курсовые,контрольные,дипломы,рефераты
Математика представляет собой основу фундаментальных исследований в естественных и гуманитарных науках. В силу этого значение её в общей системе человеческих знаний постоянно возрастает. Математические идеи и методы проникают в управление весьма сложными и большими системами разной природы: полетами космических кораблей, отраслями промышленности, работой обширных транспортных систем и других видов деятельности. В математике возникают новые теории в ответ на запросы практики и внутреннего развития самой математики. Приложения различных областей математики стали неотъемлемой частью науки, в том числе: физики, химии, геологии, биологии, медицины, лингвистики, экономики, социологии и др.
Математика играет важную роль в естественно-научных, инженерно-технических и гуманитарных исследованиях. Она стала для многих отраслей знаний не только орудием количественного расчета, но также методом точного исследования и средством предельно четкой формулировки понятий и проблем. Без современной математики с ее развитым логическим и вычислительным аппаратом был бы невозможен прогресс в различных областях человеческой деятельности.
Математика является не только мощным средством решения прикладных задач и универсальным языком науки, но также и элементом общей культуры. Поэтому математическое образование следует рассматривать как важнейшую составляющую в системе фундаментальной подготовки современного специалиста-гуманитария.
Кроме того, в современном обществе работу специалиста любого профиля невозможно представить без применения средств вычислительной техники. Использование информационных технологий позволяет повысить эффективность принятия многих решений за счет своевременного получения необходимой информации. Информатика играет роль связующего звена между естественными и гуманитарными науками [Колин К. Информационная глобализация общества и гуманитарная революция. // Alma Mater.–2002, № 8, стр. 3 – 9].
Данная работа призвана раскрыть роль математики и информатики в проведении гуманитарных исследований, описать средства проведения исследований, которые предоставляют специалисту-гуманитарию эти две науки.
1. Математика в гуманитарных исследованиях
Математика — наука о количественных отношениях и пространственных формах действительного мира. В неразрывной связи с запросами науки и техники запас количественных отношений и пространственных форм, изучаемых математикой, непрерывно расширяется, так что приведенное определение необходимо понимать в самом общем смысле.
Истины, добываемые математическим естествознанием, инвариантны относительно времени и места протекающих явлений. Гуманитарное же знание, напротив, сосредоточено на конкретно-исторических особенностях эпохи, в которой довелось жить как выдающимся, так и простым рядовым гражданам той или иной страны. Пусть первые, благодаря своим талантам, способны «творить» историю, в то время как на долю других нередко выпадает лишь роль ее «строительного материала», но и в том и в другом случае исследователь равнодушен к закономерностям естественных наук, вскрывающих общие природные предпосылки исторического процесса и потому никак не выражающих его специфические особенности в конкретных условиях места и времени. Математическое естествознание и гуманитарные науки как бы дополняют друг друга, но о плодотворном взаимодействии между ними не может быть и речи в силу кардинального различия предмета и методов данных областей знания.
Можно ли что-нибудь противопоставить этим доводам, во многом опирающимся на реальную практику современной науки? Если рассматривать сегодняшнее состояние математического естествознания и гуманитарных наук как совершенно адекватное исследуемым в них предметным областям, приведенные аргументы поколебать не удастся. Для обоснования самой возможности существования какой-либо альтернативы в вопросе о взаимоотношении математического и гуманитарного образования необходима точка зрения, позволяющая критически взглянуть на каждую из указанных областей человеческого знания, поставив под сомнение непреложность взглядов современной науки на собственные основания.
В истории науки общим местом является констатация уникального характера древнегреческой математики, разительно отличающейся доказательным характером своих построений от рецептурно-вычислительной математики восточных цивилизаций. Поскольку современная математика справедливо считает себя правопреемницей математики Древней Эллады, то математические знания Индии, Китая и других стран Востока автоматически начинают выглядеть как ущербные, не «дотягивающие» до уровня подлинной науки. Между тем имеются все основания рассматривать древнегреческую математику как уникальный феномен не только с исторической, но и с чисто теоретической точки зрения. Можно показать, что идеализация современной математики отражает не «вневременную природу математического знания», а лишь исторически сложившиеся стандарты этой науки, которые в качестве таковых в ней не осознаются. Но в таком случае отмеченная выше разделительная грань между математикой и гуманитарным знанием начинает стираться, и математика становится похожей на «нематематические» дисциплины. Похожей в том смысле, что, как и другие дисциплины, она занимается не поиском неких «божественных истин», бесконечно далеких от приземленных потребностей простых смертных, а ответом на вопросы, вырастающие из запросов общественной жизни. И если математика и отличается, скажем, от истории или психологии, то, главным образом, относительной простотой предмета своего исследования. Поэтому она оказывается в первую очередь школой научного мышления, приобретение навыков которого является необходимым условием успехов и в сфере гуманитарного знания.
