курсовые,контрольные,дипломы,рефераты
Введение
В данной работе будет разработана структурная схема процессора (операционного и управляющего автоматов) для выполнения набора машинных команд. Необходимо создать описание процессора на языке VHDL и провести тестирование. Управляющий автомат должен представлять собой устройство с хранимыми в памяти микропрограммами управления ходом выполнения машинных команд.
ЭВМ с хранимой программой (stored program electronic computer) может быть определена как машина, обрабатывающая данные в соответствии с заранее определенными правилами (инструкциями); при этом программа (набор инструкций) и данные находятся в памяти машины. Для загрузки программы и данных в память, а также для вывода результатов обработки из памяти необходим какой-либо способ связи с внешними объектами. Этой цели служат устройства ввода-вывода.
Устройство управления ЭВМ управляет работой всей машины в целом. Оно принимает управляющую информацию от памяти, о том, какие действия надо осуществить и где в памяти расположены данные, над которыми должны производиться эти действия. После того как устройство управления определит, какую именно команду необходимо исполнить, оно выдает управляющие сигналы, позволяющие открыть и закрыть соответствующие вентили по всей системе, в результате чего данные, представленные в виде электрических сигналов, смогут поступать от одного функционального устройства к другому в процессе исполнения операции, заданной выбранной командой. Как только ALU заканчивает выполнять свою часть в данной операции, устройство управления может выдать необходимую управляющую информацию, разрешающую передачу результатов обратно в память или направляющую эти результаты к какому-нибудь устройству вывода; это делается для того, чтобы зафиксировать результаты на другом носителе, например на диске. В конце исполнения команды устройство управления заставляет машину выбрать и декодировать следующую команду.
Таким образом, каждой машиной управляют последовательности команд программы, написанной для решения конкретной задачи. Каждая из этих команд представляет собой простое обращение к устройству управления, сделанное для того, чтобы привести в действие встроенные в машину функциональные узлы (сумматор, регистры, счетчики), а также открыть и закрыть определенные вентили в цепях передачи данных; коммутация этих вентилей позволяет вводить в элементарные арифметические и логические функциональные узлы требуемые операнды, причем ввод их осуществляется в определенном порядке и в рамках определенной последовательности машинных циклов.
Устройство управления данного процессора необходимо построить на программируемой логике. Конкретизировав задачу, определим, что необходимо выбрать схему процессора, и схему управляющего устройства. В данной работе будет использована схема процессора с одной магистралью.
1. Анализ задания и разработка структурной (функциональной) схемы процессора
Разработать структурную схему процессора (операционного и управляющего автоматов) для выполнения набора машинных команд. Создать описание процессора на языке VHDL, провести тестирование.
Управляющий автомат должен представлять собой устройство с хранимыми в памяти микропрограммами управления ходом выполнения машинных команд.
Использовать одномагистральную структуру.
Микропрограммный автомат с одним полем адреса.
Реализовать следующие команды для исполнения в системе:
1. MOV A, #d ; Загрузка в аккумулятор константы
2. MOV Rn, #d ; Загрузка в регистр константы
3. ADD A, Rn ; Операция сложения содержимого аккумулятора и
содержимого регистра
4. JBС bit, rel; Условный переход на адрес
Примечание:
– обозначения команд процессора соответствуют мнемокодам языка ассемблера МК51.
– команды, могут размещаться в памяти в любой последовательности;
– константа #d размещается в следующем по порядку байте после команды;
– n – номер регистра 0, 1, 2, 3.
Структурная схема процессора показана на рис. 1. Из этих команд видно, что процессор должен содержать регистр-аккумулятор, регистр результата и регистры общего назначения, арифметическое устройство, память микропрограмм и различные вспомогательные устройства для выборки соответствующих микроопераций, а так же регистр на 1 бит для выполнения команды «JBC bit, rel», в данном случае в регистр заносится значение флага FC, установка которого в лог. 1 соответствует переполнению разрядной сетки, при выполнении операции сложения.
Процессор будет содержать четыре регистра общего назначения R0-R3. При этом необходимо будет выбирать номер регистра, именно к которому мы хотим обратиться.
Принимаем, что процессор восьмиразрядный, т.е. обрабатывает слова размером в восемь бит. Соответственно адреса и данные будут восьмиразрядные, передаваемые по одной также восьмиразрядной шине.
2. Общее описание принципа работы процессора
Данный процессор с одномагистральной структурой выполняет указанный в задании набор команд.
В данной работе моделируется устройство, содержащую одну общую шину адреса и данных.
