курсовые,контрольные,дипломы,рефераты
Содержание
1. Постановка задачи
2. Форматы команд и их кодировка
3. Структурная схема процессора
4. Регистры
5. АЛУ
6. Формат микрокоманд
7. Микрокод
8. Кодировка микрокода
9. Примеры выполнения команд
10. Основные сигналы и регистры процессора
11. Примеры программ
12. Определение производительности
Постановка задачи
Синтезировать структуру простого магистрального процессора с одним АЛУ, выполняющего 8 заданных команд. Разработать формат команд, кодировку команд. Разработать структурную схему процессора, функциональные схемы всех блоков процессора, функциональную схему процессора в целом с указанием всех шин и управляющих сигналов.
Разработать формат микрокоманд, организацию управления всеми устройствами процессора, микрокод для каждой из заданных команд. Привести примеры выполнения каждой команды с указанием значения всех основных сигналов и содержимого основных регистров на каждом такте. Привести 2 примера небольших программ с указанием значения основных сигналов и содержимого основных регистров на каждом такте.
Определить максимальную тактовую частоту процессора. Определить производительность процессора в операциях в секунду (IPS), а также выраженную в числе выполняемых тестовых программ в секунду. Указать способы повышения производительности процессора.
Характеристика процессора
Простой процессор магистрального типа с одноблочным универсальным АЛУ.
Разрядность регистров РОН и АЛУ процессора - 8 бит.
Число РОН - 4.
Адресуемая память - 256 слов.
Устройство управления - микропрограммное с ПЗУ микропрограмм.
Способ выполнения команд – последовательное выполнение или JMP или JC.
Адресация памяти - прямая.
Арифметика в дополнительном коде.
Вариант: 54 = «2 2 2 3»
Без использования непосредственной адресации.
3х-адресные команды.
Операции АЛУ: NOP, ADD + SHRA, NAND.
Состав команд: LD, ST, ADD, SHR + JC, DEC, SUB, NAND.
Форматы команд и их кодировка
Коды команд
КОП | Команда | Действие | |
000 | ADD Rx,Ry,Rz | Rx=Ry+Rz | сложение |
001 | NAND Rx,Ry,Rz | Rx=!(Ry&Rz) | И-НЕ |
010 | SHR Rx,Ry | Rx=Ry/2 | арифметический сдвиг вправо |
011 | JC address | jmp on carry | условный переход по переносу |
100 | DEC Rx,Ry | Rx=Ry-1 | декремент (уменьшение на 1) |
101 | SUB Rx,Ry,Rz | Rx=Ry-Rz | вычитание |
110 | LD Rx,address | Rx=Mem(address) | загрузка из ОЗУ в регистр |
111 | ST Ry,address | Mem(address)=Rx | запись из регистра в ОЗУ |
Формат команд
ADD Rx,Ry,Rz |
|
||||||||||||||||
|
КОП | Rx | Ry | Rz | не используется | ||||||||||||
|
0 | 0 | 0 | x | x | y | y | z | z | ||||||||
NAND Rx,Ry,Rz |
|
|||||||||||||||
КОП | Rx | Ry | Rz | не используется | ||||||||||||
0 | 0 | 1 | x | x | y | y | z | z | ||||||||
SHR Rx,Ry |
|
|||||||||||||||
КОП | Rx | Ry | не используется | |||||||||||||
0 | 1 | 0 | x | x | y | y | ||||||||||
JC address |
|
|||||||||||||||
КОП | не использ. | address | ||||||||||||||
0 | 1 | 1 | a | a | a | a | a | a | a | a | ||||||
DEC Rx,Ry | |||||||||||||||
КОП | Rx | Ry | не используется | ||||||||||||
1 | 0 | 0 | x | x | y | y | |||||||||
|
|||||||||||||||||
КОП | Rx | Ry | Rz | не используется | |||||||||||||
1 | 0 | 1 | x | x | y | y | z | z | |||||||||
LD Rx,address | |||||||||||||||
КОП | Rx | не исп. | address | ||||||||||||
1 | 1 | 0 | x | x | a | a | a | a | a | a | a | a | |||
ST Rx,address | |||||||||||||||
КОП | не исп | Ry | address | ||||||||||||
1 | 1 | 1 | y | y | a | a | a | a | a | a | a | a | |||
Номер | При записи (по шине С) | При чтении (по шине A и B) | ||||
000 | 0 | Rg0 | программно-доступные регистры | Rg0 | программно-доступные регистры | |
001 | 1 | Rg1 | Rg1 | |||
010 | 2 | Rg2 | Rg2 | |||
011 | 3 | Rg3 | Rg3 | |||
100 | 4 | Temp0 | Temp0 | |||
101 | 5 | PC | PC | |||
110 | 6 | IR_HI (старшая часть IR) | IR | константа 1 | ||
111 | 7 | IR_LO (младшая часть IR) | IR_LO | |||
При чтении старшей части регистра команд, на шину A или B поступает единичная константа (00000001). Это вполне допустимо, т.к. старшая часть регистра команд имеет свои выходы из блока регистров: (КОП, Rx, Ry, Rz). Младшая часть регистра команд поступает на шины A или B в неизменном виде, т.к. в некоторых командах процессора в младшей части регистра команд находиться 8-битный адрес. Единичная константа применяется при инкрементировании счетчика команд, а также для получения константы -1 = 11111111 (см. микрокод для команды DEC).
