИЯНИЕ КОСМОСА НА КОЛЕБАНИЯ ЗЕМЛИ.

Резонансы вблизи периода Чандлера и его субгармоник свойственны не только системе Земля – атмосфера – океан, но и Солнечной системе. В Солнечной системе многие планеты, Луна и астероиды имеют периоды движения, соизмеримые с чандлеровским и шестилетним. Так, периоды обращения Юпитера, Сатурна, Урана и Плутона соответственно ровно в 10, 25, 70 и 207 раз больше периода Чандлера. Известно также, что узлы лунной орбиты непрерывно перемещаются по эклиптике к западу, совершая полный оборот за 18,6 г. Перигей же лунной орбиты движется к востоку, совершая оборот за 8,85 г. В результате такого встречного движения соединения узла с перигеем происходят ровно через 6 лет (nk = 5). Все это говорит о том, что за миллиарды лет эволюции Солнечной системы скорость суточного вращения Земли и процессы, происходящие на ней, синхронизировались с циклами Солнечной системы.

ЭКОЛОГИЧЕСКИЕ И ЭКОНОМИЧЕСКИЕ ПОСЛЕДСТВИЯ.

При Ла-Нинья пассатные ветры гонят поверхностную воду от берегов Америки к западу. Сгон сопровождается апвелингом – подъемом глубинной холодной воды. Она очень богата кислородом и питательными веществами – пищей планктона. Планктон является кормовой базой для рыб, поэтому у Тихоокеанского побережья Южной Америки откармливаются и быстро размножаются многочисленные стада рыб и связанные с ними пищевыми цепочками поголовья морских животных и стаи птиц.

Накопление  же теплой, бедной кислородом воды у побережья Южной Америки при Эль-Ниньо подавляет апвелинг и вынос питательных веществ в верхние слои океана. Условия для развития планктона становятся неблагоприятными. Изменения гидрологических условий и первичной продуктивности океана приводит к миграции или мору обитающих там популяций рыб, ракообразных и морских животных. Птицы, питающиеся рыбой, также мигрируют или гибнут. Эль-Ниньо является катастрофой для многих морских экосистем. Требуются годы для преодоления негативных экологических последствий Эль-Ниньо.

Распределение температуры поверхности океана определяет расположение областей атмосферной конвекции над океаном в тропиках. При Ла-Нинья конвективная активность развита над Индонезией, Австралией и прилегающей западной частью Тихого океана и подавлена в восточной части, прилегающей к Южной Америке, где из-за охлаждения воздуха холодной водой океана существует пассатная инверсия, т.е. повышение температуры воздуха с высотой вместо обычно наблюдаемого падения. В западной тропической части Тихого океана идут обильные дожди, а  в восточной стоит очень сухая погода. При Эль-Ниньо, когда аномалии температуры поверхности океана в восточной части становятся положительными, задерживающее влияние пассатной инверсии на вертикальные движение воздуха ослабевает и конвективная активность растет. Область повышенной конвективной активности с обильными осадками перемещается вместе с теплой водой вдоль экватора из западной в центральную и восточную части Тихого океана.

Миграция областей повышенной конвективной активности в атмосфере имеет далеко идущие последствия. При Эль-Ниньо в окрестностях Австралийско-Индонезийского центра действия, где обычно стоит влажная погода с дождями, наступает очень сухой период. В центральных и восточных же частях Тихого океана, где обычно дождей не бывает, наступает влажный период. Над прибрежными районами Южной Америки начинают идти проливные дожди. Они вызывают наводнения, оползни, уничтожают посевы, разрушают дороги и строения.

Таким образом, при Эль-Ниньо, которое может длиться несколько лет, в экваториальной зоне Тихого океана наступает подлинное экологическое бедствие: мигрируют или гибнут популяции рыб, ракообразных, морских животных, стаи птиц, страдает население прибрежных стран Южной Америки (особенно Эквадора и Перу), занимающиеся рыболовством и сбором ценного птичьего помета – гуано. Большой экономический ущерб этим странам наносят также и сопутствующие стихийные бедствия (наводнения, шквалы, грозы и т.д.). В этот же период экономика Австралии, Африки, Индонезии и стран бассейна Индийского океана страдает от сильных засух. Дефицит осадков, наблюдавшийся в годы Эль-Ниньо в большей части Восточного полушария, приводит к заметному понижению мирового урожая зерновых культур, поскольку большая часть посевных площадей находится в Восточном полушарии. Чем сильнее эль-Ниньо, тем тяжелее описанные последствия. По неполным данным, Эль-Ниньо 1982 –1983 гг. привело к гибели более 2 тыс. человек, а ущерб составил 13 млрд. долларов.