Недостатком такой схемы является низкая, по сравнению с многошинными процессорами, производительность, так как и для адресации и для передачи данных используется единственная шина.
Блок «Память» содержит последовательность команд и данных, которые необходимо реализовать. Выполнение других команд на данном процессоре без незначительных доработок будет невозможно.
Выборка команд из памяти производится следующим образом: адрес команды, содержащийся в программном счетчике адреса, записывается в регистр адреса, а затем выдается на адресные входы блока памяти, что сопровождается выдачей управляющим устройством сигнала чтения из памяти. Данные из памяти считываются в буферный регистр. После того, как выбранная из памяти команда попадает в буферный регистр, она выдается на внутрипроцессорную шину, откуда она записывается в регистр команд IR. На этом выборка команды заканчивается.
После окончания фазы извлечения команды начинается фаза интерпретации команды. В зависимости от команды эта фаза может представлять собой, например, извлечение из памяти константы, необходимой для выполнения команды или извлечение из памяти номера регистра. В конце этой фазы процессор готов к выполнению команды. На этом начинается фаза выполнения. Фаза извлечения данных из памяти присутствует у команды занесения данных в аккумулятор, в регистры общего назначения, а также при переходе на адрес.
3. Временные диаграммы, описывающие выполнение микроопераций для каждой команды
Пронумеруем операции процессора:
Код операции | Команда | ||
0 | 0 | 0 |
Mov A,#d |
0 | 0 | 1 |
Mov Rn,#d |
0 | 1 | 0 |
ADD Rn, A |
1 | 0 | 0 |
JBC bit, rel |
Временная диаграмма микроопераций выполнения команды MOV A, #d:
Временная диаграмма микроопераций выполнения команды MOV Rn, #d:
Временная диаграмма микроопераций выполнения команды Add A, Rn:
4. Содержательный алгоритм микропрограммы
Алгоритм выполнения команды в общем случае состоит из таких фаз:
1. Выборка команды из памяти по соответствующему адресу
2. Интерпретация команды (дешифрирование) и подача соответствующих управляющих сигналов
3. Загрузка данных
4. Выполнение команды
5. Подготовка к загрузке следующей команды
В случае с разрабатываемым процессором общий алгоритм выглядит следующим образом:
1. Запись значения программного счетчика в MAR (Memory Address Register).
2. Передача содержимого MAR на адресные входы памяти.
3. Передача сигнала чтения и выбора микросхемы памяти.
4. Запись данных из памяти в MBR (Memory Buffer Register).
5. Передача содержимого MBR на шину данных процессора и запись его в регистр команд IR (Instruction Register).
6. Выбор из памяти команд необходимой команды
7. Увеличение значения программного счётчика
8. Запись значения программного счетчика в MAR (Memory Address Register).
9. Выдача содержимого MAR на адресные входы памяти.
10. Выдача сигнала чтения и выбора микросхемы памяти.
11. Запись данных из памяти в MBR (Memory Buffer Register).
12. Выдача содержимого MBR на шину данных процессора.
13. Если команда mov, то запись значения с шины данных в аккумулятор или в один из регистров общего назначения, увеличение программного счётчика и переход к пункту 1.
14. Если команда ADD или SUB, то выводим на шину данных значение из выбранного ранее регистра общего назначения, затем подаём на АЛУ сигнал сложения либо умножения, эти действия происходят над данными из аккумулятора и данными с шины. Результат заносится в регистр результата, а затем с регистра результата переписывается в аккумулятор. Увеличение программного счётчика и переход к пункту 1.
15. Если команда JBC, то проверяется содержимое однобитного регистра, если оно равно единице, то происходит переход по адресу rel и регистр сбрасывается в ноль.
5. Синтез управляющего автомата на памяти с одним полем адреса
Структурная схема управляющего автомата на основе памяти с одним полем адреса показана на рис. 2.