Разрядность РОН (регистры общего назначения) – 8 бит
Разрядность PC (program counter) – 8 бит
Разрядность IR (регистр команд) – 16 бит (доступно два регистра по 8 бит)
АЛУ
Структурная схема АЛУ и его связь с другими блоками машины показаны на рисунке. В состав АЛУ входят регистры Рг1 - Рг7, в которых обрабатывается информация , поступающая из оперативной или пассивной памяти N1, N2, ...NS; логические схемы, реализующие обработку слов по микрокомандам, поступающим из устройства управления.
Закон переработки информации задает микропрограмма , которая записывается в виде последовательности микрокоманд A1,A2, ..., Аn-1,An. При этом различают два вида микрокоманд: внешние, то есть такие микрокоманды, которые поступают в АЛУ от внешних источников и вызывают в нем те или иные преобразования информации (на рис. 1 микрокоманды A1,A2,..., Аn), и внутренние, которые генерируются в АЛУ и воздействуют на микропрограммное устройство, изменяя естественный порядок следования микрокоманд. Например, АЛУ может генерировать признаки в зависимости от результата вычислений: признак переполнения, признак отрицательного числа, признак равенства 0 всех разрядов числа др. На рис. 1 эти микрокоманды обозначены р1, p2,..., рm.
Результаты вычислений из АЛУ передаются по кодовым шинам записи у1, у2, ...,уs, в ОЗУ.
Функции регистров, входящих в АЛУ:
Рг1 - сумматор (или сумматоры) - основной регистр АЛУ, в котором образуется результат вычислений;
Рг2, РгЗ - регистры слагаемых, сомножителей, делимого или делителя (в зависимости от выполняемой операции);
Рг4 - адресный регистр (или адресные регистры), предназначен для запоминания (иногда и формирования) адреса операндов и результата;
Ргб - k индексных регистров, содержимое которых используется для формирования адресов;
Рг7 - i вспомогательных регистров, которые по желанию программиста могут быть аккумуляторами, индексными регистрами или использоваться для запоминания промежуточных результатов.
Формат микрокоманд
MIR – Microinstruction register – регистр микрокоманд (24 bit) | |||||||||||||||||||||||
A | A MUX | B | B MUX | C | C MUX | RD | WR | ALU | COND | JMP ADDRESS | |||||||||||||
A, B, C – номер регистра для осуществления чтения (A, B) или записи (C)
A MUX, B MUX, C MUX – откуда брать номер регистра
(0 – из команды IR, 1 – из микрокоманды MIR)
RD – чтение из ОЗУ
При этом адрес памяти берется с шины А, а результат подается на шину С
WR – запись в ОЗУ
При этом адрес памяти берется с шины А, а данные - с шины B
ALU – код операции АЛУ
КОП АЛУ | Операция АЛУ |
00 | NOP |
01 | ADD |
10 | SHRA |
11 | NAND |
COND – условие для определения адреса следующей выполняемой микрокоманды
COND | Куда переходим | |
00 | NEXT | на следующую микрокоманду |
01 | DECODE | декодирование команды, Address = [KOP]100 |
10 | JMP | безусловный переход |
11 | JC | условный переход по переносу (Carry Flag) |
JMP ADDRESS – адрес в памяти микропрограмм, куда осуществляется переход
Микрокод
Адрес | Микрокоманда | Пояснение |
0 1 2 3 |
IR_HI = NOP(PC); READ PC = ADD(PC, IR_HI) IR_LO = NOP(PC); READ DECODE |
чтение старшего слова команды переход к следующему слову (PC = PC + 1) чтение младшего слова команды декодирование считанной команды |