 На основании проведенного анализа зависимости явления ЭНЮК от колебаний системы Космос – Земля –атмосфера – океан мы можем сделать вывод, что многие катастрофы и природные катаклизмы, происходящие на нашей планете имеют первопричиной не деятельность «высших сил», ведущих Землю к «концу света». Их причины более прозаично связаны с периодическими колебаниями физических систем и воздействием на них сторонних сил, имеющих также физическую природу.

Итак, природные катаклизмы вызываются периодическими колебаниями системы атмосфера – океан – Земля под воздействием Солнца (прецессия), неравномерности прогрева атмосферы (воздействие воздушных масс на Землю), неравномерным прогревом океана (океанические течения воздействуют на Землю). В результате этого ось Земли прецессирует и нутирует, что приводит к приливам в атмосфере и океане. Если этот прилив совпадает с движением масс, вызванных неравномерным прогревом, то на Земле возникают ураганы, наводнения. Если приливы, вызванные движением полюсов Земли направлены против воздушных масс и океанических вод, то получается минимум стихийных бедствий и катаклизмов.

Так как система Космос – Солнце – атмосфера – океан – Земля существует миллиарды лет, то наблюдается устойчивая картина чередования этих воздействий, т.е. периодичность природных катаклизмов.

Надо еще учитывать направление вращения магмы внутри Земли. При изменении оси вращения Земли изменяется и направление вращения магмы, которое в свою очередь воздействуют на биения направления оси Земли.

Углубленный анализ явлений природы (в том числе и катастрофических) вскрывает их суть и не оставляет камня на камне от «теорий» приближающегося «конца света».

ПРИЧИНЫ РАЗБРОСА ЗНАЧЕНИЙ ПЕРИОДА

ПОВТОРЕНИЯ КАТАКЛИЗМОВ.

Разброс значений периода повторения катаклизмов на Земле вызывает большую неудовлетворенность ученых, так как невозможно предсказать на большой промежуток времени время наступления стихийных бедствий. Этот вопрос решался с 1984 года с применением сверхмощных компьютеров, и в результате установили, что разброс  значений периода повторения катаклизмов обусловлен хаотическим поведением орбит планет Солнечной системы, т.е. планеты движутся не по стационарным орбитам, как предполагал Лаплас в 18 веке и как трактует даже современная астрономия.

Тела Солнечной системы, имея определенный период обращения, воздействуют друг на друга. Это было известно еще во времена Ньютона. Но современные исследования математиков Колмогорова (Россия), Арнольда и Мозера (США) показали, что между планетами Солнечной системы в определенный момент возникает резонансное взаимодействие, которое и выводит Солнечную систему из квазипериодического движения.

Рассчитать период повторения резонансного взаимодействия на длительный срок очень сложно. Это же невозможно сделать и при попытке расчета назад во времени. Но точно установлено, что все тела Солнечной системы совершают квазипериодические движения и находятся в зоне относительной устойчивости через определенный промежуток времени, значение которого непостоянно в связи с резонансом.

А вот установление математической зависимости периода относительной устойчивости орбит тел Солнечной системы не под силу даже современным ЭВМ, т.к. в любой момент времени изменяются начальные условия этого процесса (например, появляются несколько комет из облака Оорта). В облаке 150 млрд. комет, которые образовались вместе с планетами и до сих пор идет процесс образования новых комет. Потребуются еще годы исследований, чтобы понять хаотическое движение тел Солнечной системы и рассчитать зависимость периода повторения квазиустойчивых состояний и катаклизмов.

В продолжении моей работы о причинах природных катаклизмов и рассмотрены работа Пуанкаре «Новые методы небесной механики», работы Колмогорова, Арнольда и Мозера (КАМ), результаты исследования космических зондов «Вояджер», «Пионер»(США), проекта  «ВеГа» (Венера – комета Галлея)(Россия) и результаты обработки полученных данных с помощью суперкомпьютера NASA, который рассчитал орбиты планет на 900 млн. лет вперед, но без учета резонанса, что и приведет к 100% ошибке через 100 млн. лет.