Рис. 2. Структурная схема управляющего автомата на основе памяти с одним полем адреса
Следует определить набор управляющих сигналов, вырабатываемых устройством управления. Во-первых, это сигналы разрешения записи в регистры MAR, MBR, R0-R1, RzIn, IRIn. Во-вторых – сигналы выдачи содержимого регистров MAR, MBR, R0-R1 и Z. Кроме того – сигнал чтения из памяти, сигнал увеличения содержимого программного счетчика и сигнал выбора операции АЛУ. Ниже приведен полный список этих сигналов:
Instr0 – сигналы управления автоматом
Instr1
Instr2
ADR – адрес перехода
PCIn – сигнал загрузки в регистр команд
IncPC – увеличение значения счётчика команд
IrIn – загрузка в регистр инструкций
MarIn – загрузка в регистр команд
RdWr – сигнал чтения-записи памяти
CS – сигнал выбора микросхемы памяти
MbrIn – загрузка в буферный регистр из памяти
MbrOut – выдача на шину из буферного регистра
MbrInD – загрузка в буферный регистр с шины
MbrOutD – выдача в память из буферного регистра
RzIn – загрузка в регистр результата
RzOut – вывод из регистра результата
Inv – инвертирование значения подаваемого в АЛУ из аккумулятора
RAIn – загрузка в аккумулятор
RIn – сигнал загрузки в регистры общего назначения
ROut – сигнал вывода из регистров общего назначения
RDCIn – сигнал загрузки значения в мультиплексор номера регистра
SADD – сигнал сложения для АЛУ
InvZ – инвертирование результата
6. Создание описания отдельных узлов процессора и всего процессора средствами Active HDL
Описание счетчика Add:
library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_signed.all;
use IEEE.STD_LOGIC_arith.all;
entity Add is
port (SIn: in std_logic_vector (5 downto 0);
Inc: in std_logic;
Reset: in std_logic;
SOut: out std_logic_vector (5 downto 0));
end Add;
architecture Add of Add is
begin
process (Inc, reset)
begin
if Inc='1' and Inc'event then
SOut<=CONV_STD_LOGIC_VECTOR(((CONV_INTEGER ('0'& SIn))+1), 6);
end if;
if Reset='1'then Sout<= «000000»;
end if;
end process;
end Add;
Временная диаграмма работы счетчика Add для УУ:
Описание ALU:
library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_signed.all;
use IEEE.std_logic_arith.all;
entity ALU is
port (B: in std_logic_vector (7 downto 0);
A: in std_logic_vector (7 downto 0);
SADD: in std_logic;
CLK: in std_logic;
Q: out std_logic_vector (7 downto 0);
FC: out std_logic;
FZ: out std_logic);
end ALU;
architecture ALU of ALU is
signal rez: std_logic_vector (7 downto 0):= «00000000»;
begin
process(CLK)
begin
if CLK='0' and CLK'event then FC<='0';
if SADD='1' then
Q<= CONV_STD_LOGIC_VECTOR((CONV_INTEGER ('0'& A)+CONV_INTEGER ('0'& B)), 9) (7 downto 0) after 4 ns;
FC<= CONV_STD_LOGIC_VECTOR((CONV_INTEGER ('0'& A)+CONV_INTEGER ('0'& B)), 9) (8) after 4 ns;
else Q<= «00000000»;
end if;
if A= «00000000» then FZ<='0';
else FZ<='1';
end if;
end if;
end process;
end ALU;
Временная диаграмма работы устройства сложения ALU:
Описание счетчика микрокоманд PC:
library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_signed.all;
entity PC is
port (RST: in std_logic;
CLK: in std_logic;
PCIn: in std_logic;
IncPC: in std_logic;
AdrIn: in std_logic_vector (7 downto 0);
AdrOut: out std_logic_vector (7 downto 0));
end PC;
architecture PC of PC is
signal reg: std_logic_vector (7 downto 0);
begin
process (CLK, RST)
begin
If CLK='0' and CLK'event and PCIn='1' then reg<=AdrIn;
end if;
If CLK='0' and CLK'event and IncPC='1' then reg<=reg+ «0000001» after 2ns;
end if;
If CLK='1' and CLK'event then AdrOut<=reg after 2ns;