ADD Rx, Ry, Rz | ||
4 | Rx = ADD(Ry, Rz); JMP 62 | сложение содержимого регистров |
NAND Rx, Ry, Rz | ||
12 | Rx = NAND(Ry,Rz); JMP 62 | И-НЕ для содержимого регистров |
SHR Rx, Ry | ||
20 | Rx = SHR(Ry); JMP 62 | арифметич. сдвиг содержимого регистра |
JC address | ||
28 29 30 |
Temp0 = NOP(Temp0); JC 30 JMP 62 PC = NOP(IR_LO); JMP 0 |
организация условного перехода если условие не выполнилось, то завершить иначе записать в PC новый адрес из IR_LO |
DEC Rx, Ry | ||
36 37 38 |
Temp0 = SHR(IR_HI) Temp0 = NAND(Temp0, Temp0) Rx = ADD(Ry,Temp0); JMP 62 |
Temp0 = 0 (00000001 à 00000000) Temp0 = -1 (11111111) Rx = Ry + Temp0 = Ry + (-1) |
SUB Rx, Ry, Rz | ||
44 45 46 47 48 |
Temp0 = SHR(IR_HI) Temp0 = ADD(Temp0, Rz) Temp0 = NAND(Temp0, Temp0) Temp0 = ADD(Temp0, IR_HI) Rx = ADD(Ry, Temp0); JMP 62 |
Temp0 = 0 (00000001 à 00000000) Temp0 = 0 + Rz = Rz инвертировать Temp0 = Rz Temp0 = ( ! Rz) + 1 Rx = Ry + (-Rz) |
LD Rx, address | ||
52 | Rx = NOP(IR_LO); READ; JMP 62 | чтение из ОЗУ (шина A – адрес) |
ST Ry, address | ||
60 61 |
Temp0 = NOP(Ry) Temp0 = NOP(IR_LO, Temp0); WRITE; JMP 62 |
Temp0 = Ry (данные на шину B) запись в ОЗУ (шина A – адрес, шина B - данные) |
End: | ||
62 | PC = ADD(PC, IR_HI); JMP 0 | увеличение счетчика команд (PC=PC+1) |
Кодировка микрокода
DEPTH = 64; % количество слов %
WIDTH = 24; % размер слова в битах %
ADDRESS_RADIX = DEC; % система счисления для адреса %
DATA_RADIX = BIN; % система счисления для данных %
CONTENT
BEGIN
[0..63] : 0; % по умолчанию везде нули %
% Инициализация %
0: 101100011101100000000000; % IR_HI = NOP(PC); READ %
1: 101111011011000100000000; % PC = ADD(PC, IR_HI) %
2: 101100011111100000000000; % IR_LO = NOP(PC); READ %
3: 000100011001000001000000; % DECODE %
% ADD Rx, Ry, Rz %
4: 000000000000000110111110; % Rx = ADD(Ry, Rz); JMP 62 %
% NAND Rx, Ry, Rz %
12: 000000000000001110111110; % Rx = NAND(Ry,Rz); JMP 62 %
% SHR Rx, Ry %
20: 000000000000001010111110; % Rx = SHR(Ry); JMP 62 %
% JC address %
28: 100110011001000011011110; % Temp0 = NOP(Temp0); JC 30 %
29: 100110011001000010111110; % JMP 62 %
30: 111110011011000010000000; % PC = NOP(IR_LO); JMP 0 %
% DEC Rx, Ry %
36: 110100011001001000000000; % Temp0 = SHR(IR_HI) %
37: 100110011001001100000000; % Temp0 = NAND(Temp0, Temp0) %
38: 000010010000000110111110; % Rx = ADD(Ry,Temp0); JMP 62 %
% SUB Rx, Ry, Rz %
44: 110100011001001000000000; % Temp0 = SHR(IR_HI) %
45: 100100001001000100000000; % Temp0 = ADD(Temp0, Rz) %
46: 100110011001001100000000; % Temp0 = NAND(Temp0, Temp0) %
47: 100111011001000100000000; % Temp0 = ADD(Temp0, IR_HI) %
48: 000010010000000110111110; % Rx = ADD(Ry, Temp0); JMP 62 %
% LD Rx, address %
52: 111100010000100010111110; % Rx = NOP(IR_LO); READ; JMP 62%
% ST Ry, address %
60: 000000011001000000000000; % Temp0 = NOP(Ry) %
61: 111110011001010010111110; % Temp0 = NOP(IR_LO, Temp0);
WRITE; JMP 62 %
62: 101111011011000110000000; % PC = ADD(PC, IR_HI); JMP 0 %
END ;
Примеры выполнения команд
Примеры выполнения каждой команды с указанием значения всех основных сигналов и содержимым основных регистров на каждом такте выполнения приведены на электронном носителе.