Рассмотрим, каким же образом можно применить математические знания при проведении исследований в различных гуманитарных исследованиях?
Как известно предметом любого исследования является объект, а любой объект есть некая совокупность количественных характеристик, описывающих его поведение. Предметом гуманитарных исследований являются довольно сложные объекты, такие как социальные, экономические и прочие процессы и явления, обладающих множеством свойств.
В процессе числового представления свойства сопоставляются, упорядочиваются, подчиняются отношениям порядка. Число выступает не как самоцель, а как инструмент упорядочивания, сопоставления. Числовым представлением объектов гуманитарных исследований занимается математическая теория измерений. Для каждой гуманитарной науки способы количественного измерения свойств исследуемого объекта – свои. Так, например, в социологии это могут быть: анкетирование, интервьюирование, наблюдение.
Наиболее удобным методом исследования сложных объектов может служить, в частности, математическое моделирование. Что и происходит на практике [Чесноков С. В. Детерминационный анализ социально-экономических данных. — М.: Наука, 1982, стр. 234].
Вообще говоря, этап математизации гуманитарной науки начинается тогда, когда ей не хватает того естественного языка, с которого началось ее становление, когда возможности этого языка для прогресса науки оказались исчерпанными. Сейчас стало ясно, что принципиально не математических дисциплин вообще не существует. Другое дело, степень математизации и этап эволюции научной дисциплины, на котором математизация становится необходимой. Одним из серьезных направлений по использованию математики для гуманитарных исследований является моделирование различных процессов. Можно указать лишь несколько наиболее типичных видов математических моделей, используемых гуманитарных исследованиях:
Вероятностные распределения. Логарифмически нормальное распределение используется, например, для моделирования распределения доходов населения, распределение Пуассона — для моделирования среднего времени ожидания обслуживания и т. д.
Статистические исследования зависимостей — класс моделей, широко распространенный в гуманитарных исследованиях.
Аппарат марковских цепей используется для анализа и прогноза численности тех или иных социальных групп, тенденций их изменения и т. п. (в демографии, криминологии, эпидемиологии, исследованиях социальной мобильности).
Моделирование предпочтений описывается на языке теоретико-множественных отношений или целевых функций.
Модели целенаправленного поведения представляют собой непосредственное использование целевых функций и предпочтений для анализа, прогнозирования и планирования процессов в сфере потребления, трудового поведения и др.
Имитационные модели представляют собой класс моделей, реализованных в виде алгоритмов и программ для ЭВМ, отражающих относительно сложные зависимости, не поддающиеся аналитическому анализу. Этот способ моделирования широко применяется для исследования проблем развития городов, регионов, экологических и других сложных систем [Математические модели в экологии и генетике. М., 1994. с. 195.].
Так, например, большинство объектов, изучаемых экономической наукой, может быть охарактеризовано кибернетическим понятием сложная система. Наиболее распространено понимание системы как совокупности элементов, находящихся во взаимодействии и образующих некоторую целостность, единство. Важным качеством любой системы является эмерджентность — наличие таких свойств, которые не присущи ни одному из элементов, входящих в систему. Поэтому при изучении систем недостаточно пользоваться методом их расчленения на элементы с последующим изучением этих элементов в отдельности. Одна из трудностей экономических исследований — в том, что почти не существует экономических объектов, которые можно было бы рассматривать как отдельные (внесистемные) элементы.