end if;
if RST='1' then reg<= «00000000»;
end if;
end process;
end PC;
Временная диаграмма работы счетчика микрокоманд PC:
Описание регистров РОН и их выбора:
library IEEE;
use IEEE.STD_LOGIC_1164.all;
entity R0 is
port (RST: in std_logic;
CLK: in std_logic;
C: in std_logic;
RIn: in std_logic;
ROut: in std_logic;
DataIn: in std_logic_vector (7 downto 0);
DataOut: out std_logic_vector (7 downto 0));
end R0;
architecture R0 of R0 is
signal regist: std_logic_vector (7 downto 0);
begin
process (CLK, RST)
begin
if CLK='0' and CLK'event and RIn='1'and C='1' then regist<=DataIN;
end if;
if CLK='0' and CLK'event and ROut='1'and C='1' then DataOut<=regist after 3 ns;
end if;
if CLK='0' and CLK'event and ROut='0' then DataOut<= «ZZZZZZZZ» after 3 ns;
end if;
if RST='1' then regist<= «00000000»;
end if;
end process;
end R0;
–
library IEEE;
use IEEE.STD_LOGIC_1164.all;
entity RDC is
port (Number: in std_logic_vector (7 downto 0);
RDCIn: in std_logic;
R1: out std_logic;
R2: out std_logic;
R3: out std_logic;
R4: out std_logic);
end RDC;
architecture RDC of RDC is
begin
process(RDCIn)
begin
if RDCIn='1' and RDCIn'event then
R1<='0';
R2<='0';
R3<='0';
R4<='0';
if Number= «00000001» then R1<='1'after 2ns;
end if;
if Number= «00000010» then R2<='1'after 2ns;
end if;
if Number= «00000011» then R3<='1'after 2ns;
end if;
if Number= «00000100» then R4<='1'after 2ns;
end if;
end if;
end process;
end RDC;
Временная диаграмма работы выбора регистров РОН RDC:
Описание памяти RAM:
library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_signed.all;
entity RAM is
port (RdWr: in std_logic;
CS: in std_logic;
Adr: in std_logic_vector (7 downto 0);
Data: inout std_logic_vector (7 downto 0));
end RAM;
architecture RAM of RAM is
type MemoryType is array (0 to 8) of std_logic_vector (7 downto 0);
signal Memory: MemoryType:=(
«00000000», – mov A,#d
«00110011», –#d
«00000001», – mov R,#d
«00000001», – number R
«11110110», –#d
«00000010», – add A, Rn
«00000001», – number R
«00000100», – JBC bit, rel
«00000000»); – restart
begin
process (RdWr, CS, Adr)
begin
if RdWr='1' and CS='1' then Data<=Memory (CONV_INTEGER ('0'& Adr)) after 3ns;
end if;
if RdWr='0' and CS='1' then Memory (CONV_INTEGER ('0'& Adr))<=Data;
end if;
end process;
end RAM;
Описание регистра в один бит:
library IEEE;
use IEEE.STD_LOGIC_1164.all;
entity R_1bit is
port (reg_in, IE: in std_logic;
CLK, Zero:in std_logic;
reg_out: out std_logic);
end R_1bit;
architecture R_1bit of R_1bit is
signal regist: std_logic;
begin
process(CLK)
begin
reg_out<= regist;
if CLK='0' and CLK'event and IE='1' then regist<=reg_in after 2ns;
elsif Zero='1' then regist<='0' after 2ns;
end if;
end process;
end R_1bit;
–
Временная диаграмма работы памяти МПА RAM:
Описание регистра-аккумулятора RA:
library IEEE;
use IEEE.STD_LOGIC_1164.all;
entity RA is
port (
CLK: in std_logic;
RAIn: in std_logic;
DIn: in std_logic_vector (7 downto 0);
DOut: out std_logic_vector (7 downto 0)
);
end RA;
architecture RA of RA is
signal reg: std_logic_vector (7 downto 0):= «00000000»;
begin
process (CLK, RAIn)
begin
DOut<=reg after 3 ns;
if CLK='0' and CLK'event and RAIn='1' then
reg<=DIn;
end if;
end process;
end RA;
Временная диаграмма работы регистра-аккумулятора RA:
Описание узла памяти Memory:
library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_signed.all;
entity Memory is
port (Adr: in std_logic_vector (5 downto 0);
RD: in std_logic;
MrOut: out std_logic;
