База знаний студента. Реферат, курсовая, контрольная, диплом на заказ

курсовые,контрольные,дипломы,рефераты

Математические модели электромеханических систем в пространстве состояний — Математика

Способы получения уравнений состояния реальных физических объектов ничем не отличаются от способов описания этих объектов с помощью дифференциальных уравнений. Уравнения состояния записываются на основе физических законов, положенных в основу работы объекта.

Рассмотрим электромеханическую систему, состоящую из двигателя постоянного тока с независимым возбуждением, работающего на инерционную нагрузку с вязким трением. Управляющим воздействием для двигателя считаем напряжение на якоре U(t), выходной координатой, угол поворота вала двигателя y(t)=j(t). Уравнение электрической цепи имеет вид

,

где  - противо ЭДС,  - угловая скорость вала двигателя,  - единый электромагнитный коэффициент.

Уравнение моментов будет иметь следующий вид

,

где , J - момент инерции нагрузки, приведенный к валу двигателя, f - коэффициент вязкого трения.

Выберем следующие переменные состояния: х1=i, x2=w, x3=j.

Получим

,

.

Запишем эти уравнения относительно переменных , ,

,

,

,

.

Запишем матричные уравнения

,

,

где

,             ,                    .

Рассмотрим структурную схему электромеханической системы с двигателем постоянного тока, работающего на инерционную нагрузку с вязким трением.

Рис. 2.1. Структурная схема электромеханической системы с двигателем постоянного тока

Запишем уравнение состояния для механической системы, представляющей собой груз массой m, подвешенный на пружине и соединенный с гидравлическим демпфером. К грузу приложена сила P(t), выходная переменная перемещения x(t), управляющие воздействия U(t)=P(t). Уравнение движения груза получаем из уравнения равновесия сил

,

где  - инерционная сила, f - коэффициент вязкого трения,  - сила сопротивления демпфера,  - сила сопротивления пружины.

Выбираем в качестве переменных состояния x(t) и  - перемещение и скорость перемещения соответственно.

Рис. 2.2. Механическая система, включающая в своем составе пружину, массу и вязкий демпфер

Так как дифференциальное уравнение имеет второй порядок, то и количество переменных состояния будет равно двум. Исходное уравнение движения груза можно записать в виде двух уравнений

где U(t)=P(t) - управляющее воздействие.

Добавим к этим уравнениям следующее уравнение выхода

.

Эти уравнения представляют собой уравнения состояния приведенной механической системы. Запишем эти уравнения состояния в матричном виде

,

.

Запишем это уравнение в другом виде

,

,

где , , , , .

С данным уравнением состояния можно сопоставлять следующую структурную схему, где двойными линиями показаны векторные переменные.

Рис. 2.3. Структурная схема

Пример: Рассмотрим электрическую цепь и получим уравнение состояния RLC цепи

Рис. 2.4. RLC цепь

Динамическое поведение этой электрической системы полностью определяется при t³t0, если известны начальные значения: i(t0), ec(t0) и входное напряжение e(t) при t³t0, следовательно, эта система полностью определяется переменными состояния i(t) и ec(t). При указанных переменных состояния i(t) и ec(t) имеем следующие уравнения

где , .

Введем следующие обозначения

В соответствии с этими обозначениями получаем

причем .

Следовательно, для электрической цепи запишем эту систему в векторно-матричном виде

,

.

Запишем матричные уравнения

,

,

где , , , .

Способы получения уравнений состояния реальных физических объектов ничем не отличаются от способов описания этих объектов с помощью дифференциальных уравнений. Уравнения состояния записываются на основе физических законов, положенных в основу рабо

 

 

 

Внимание! Представленный Реферат находится в открытом доступе в сети Интернет, и уже неоднократно сдавался, возможно, даже в твоем учебном заведении.
Советуем не рисковать. Узнай, сколько стоит абсолютно уникальный Реферат по твоей теме:

Новости образования и науки

Заказать уникальную работу

Похожие работы:

Математические основы теории систем
Математический анализ
Математический анализ
Математический анализ. Регрессия
Математическое выражение музыки
Математический факультатив как ведущая форма профессиональной дифференциации в преподавании математики в средней школе
Математическое моделирование
Математическое моделирование в экономике
Математическое моделирование электропривода
Матожидание, дисперсия, мода и медиана

Свои сданные студенческие работы

присылайте нам на e-mail

Client@Stud-Baza.ru