Основные сигналы и регистры
Сокращение | Примечание |
CLOCK | синхронизирующий сигнал |
C_SEL[2..0] | номер регистра выбранного в качестве приемника |
A_SEL[2..0] | номер регистра выбранного в качестве источника 1 |
B_SEL[2..0] | номер регистра выбранного в качестве источника 2 |
Rx[2..0] | номер регистра приемника из IR (регистра команд) |
Ry[2..0] | номер регистра источника 1 из IR (регистра команд) |
Rz[2..0] | номер регистра источника 2 из IR (регистра команд) |
MIR_A[2..0] | номер регистра приемника из MIR (р-ра микрокоманд) |
MIR_B[2..0] | номер регистра источника 1 из MIR (р-ра микрокоманд) |
MIR_C[2..0] | номер регистра источника 2 из MIR (р-ра микрокоманд) |
AMUX |
Откуда брать номер регистра (0 – из IR, 1 – из MIR) Эти сигналы управляют соответствующими мультиплексорами. |
BMUX | |
CMUX | |
A_bus[7..0] | Данные на шинах источниках, выходящих из блока регистров |
B_bus[7..0] | |
C_ALU[7..0] | Результат выходящий из АЛУ |
C_RAM[7..0] | Данные, считанные из ОЗУ |
C_bus[7..0] | Выбранные данные для записи (С_ALU или C_RAM) |
RD | сигнал чтения из ОЗУ |
WR | сигнал записи в ОЗУ |
KOP_ALU[1..0] | код операции АЛУ (поступает из MIR) |
COND[1..0] | определение следующей микрокоманды (из MIR) |
CBL_SEL[1..0] | результат работы Control Branch Logic (логика управления ветвлением) – определяет следующую микрокоманду |
CF | флаг переноса, поступающий из АЛУ в Control Branch Logic |
JMP_ADR[5..0] | адрес следующей микрокоманды (из MIR) |
MIR[23..0] | полное значение регистра микрокоманд (24 бит) |
PC | программный счетчик (адрес в ОЗУ) |
ПРИМЕР 1
DEPTH = 256; % Memory depth and width are required %
WIDTH = 8; % Enter a decimal number %
ADDRESS_RADIX = DEC; % Address and value radixes are optional %
DATA_RADIX = BIN; % Enter BIN, DEC, HEX, or OCT; unless %
CONTENT
BEGIN
%-------------------%
0: 11001000; % LD Rg1, [6] %
1: 00000110;
2: 11010000; % LD Rg2, [7] %
3: 00000111;
4: 00011011; % ADD Rg3, Rg1, Rg2 %
5: 00000000;
6: 00010110; % const 22 (DEC) %
7: 00100001; % const 33 (DEC) %
END ;
ПРИМЕР 2
DEPTH = 256; % Memory depth and width are required %
WIDTH = 8; % Enter a decimal number %
ADDRESS_RADIX = DEC; % Address and value radixes are optional %
DATA_RADIX = BIN; % Enter BIN, DEC, HEX, or OCT; unless %
CONTENT
BEGIN
%-----------------%
0: 11001000; % LD Rg1, [10] %
1: 00001010;
2: 01010010; % SHR Rg2, Rg1 %
3: 00000111;
4: 01100000; % JC 8 %
5: 00001000;
6: 10010010; % DEC Rg2, Rg1 %
7: 00000000;
8: 11100010; % ST Rg1, [10] %
9: 00001010;
10: 00000001; % const = 1 %
END ;
Значения основных сигналов и содержимое основных регистров на каждом такте выполнения данных примеров программ приведены в виде временных диаграмм на электронном носителе.
Среднее количество микрокоманд при выполнении команды процессора можно приблизительно оценить как 4 + 17/8 + 1 = 7 микрокоманд на команду процессора. Таким образом, при максимальной тактовой частоте в 33,3 МГц средняя производительность процессора составит 4, 7 MOPS (или 33,3 М μops / сек).
Тестовая программа | Количество команд процессора | Количество микрокоманд | Время выполнения, нс | N / сек |
ПРИМЕР 1 | 3 | 18 | 540 | 1851851 |
ПРИМЕР 2 | 5 | 34 | 1020 | 980398 |
Повысить производительность процессора можно одним из следующих способов:
- Увеличить разрядность шины-приемника с 8 до 16 бит, и считывать команду из ОЗУ не за три такта, а за один;
- Увеличить функциональность АЛУ, при этом можно будет сократить длину микрокода для некоторых команд (особенно для SUB и DEC);
- Перейти от микропрограммного управления к управлению на основе жесткой логики;
- Применить конвейеризацию;
- Что-нибудь распараллелить.
Содержание 1. Постановка задачи 2. Форматы команд и их кодировка 3. Структурная схема процессора 4. Регистры 5. АЛУ 6. Формат микрокоманд 7. Микрокод 8. Кодировка микрокода 9. Примеры выполнения команд 10. Основные с
Локальні, корпоративні та глобальні інформаційні мережі
Локальные сети
Локальные сети и современная организация внутреннего документооборота
Маніпулятори
Мастер функций и мастер диаграмм в табличном процессоре Excel
Математическая теория информации
Математические основы информатики
Материалы-носители информации в CD и DVD оптических дисках
Материальные и информационные модели на Access
Матеріальні носії документа
Copyright (c) 2025 Stud-Baza.ru Рефераты, контрольные, курсовые, дипломные работы.