InstrCom: out std_logic_vector (0 to 27));
end Memory;
architecture Memory of Memory is
type MemoryType is array (0 to 59) of std_logic_vector (0 to 27);
signal Memory: MemoryType;
begin
Memory(0)<= «000»& «000000»& «0000000»& «0000000»& «0000»& «0»;
Memory(1)<= «000»& «000000»& «0001000»& «0000000»& «0000»& «0»; – MarIn
Memory(2)<= «000»& «000000»& «0000110»& «0000000»& «0000»& «0»; – RdWr, CS
Memory(3)<= «000»& «000000»& «0000001»& «0000000»& «0000»& «0»; – MbrIn
Memory(4)<= «000»& «000000»& «0000000»& «1000000»& «0000»& «0»; – MbrOut
Memory(5)<= «000»& «000000»& «0010000»& «0000000»& «0000»& «0»; – IrIn
Memory(6)<= «100»& «000000»& «0000000»& «0000000»& «0000»& «0»; – Instr0
– mov A,#d
Memory(7) <= «000»& «000000»& «0100000»& «0000000»& «0000»& «0»; – IncPC
Memory(8) <= «000»& «000000»& «0001000»& «0000000»& «0000»& «0»; – MarIn
Memory(9) <= «000»& «000000»& «0000110»& «0000000»& «0000»& «0»; – RdWr, CS
Memory(10)<= «000»& «000000»& «0000001»& «0000000»& «0000»& «0»; – MbrIn
Memory(11)<= «000»& «000000»& «0000000»& «1000000»& «0000»& «0»; – MbrOut
Memory(12)<= «000»& «000000»& «0000000»& «0000001»& «0000»& «0»; – RAin
Memory(13)<= «001»& «000000»& «0100000»& «0000000»& «0000»& «0»; – Instr2, IncPC
– mov Rn,#d
Memory(14)<= «000»& «000000»& «0100000»& «0000000»& «0000»& «0»; – IncPC
Memory(15)<= «000»& «000000»& «0001000»& «0000000»& «0000»& «0»; – MarIn
Memory(16)<= «000»& «000000»& «0000110»& «0000000»& «0000»& «0»; – RdWr, CS
Memory(17)<= «000»& «000000»& «0000001»& «0000000»& «0000»& «0»; – MbrIn
Memory(18)<= «000»& «000000»& «0000000»& «1000000»& «0000»& «0»; – MbrOut
Memory(19)<= «000»& «000000»& «0000000»& «0000000»& «0010»& «0»; – RDCIn
Memory(20)<= «000»& «000000»& «0100000»& «0000000»& «0000»& «0»; – IncPC
Memory(21)<= «000»& «000000»& «0001000»& «0000000»& «0000»& «0»; – MarIn
Memory(22)<= «000»& «000000»& «0000110»& «0000000»& «0000»& «0»; – RdWr, CS
Memory(23)<= «000»& «000000»& «0000001»& «0000000»& «0000»& «0»; – MbrIn
Memory(24)<= «000»& «000000»& «0000000»& «1000000»& «0000»& «0»; – MbrOut
Memory(25)<= «000»& «000000»& «0000000»& «0000000»& «1000»& «0»; – RIn
Memory(26)<= «001»& «000000»& «0100000»& «0000000»& «0000»& «0»; – Instr2, IncPC
– add A, Rn
Memory(27)<= «000»& «000000»& «0100000»& «0000000»& «0000»& «0»; – IncPC
Memory(28)<= «000»& «000000»& «0001000»& «0000000»& «0000»& «0»; – MarIn
Memory(29)<= «000»& «000000»& «0000110»& «0000000»& «0000»& «0»; – RdWr, CS
Memory(30)<= «000»& «000000»& «0000001»& «0000000»& «0000»& «0»; – MbrIn
Memory(31)<= «000»& «000000»& «0000000»& «1000000»& «0000»& «0»; – MbrOut
Memory(32)<= «000»& «000000»& «0000000»& «0000000»& «0010»& «0»; – RDCIn
Memory(33)<= «000»& «000000»& «0000000»& «0000000»& «0100»& «0»; – ROut
Memory(34)<= «000»& «000000»& «0000000»& «0000000»& «0001»& «0»; – SADD
Memory(35)<= «000»& «000000»& «0000000»& «0001000»& «0000»& «0»; – RZin
Memory(36)<= «000»& «000000»& «0000000»& «0000100»& «0000»& «0»; – RZout
Memory(37)<= «000»& «000000»& «0000000»& «0000001»& «0000»& «0»; – RAin
Memory(38)<= «001»& «000000»& «0100000»& «0000000»& «0000»& «0»; – Instr2, IncPC
– JBC
Memory(51)<= «010»& «110110»& «0000000»& «0000000»& «0000»& «0»; – perexod na adres 36H ili 54 v dec s/s
Memory(52)<= «000»& «000000»& «0000000»& «0000000»& «0000»& «0»; – any value
Memory(53)<= «000»& «000000»& «0000000»& «0000000»& «0000»& «0»; – any value
Memory(54)<= «000»& «000000»& «0100000»& «0000000»& «0000»& «0»; – IncPC
