База знаний студента. Реферат, курсовая, контрольная, диплом на заказ

курсовые,контрольные,дипломы,рефераты

Логический вывод на основе нечеткой метаимпликации — Информатика, программирование

О.А. Мелихова

В работе подробно рассмотрена суть логического вывода на основе нечеткой метаимпликации, с помощью примеров показана максиминная свертка нечетких отношений, используемая в моделях принятия решений и при распознавании нечетких образов.

При выполнении нечетких выводов используются нечеткие соответствия R, заданные между одной проблемной областью (множество X) и другой областью (множество Y) в виде нечеткого подмножества прямого произведения , определяемого по формуле [7,13]:

,                          (1.1)

где  – область отправления,  – область прибытия,  – функция принадлежности  нечеткому соответствию R, а знак означает совокупность (объединение) множеств.

Если существует правило типа “если A, то B”, использующее нечеткие множества A  и B , то один из способов построения нечеткого соответствия R состоит в следующем:

или

,               (1.2)

где  – функции принадлежности элементов x, y соответственно множествам A и B.

Пример 1. Пусть X и Y- области натуральных чисел от 1 до 4. Определим следующим образом нечеткие множества: A= “маленькие”, B= “большие”.

X=Y={1,2,3,4}, т.е. для примера взят частный случай соответствия- отношение на множестве {1,2,3,4}:

.

Для примера “если x маленькое, то y большое” (или , где знак означает операцию нечеткой метаимпликации) можно построить нечеткое отношение R следующим образом:

y1

y2

y3

y4

x1

0 0,1 0,6 1
R=

x2

0 0,1 0,6 0,6

x3

0 0,1 0,1 0,1

x4

0 0 0 0

В качестве элементов матрицы R записаны значения , вычисленные по формуле (1.2).

Для свертки нечетких отношений чаще выбирается свертка max-­min (максиминная композиция). Пусть R – нечеткое соответствие множества X и множества Y, а S – нечеткое соответствие множества Y и множества V. Тогда нечеткое соответствие между X и V определяется как свертка (композиция) , где

или

.               (1.3)

Пример 2. Пусть  и заданы нечеткие множества A = “не маленькие”, H = “очень большие”, где

  .

Тогда для правила “если y не маленькое, то v очень большое” (или ), в соответствии с формулой (1.2) нечеткое соответствие S определяется как

v1

v2

v3

v4

y1

0 0 0 0
S=

y2

0 0 0,4 0,4

y3

0 0 0,5 0,9

y4

0 0 0,5 1

Если теперь по формуле (1.3) вычислить свертку max-min с нечетким отношением R, полученным в примере 1.1, то из двух отношений:

 если x маленькое, то y большое,

если y не маленькое, то v очень большое

можно построить нечеткое отношение из X в V.

y1

y2

y3

y4

v1

v2

v3

v4

x1

0 0,1 0,6 1

y1

0 0 0 0
=

x2

0 0,1 0,6 0,6

y2

0 0 0,4 0,4 =

x3

0 0,1 0,1 0,1

y3

0 0 0,5 0,9

x4

0 0 0 0

y4

0 0 0,5 1

v1

v2

v3

v4

 

x1

0 0 0,5 1

 

=

x2

0 0 0,5 0,6

 

x3

0 0 0,1 0,1

 

x4

0 0 0 0

 

Модель принятия решений на основе композиционного правила вывода описывает связь всех возможных состояний сложной системы с управляющими решениями. Формально модель задается в виде тройки (X,R,Y), где  – базовые множества, на которых заданы, соответственно, входы  и выходы  системы, R – нечеткое соответствие “вход-выход”. Соответствие R строится на основе словесной качественной информации специалиста (эксперта), путем непосредственной формализации его нечетких стратегий. Эксперт описывает особенности принятия решений при функционировании сложной системы в виде ряда высказываний типа “если , то , иначе, если , то , иначе, ..., если , то ”. Здесь , ,...,  – нечеткие подмножества, определенные на базовом множестве X, а , ,...,  – нечеткие подмножества из базового множества Y. Все эти нечеткие подмножества задаются функциями принадлежности  и .

Способ построения нечеткого отношения связывает высказывания эксперта по правилу “если , то ” и определяется функцией принадлежности , получаемой по формуле (1.2). Связка “иначе” между правилами понимается как или-связка, поскольку общее нечеткое отношение состоит из: правило 1, или правило 2 , или, ..., или правило N. Поэтому общее отношение R формально определяется следующим образом:

, где i=1,..., N.         (1.4)

Если предположить, что мы имеем нечеткое событие , т.е. входную ситуацию, представленную нечетким подмножеством, и известно общее отношение R, тогда результирующее действие выводится по композиционному правилу вывода: . Значение функции принадлежности для  вычисляется посредством максиминной операции, определяемой уравнением

.                        (1.5)

Рассмотренный логический вывод на основе нечеткой обобщенной метаимпликации хорошо зарекомендовал себя при использовании в экспертных системах, а также при принятии решений в реальном масштабе времени в задачах управления и контроля.

Список литературы

Заде Л.А. Основы нового подхода к анализу сложных систем и процессов принятия решений. /М.: Математика сегодня, 1974, с.5-49.

Дюбуа Д., Прад А. Теория возможностей. Приложения к представлению знаний в информатике. Пер. с франц. М.: Радио и связь, 1990, 288с.

О.А. Мелихова В работе подробно рассмотрена суть логического вывода на основе нечеткой метаимпликации, с помощью примеров показана максиминная свертка нечетких отношений, используемая в моделях принятия решений и при распознавании нечетких обр

 

 

 

Внимание! Представленный Реферат находится в открытом доступе в сети Интернет, и уже неоднократно сдавался, возможно, даже в твоем учебном заведении.
Советуем не рисковать. Узнай, сколько стоит абсолютно уникальный Реферат по твоей теме:

Новости образования и науки

Заказать уникальную работу

Похожие работы:

Пополнение знаний интеллектуальных систем на основе казуально-зависимых рассуждений
Анализ и выбор решений на основе нечеткой монотонной экспертной информации
Основы программирования OpenGL в Borland С++Builder и Delphi. Простейшие объекты
Агрегация или наследование?
Как сделать двунаправленный запрос
Cache': техника группировки
Проектирование классов в шутку и всерьез
Решение задачи одномерной упаковки с помощью параллельного генетического алго-ритма
Алгоритм удаления циклов в графе вертикальных ограничений задачи трассировки многослойного канала
Об одном способе векторного и аналитического представления контура изображения

Свои сданные студенческие работы

присылайте нам на e-mail

Client@Stud-Baza.ru