Сложность системы определяется количеством входящих в нее элементов, связями между этими элементами, а также взаимоотношениями между системой и средой. Экономика страны обладает всеми признаками очень сложной системы. Она объединяет огромное число элементов, отличается многообразием внутренних связей и связей с другими системами (природная среда, экономика других стран и т. д.). В народном хозяйстве взаимодействуют природные, технологические, социальные процессы, объективные и субъективные факторы. Сложность экономики иногда рассматривалась как обоснование невозможности ее моделирования, изучения средствами математики. Но такая точка зрения в принципе неверна. Моделировать можно объект любой природы и любой сложности. И как раз сложные объекты представляют наибольший интерес для моделирования; именно здесь моделирование может дать результаты, которые нельзя получить другими способами исследования. Потенциальная возможность математического моделирования любых экономических объектов и процессов не означает, разумеется, ее успешной осуществимости при данном уровне экономических и математических знаний, имеющейся конкретной информации и вычислительной технике. И хотя нельзя указать абсолютные границы математической формализуемости экономических проблем, всегда будут существовать еще неформализованные проблемы, а также ситуации, где математическое моделирование недостаточно эффективно.
Но арсенал применяемых в гуманитарных науках математических средств весьма обширен и многообразен — различные методы математической статистики, теория игр, теория информации, аппарат теории устойчивости, теория марковских цепей, линейное программирование, факторный анализ, корреляционный анализ, теория графов, матричная алгебра и многое другое [Толстова Ю. Н. Логика математического анализа социологических данных. — М.: Наука, 1991, стр. 68.].
Таким образом, математика прочно вошла в процесс гуманитарных исследований, и любая гуманитарная наука может подобрать набор конкретных математических методов для проведения исследований в своей области.
2. Информатика в гуманитарных исследованиях
Мы все живем в эпоху, когда компьютерные технологии проникли абсолютно во все отрасли человеческой деятельности. Не исключением является и экономика.
При нынешних темпах развития производства непрерывно идет процесс взаимодействия всех его составляющих частей.
Использование математических методов и современных компьютерных технологий в гуманитарных исследованиях не только ускоряет расчеты, но и в десятки, в сотни раз уменьшает время, нужное для этого. При наличии специализированных программ можно проводить так называемое моделирование, пришедшее на замену дорогостоящим поискам ответов и путей решения проблем с помощью проб и ошибок [Громов Г. Р. Очерки информационной технологии. — М.: ИнфоАрт, 1993, стр. 65].
В основном применяют модели двух видов. Модели, описывающие какое-либо состояние моделируемого положения, называют статическими. Если моделируются последовательности таких состояний и связи между ними, нужны модели динамические, учитывающие фактор времени и разнообразные по уровню сложности моделируемого явления.
И те и другие модели достаточно наглядны: показывают различные системы в их развитии, позволяют проанализировать, где, каким образом, с какими затратами можно что-то исправить, что-либо дополнить.
В хозяйственной практике, в планово-экономической работе, в теории экономики возникает множество разнообразных задач, которые решают на экономико-математических моделях, если надо достигнуть углубленного понимания реальных хозяйственных процессов. С помощью этих методов можно разрабатывать планы развития производства, давать практические рекомендации по улучшению пропорций экономики и ее отраслей, рационализировать использование материальных и трудовых ресурсов. А это огромная по своим масштабам система экономических показателей, характеризующих основные соотношения, пропорции и темпы развития производства.
В такой системе требуется отыскать сотни миллионов взаимосвязанных неизвестных. Например, у нас выпускается десятки миллионов разных наименований изделий, на разных предприятиях, по разным технологиям, в разных регионах страны. Также, надо учитывать и износ оборудования на производстве, и ограниченность ресурсов, и темпы научно-технического прогресса, и многое, многое другое. По громоздкости расчетов задача трудно вообразимая даже при современном уровне развития ЭВМ и компьютерных технологий [Иванов В. Н., Стогний А. А. Банк социальных данных. // Проблема накопления и анализа на ЭВМ данных социологических исследований. — М., 1989, стр. 168].
Вот почему предметом глубокого изучения в гуманитарных исследованиях становится информация. Вовремя полученная и точно обработанная она способствует успеху в работе над решением различных проблем. Поэтому информационно-поисковые и информационно-справочные системы ориентируются и на удовлетворение нужд гуманитарных наук. Применение в гуманитарных исследованиях информационно-справочных сетей позволяет вести мониторинг за различными факторами, обязательную обратную связь между объектом управления и результатами исследования, их корректировку.