Memory(55)<= «000»& «000000»& «0001000»& «0000000»& «0000»& «0»; – MarIn
Memory(56)<= «000»& «000000»& «0000110»& «0000000»& «0000»& «0»; – RdWr, CS
Memory(57)<= «000»& «000000»& «0000001»& «0000000»& «0000»& «0»; – MbrIn
Memory(58)<= «000»& «000000»& «0000000»& «1000000»& «0000»& «0»; – MbrOut
Memory(59)<= «001»& «000000»& «1000000»& «0000000»& «0000»& «0»; – Instr2, PCIn
process(RD)
begin
if RD='1' and RD'event then
InstrCom<=Memory (CONV_INTEGER ('0'& Adr));
MrOut<='1';
end if;
if RD='0' and RD'event then MrOut<='0';
end if;
end process;
end Memory;
Временная диаграмма работы памяти УУ Memory:
VHDL – описание остальных элементов схемы (регистра CAR и регистра СBR, регистра инструкций, мультиплексора, декодера, простых логических элементов, регистров MAR и MBR):
library IEEE;
use IEEE.STD_LOGIC_1164.all;
entity CAR is
port (D: in std_logic_vector (5 downto 0);
CarIn: in std_logic;
CarOut: out std_logic;
Q: out std_logic_vector (5 downto 0));
end CAR;
architecture CAR of CAR is
begin
process(CarIn)
begin
if CarIn='0' and CarIn'event then
Q<=D;
CarOut<='1';
end if;
if CarIn='1' and CarIn'event then CarOut<='0';
end if;
end process;
end CAR;
–
library IEEE;
use IEEE.STD_LOGIC_1164.all;
entity CBR is
port (InstrCom: in std_logic_vector (0 to 27);
CbrIn: in std_logic;
Adr: out std_logic_vector (5 downto 0);
Instr0: out std_logic;
Instr1: out std_logic;
Instr2: out std_logic;
PCIn: out std_logic;
IncPC: out std_logic;
IrIn: out std_logic;
MarIn:out std_logic;
RdWr:out std_logic;
CS:out std_logic;
MbrIn:out std_logic;
MbrOut:out std_logic;
MbrInD:out std_logic;
MbrOutD:out std_logic;
RzIn:out std_logic;
RzOut:out std_logic;
Inv:out std_logic;
RAIn:out std_logic;
RIn:out std_logic;
ROut:out std_logic;
RDCIn:out std_logic;
SADD:out std_logic;
InvZ: out std_logic);
end CBR;
architecture CBR of CBR is
begin
process(CbrIN)
begin
if CbrIN='1' and CbrIN'event then
Instr0<=InstrCom(2) after 1ns;
Instr1<=InstrCom(1) after 1ns;
Instr2<=InstrCom(0) after 1ns;
ADR<=InstrCom (3 to 8) after 1ns;
PCIn <=InstrCom(9) after 1ns;
IncPC<=InstrCom(10) after 1ns;
IrIn <=InstrCom(11) after 1ns;
MarIn <=InstrCom(12) after 1ns;
RdWr <=InstrCom(13) after 1ns;
CS <=InstrCom(14) after 1ns;
MbrIn<=InstrCom(15) after 1ns;
MbrOut<=InstrCom(16) after 1ns;
MbrInD<=InstrCom(17) after 1ns;
MbrOutD<=InstrCom(18) after 1ns;
RzIn <=InstrCom(19) after 1ns;
RzOut<=InstrCom(20) after 1ns;
Inv<=InstrCom(21) after 1ns;
RAIn<=InstrCom(22) after 1ns;
RIn <=InstrCom(23) after 1ns;
ROut<=InstrCom(24) after 1ns;
RDCIn <=InstrCom(25) after 1ns;
SADD<=InstrCom(26) after 1ns;
InvZ<=InstrCom(27) after 1ns;
end if;
end process;
end CBR;
–
library IEEE;
use IEEE.STD_LOGIC_1164.all;
entity IR is
port (Command: in std_logic_vector (7 downto 0);
IRin: in std_logic;
Reset: in std_logic;
IrOut: out std_logic;
Com: out std_logic_vector (7 downto 0));
end IR;
architecture IR of IR is
begin
process (IrIn, Reset)
begin
if IrIn='1' and Irin'event then
Com<=Command after 2ns;
IrOut<='1'after 2ns;
end if;
if IrIn='0' and Irin'event then IrOut<='0';
end if;
if Reset='1' then
Com<= «00000000»;
IrOut<='1';
end if;
end process;
end IR;
–
library IEEE;
use IEEE.STD_LOGIC_1164.all;
entity DC1 is
port (Ale:in std_logic;
Com: in std_logic_vector (7 downto 0);
ComAdr: out std_logic_vector (5 downto 0));
end DC1;
architecture DC1 of DC1 is
begin
process(Ale)
begin
if Ale='1' and Ale'event then
if Com= «00000000» then ComAdr <= «000111»;
elsif Com= «00000001» then ComAdr <= «001110»;