 

ЗАКЛЮЧЕНИЕ.

Мы установили причину хаотического поведения орбит планет Солнечной системы и связанный с ней разброс значений периода повторения природных катаклизмов на Земле. Она связана с близостью реального движения этих планет к условиям резонанса между периодами их обращения. После работ Пуанкаре и последующих работ КАМ казалось, что лапласовский детерминизм подтвержден: Солнечная система совершает квазипериодические движения и находится в зоне относительной устойчивости. На самом деле резонансы между разнородными периодическими движениями разрушают ее, не позволяя дать предсказания об эволюции Солнечной системы на сколь-нибудь длительный срок. Это же невозможно сделать и при попытке расчета назад во времени. В связи с этим трудно сейчас судить, каким был в прошлом отклонения эксцентриситета Земли от теперешнего значения и как это могло повлиять на ее климат со всеми вытекающими последствиями для темпа и характера эволюции биомассы.

Однако простой количественный анализ трагических событий, проведенный крупным знатоком истории катастроф Ли Дэвисом, выявил некоторую «последовательность случайностей» (см. диаграмму). Она напоминает кардиограмму, на которой «сердцебиение» катастроф очень странно совпало в веках. Последняя треть каждого столетия действительно чревата всплесками, но в то же время на рубеже веков – в самом конце и в самом начале – никакого пика катастроф, «готовящих» конец света, нет.

 


СПИСОК ЛИТЕРАТУРЫ.

1.     Н. С. Сидоренков. Характеристики явления Эль-Ниньо - 

                                     Южное колебание. – Труды  

                                     Гидрометцентра СССР, 1991 г., вып. 316,

                                              Стр. 31 – 44.

2.     Н. С. Сидоренков. Влияние Эль-Ниньо – Южного 

                                     колебания на возбуждение чандлерова  

                                     движения полюсов. – Астрономический 

                                     журнал, 1997 г., т.74, вып.5, с.792 – 795.

3.     М. И. Рабинович, Д. И. Трубецков. Введение в теорию

       колебаний и волн. М. Наука, 1991 г., 

       с. 432.

4.   Дж. Карери.         Порядок и беспорядок в структуре

     материи. М. Мир, 1985 с.51 – 55.

5.  Р.В.Полозов         Хаос в Солнечной системе.

    «Физика» № 13 /1997 стр. 5 - 11

СОДЕРЖАНИЕ.

Введение………………………………………………………..1

Колебания атмосферы ………………………………………...3

Колебания океана ……………………………………………..6

Динамика вращающихся тел …………………………………8

Колебания Земли ………………………………………………11

Влияние Космоса на колебания Земли ……………………….13

Причины разброса значений периода

повторения катаклизмов………………………………………..16

Заключение ……………………………………………………  18

Список литературы …………………………………………….19

Реферат по физике На тему: «Колебания системы " Атмосфера - Океан - Земля" и природные катаклизмы». Ученицы школы 1204 Иллариошиной Марии Москва 2006 год. ВВЕДЕНИЕ. В настоящее время в средствах

 

 

 

Внимание! Представленный Реферат находится в открытом доступе в сети Интернет, и уже неоднократно сдавался, возможно, даже в твоем учебном заведении.
Советуем не рисковать. Узнай, сколько стоит абсолютно уникальный Реферат по твоей теме:

Новости образования и науки

Заказать уникальную работу

Похожие работы:

Применение полного внутреннего отражения для повышения лучевой стойкости магнитооптических вентилей
Применение оптического вентиля с циркулярной поляризацией в двухкаскадном лазерном передатчике
Компенсация неоднородности магнитного поля по апертуре пучка в оптическом вентиле
Оптический вентиль, приспособленный для стыковки с волоконной линией
Жидкие кристаллы, история открытия жидких кристаллов, структура, типы и их применение
Применение лазера
Оптические явления в природе
Электрический ток в жидкостях, газах и плазме
Реактивное движение
Альтернативные источники энергии

Свои сданные студенческие работы

присылайте нам на e-mail

Client@Stud-Baza.ru