Нельзя не отметить, что существенной частью управления хозяйством являются информационные технологии. Без них невозможно ни экономическое планирование производства, ни распределение ресурсов, ни выявление с определенной степенью точности пропорций и связей в экономике, ни осуществление руководства, управления и контроля на предприятии, в отрасли, в регионе, в целом в экономике.
В последнее время для решения гуманитарных задач большое внимание уделяют применению автоматизированных систем управления и автоматических систем обработки данных. Использование таких систем помогает находить оптимальные варианты, позволяющие разрешить различные вопросы, требующие в процессе поиска ответов не только скорости и больших объемов вычислений, но и гибкости, динамизма, неординарных подходов.
Существует множество программных продуктов, позволяющих решать те или иные задачи гуманитарных исследований от бухгалтерской деятельности в экономике, до различных социологических, археологических и других задач.
О проблемах и перспективах применения математики и информатики в проведении гуманитарных исследований рассказывает следующий раздел реферата.
3. Проблемы и перспективы применения математики и информатики в гуманитарных исследованиях
Уже длительное время главным тормозом практического применения математического моделирования в гуманитарных исследованиях является наполнение разработанных моделей конкретной и качественной информацией. Точность и полнота первичной информации, реальные возможности ее сбора и обработки во многом определяют выбор типов прикладных моделей. С другой стороны, исследования по моделированию выдвигают новые требования к системе информации.
В зависимости от моделируемых объектов и назначения моделей используемая в них исходная информация имеет существенно различный характер и происхождение. Она может быть разделена на две категории: о прошлом развитии и современном состоянии объектов и о будущем развитии объектов, включающую данные об ожидаемых изменениях их внутренних параметров и внешних условий (прогнозы). Вторая категория информации является результатом самостоятельных исследований, которые также могут выполняться посредством моделирования.
Методы наблюдений и использования результатов этих наблюдений разрабатываются статистикой. Поэтому стоит отметить только специфические проблемы наблюдений, связанные с моделированием процессов [Социально-экономическая статистика. // Под ред. Г. Л.Громыко. — М.: Изд-во МГУ, 1989, стр. 380].
Как известно многие процессы являются массовыми; они характеризуются закономерностями, которые не обнаруживаются на основании лишь одного или нескольких наблюдений. Поэтому моделирование в гуманитарных исследованиях должно опираться на массовые наблюдения.
Другая проблема порождается динамичностью исследуемых процессов, изменчивостью их параметров и структурных отношений. Вследствие этого процессы приходится постоянно держать под наблюдением, необходимо иметь устойчивый поток новых данных. Поскольку наблюдения за процессами и обработка эмпирических данных обычно занимают довольно много времени, то при построении математических моделей требуется корректировать исходную информацию с учетом ее запаздывания.
Познание количественных отношений исследуемых процессов и явлений опирается на измерения. Точность измерений в значительной степени предопределяет и точность конечных результатов количественного анализа посредством моделирования. Поэтому необходимым условием эффектного использования математического моделирования является совершенствование измерителей. Применение математического моделирования заострило проблему измерений и количественных сопоставлений различных аспектов и явлений социально-экономического развития, достоверности и полноты получаемых данных, их защиты от намеренных и технических искажений.
В процессе моделирования возникает взаимодействие «первичных» и «вторичных» измерителей. Любая модель опирается на определенную систему измерителей (продукции, ресурсов, элементов и т. д.). В то же время одним из важных результатов моделирования является получение новых (вторичных) измерителей — экономически обоснованных цен на продукцию различных отраслей, оценок эффективности разнокачественных природных ресурсов, измерителей общественной полезности продукции. Однако эти измерители могут испытывать влияние недостаточно обоснованных первичных измерителей, что вынуждает разрабатывать особую методику корректировки первичных измерителей для хозяйственных моделей.
С точки зрения «интересов» моделирования в гуманитарных исследованиях в настоящее время наиболее актуальными проблемами совершенствования измерителей являются: оценка результатов интеллектуальной деятельности (особенно в сфере научно-технических разработок, индустрии информатики), построение обобщающих показателей социально-экономического развития, измерение эффектов обратных связей (влияние хозяйственных и социальных механизмов на эффективность производства).
Можно выделить, по крайней мере, четыре аспекта применения математических методов в решении практических проблем.