elsif Com= «00000010» then ComAdr <= «011011»;
elsif Com= «00000011» then ComAdr <= «100111»;
elsif Com= «00000100» then ComAdr <= «110011»;
else ComAdr <= «000000»;
end if;
end if;
end process;
end DC1;
–
library IEEE;
use IEEE.STD_LOGIC_1164.all;
entity INV is
port (DIn: in std_logic_vector (7 downto 0);
Inv: in std_logic;
DOut: out std_logic_vector (7 downto 0));
end INV;
architecture INV of INV is
begin
DOut<=not DIn when Inv='1'else DIn;
end INV;
–
library IEEE;
use IEEE.STD_LOGIC_1164.all;
entity LogAnd is
port (in1: in std_logic;
in2: in std_logic;
Sout: out std_logic);
end LogAnd;
architecture LogAnd of LogAnd is
begin
Sout<=in1 and in2 after 1ns;
end LogAnd;
–
library IEEE;
use IEEE.STD_LOGIC_1164.all;
entity LogOR is
port (in1: in std_logic;
in2: in std_logic;
SOut: out std_logic);
end LogOR;
architecture LogOR of LogOR is
begin
SOut<=in1 or in2 after 1ns;
end LogOR;
–
library IEEE;
use IEEE.STD_LOGIC_1164.all;
entity MUX is
port (IN1: in std_logic_vector (5 downto 0);
IN2: in std_logic_vector (5 downto 0);
IN3: in std_logic_vector (5 downto 0);
Adr0: in std_logic;
Adr1: in std_logic;
CLK: in std_logic;
MuxOut: out std_logic;
OUT1: out std_logic_vector (5 downto 0));
end MUX;
architecture MUX of MUX is
begin
process(CLK)
begin
if CLK='1' and CLK'event then
if Adr1='0' and Adr0='0' then OUT1 <= IN1;
elsif Adr1='1' then OUT1 <= IN2;
elsif Adr1='0' and Adr0='1' then OUT1 <= IN3;
else Out1<= «000000»;
end if;
MuxOut<='1';
end if;
if CLK='0' and CLK'event then MuxOut<='0';
end if;
end process;
end MUX;
–
library IEEE;
use IEEE.STD_LOGIC_1164.all;
entity MAR is
port (RST: in std_logic;
CLK: in std_logic;
MarIn: in std_logic;
AdrIn: in std_logic_vector (7 downto 0);
AdrOut: out std_logic_vector (7 downto 0));
end MAR;
architecture MAR of MAR is
signal reg: std_logic_vector (7 downto 0):= «00000000»;
begin
process (CLK, RST)
begin
if CLK='0' and CLK'event and MarIn='1' then reg<=AdrIn;
end if;
if CLK='1' and CLK'event then AdrOut<=reg;
end if;
if RST='1' then reg<= «00000000»;
end if;
end process;
end MAR;
–
library IEEE;
use IEEE.STD_LOGIC_1164.all;
entity MBR is
port (RST: in std_logic;
CLK: in std_logic;
MbrIn: in std_logic;
MbrOut: in std_logic;
MbrInD: in std_logic;
MbrOutD: in std_logic;
DataIn: inout std_logic_vector (7 downto 0);
DataOut: inout std_logic_vector (7 downto 0));
end MBR;
architecture MBR of MBR is
signal reg: std_logic_vector (7 downto 0);
begin
Process (CLK, RST)
begin
if CLK='0' and CLK'event then
if MbrIn='1' then reg<=DataIn;
elsif MbrOut='1' then DataOut<=reg;
elsif MbrInD='1' then reg<=DataOut;
elsif MbrOutD='1' then DataIn<=reg;
end if;
if MbrIn='0' and MbrOutD='0' then DataIn<= «ZZZZZZZZ»;
end if;
if MbrOut='0' and MbrInD='0' then DataOut<= «ZZZZZZZZ»;
end if;
end if;
if RST='1' then reg<= «00000000»;
end if;
end process;
end MBR;
–
library IEEE;
use IEEE.STD_LOGIC_1164.all;
entity RZ is
port (DIn: in std_logic_vector (7 downto 0);
CLK: in std_logic;
RST: in std_logic;
RZOut: in std_logic;
RZIn: in std_logic;
InvZ: in std_logic;
DOut: out std_logic_vector (7 downto 0));
end RZ;
architecture RZ of RZ is
signal regist: std_logic_vector (7 downto 0);
begin
process (CLK, RST)
begin
if CLK='0' and CLK'event and RZIn='1' then regist<=DIN;
end if;
if CLK='0' and CLK'event and RZOut='1' then
if InvZ='1'then DOut<=not regist after 3 ns;
else DOut<=regist after 3 ns;
end if;
end if;
if CLK='0' and CLK'event and RZOut='0' then DOut<= «ZZZZZZZZ» after 3 ns;