Совершенствование системы информации. Математические методы позволяют упорядочить систему информации, выявлять недостатки в имеющейся информации и вырабатывать требования для подготовки новой информации или ее корректировки. Разработка и применение математических моделей указывают пути совершенствования информации, ориентированной на решение определенной системы задач планирования и управления. Прогресс в информационном обеспечении планирования и управления опирается на бурно развивающиеся технические и программные средства информатики.
Интенсификация и повышение точности расчетов. Формализация экономических задач и применение ЭВМ многократно ускоряют типовые, массовые расчеты, повышают точность и сокращают трудоемкость, позволяют проводить многовариантные обоснования сложных мероприятий, недоступные при господстве «ручной» технологии.
Углубление количественного анализа проблем. Благодаря применению метода моделирования значительно усиливаются возможности конкретного количественного анализа; изучение многих факторов, оказывающих влияние на процессы, количественная оценка последствий изменения условий развития экономических объектов и т. п.
Решение принципиально новых задач. Посредством математического моделирования удается решать такие задачи, которые иными средствами решить практически невозможно, например: нахождение оптимального варианта народнохозяйственного плана, имитация народнохозяйственных мероприятий, автоматизация контроля за функционированием сложных экономических объектов.
Сфера практического применения метода моделирования ограничивается возможностями и эффективностью формализации проблем и ситуаций, а также состоянием информационного, математического, технического обеспечения используемых моделей. Стремление во что бы то ни стало применить математическую модель может не дать хороших результатов из-за отсутствия хотя бы некоторых необходимых условий [Бронштейн М. П. Социальные проблемы информатики. — М., 1990, стр. 32].
В соответствии с современными научными представлениями системы разработки и принятия хозяйственных решений должны сочетать формальные и неформальные методы, взаимоусиливающие и взаимодополняющие друг друга. Формальные методы являются прежде всего средством научно обоснованной подготовки материала для действий человека в процессах управления. Это позволяет продуктивно использовать опыт и интуицию человека, его способности решать плохо формализуемые задачи.
Заключение
В настоящее время математика и информатика играют очень важную роль в проведении гуманитарных исследований.
Математика со своей стороны предлагает исследователю ряд математических методов, позволяющих не только получить числовые характеристики исследуемого объекта, но и промоделировать его поведение под влиянием различных факторов, что имеет огромное значение.
Информатика предоставляет инструментарий, позволяющий исследователю многократно ускорить процесс проведения исследований. Применение специализированного программного обеспечения позволяет повысить точность и сократить трудоемкость, позволяет проводить многовариантные обоснования сложных мероприятий, недоступные при господстве «ручной» технологии.
Таким образом, взаимодействие математики и информатики в проведении гуманитарных исследований позволяет качественно повысить уровень исследований, получить наиболее приближенные к реальности результаты и затратить минимальное количество времени как на проведение исследований, так и на обработку полученных результатов.
Бронштейн М. П. Социальные проблемы информатики. — М., 1990, 230 с.
Громов Г. Р. Очерки информационной технологии. — М.: ИнфоАрт, 1993, 398 с.
Иванов В. Н., Стогний А. А. Банк социальных данных. Проблема накопления и анализа на ЭВМ данных социологических исследований. — М., 1989, 280 с.
Колин К. Информационная глобализация общества и гуманитарная революция. // Alma Mater, 2002, № 8.
Математические модели в экологии и генетике. — М., 1994, 420 с.
Социально-экономическая статистика. // Под ред. Г. Л. Громыко. — М.: Изд-во МГУ, 1989, 350 с.
Толстова Ю. Н. Логика математического анализа социологических данных. — М.: Наука, 1991, 160 с.
Чесноков С. В. Детерминационный анализ социально-экономических данных. — М.: Наука. 1982, 259 с.
Математические модели в экономике и программировании
Понятие эластичного спроса — математический и экономический смысл
Множества с двумя алгебраическими операциями кольца и поля
Неопределенные бинарные квадратичные формы
Солнечная система
Законы движения планет
Просветление тумана в электрическом поле
Особенности роста пузырька газа в жидкости
История развития понятия "функция"
Молекулярно-кинетическая теория
Copyright (c) 2025 Stud-Baza.ru Рефераты, контрольные, курсовые, дипломные работы.