end if;
if RST='1' then regist<= «00000000»;
end if;
end process;
end RZ;
7. Тестирование процессора и подтверждение правильности его работы с помощью временных диаграмм
Описание процессора на языке Active VHDL:
library IEEE;
use IEEE.std_logic_1164.all;
entity MPA is
port (CLK: in STD_LOGIC;
Reset: in std_logic;
FC, bit_out: out std_logic;
DataBus: inout std_logic_vector (7 downto 0));
end MPA;
architecture MPA of MPA is
–
component Add
port (Inc: in STD_LOGIC;
Reset: in STD_LOGIC;
SIn: in std_logic_vector (5 downto 0);
SOut: out std_logic_vector (5 downto 0));
end component;
–
component ALU
port (A: in std_logic_vector (7 downto 0);
B: in std_logic_vector (7 downto 0);
CLK: in std_logic;
SADD: in std_logic;
FC: out std_logic;
FZ: out std_logic;
Q: out std_logic_vector (7 downto 0));
end component;
–
component CAR
port (CarIn: in std_logic;
D: in std_logic_vector (5 downto 0);
CarOut: out STD_LOGIC;
Q: out std_logic_vector (5 downto 0));
end component;
–
component CBR
port (CbrIn: in std_logic;
InstrCom: in std_logic_vector (0 to 27);
Adr: out std_logic_vector (5 downto 0);
CS: out STD_LOGIC;
IncPC: out STD_LOGIC;
Instr0: out std_logic;
Instr1: out std_logic;
Instr2: out std_logic;
Inv: out STD_LOGIC;
InvZ: out STD_LOGIC;
IrIn: out std_logic;
MarIn: out STD_LOGIC;
MbrIn: out STD_LOGIC;
MbrInD: out STD_LOGIC;
MbrOut: out STD_LOGIC;
MbrOutD: out STD_LOGIC;
PCin: out STD_LOGIC;
RAIn: out STD_LOGIC;
RDCIn: out STD_LOGIC;
RIn: out STD_LOGIC;
ROut: out STD_LOGIC;
RdWr: out STD_LOGIC;
RzIn: out STD_LOGIC;
RzOut: out STD_LOGIC;
SADD: out STD_LOGIC);
end component;
–
component DC1
port (Ale: in STD_LOGIC;
Com: in std_logic_vector (7 downto 0);
ComAdr: out std_logic_vector (5 downto 0));
end component;
–
component INV
port (DIn: in std_logic_vector (7 downto 0);
Inv: in std_logic;
DOut: out std_logic_vector (7 downto 0));
end component;
–
component IR
port (Command: in std_logic_vector (7 downto 0);
IRin: in std_logic;
Reset: in std_logic;
Com: out std_logic_vector (7 downto 0);
IrOut: out STD_LOGIC);
end component;
–
component LogAnd
port (in1: in std_logic;
in2: in std_logic;
Sout: out std_logic);
end component;
–
component LogOR
port (in1: in std_logic;
in2: in std_logic;
SOut: out std_logic);
end component;
–
component MAR
port (AdrIn: in std_logic_vector (7 downto 0);
CLK: in std_logic;
MarIn: in std_logic;
RST: in std_logic;
AdrOut: out std_logic_vector (7 downto 0));
end component;
–
component MBR
port (CLK: in STD_LOGIC;
MbrIn: in STD_LOGIC;
MbrInD: in STD_LOGIC;
MbrOut: in STD_LOGIC;
MbrOutD: in STD_LOGIC;
RST: in STD_LOGIC;
DataIn: inout STD_LOGIC_VECTOR (7 downto 0);
DataOut: inout STD_LOGIC_VECTOR (7 downto 0));
end component;
–
component Memory
port (Adr: in std_logic_vector (5 downto 0);
RD: in std_logic;
InstrCom: out std_logic_vector (0 to 27);
MrOut: out STD_LOGIC);
end component;
–
component MUX
port (Adr0: in std_logic;
Adr1: in std_logic;
CLK: in STD_LOGIC;
IN1: in std_logic_vector (5 downto 0);
IN2: in std_logic_vector (5 downto 0);
IN3: in std_logic_vector (5 downto 0);
MuxOut: out STD_LOGIC;
OUT1: out std_logic_vector (5 downto 0));
end component;
–
component PC
port (AdrIn: in STD_LOGIC_VECTOR (7 downto 0);
CLK: in STD_LOGIC;
IncPC: in STD_LOGIC;
PCIn: in STD_LOGIC;
RST: in STD_LOGIC;
AdrOut: out STD_LOGIC_VECTOR (7 downto 0));
end component;
–
component R0
port (C: in STD_LOGIC;
CLK: in std_logic;
DataIn: in std_logic_vector (7 downto 0);
RIn: in std_logic;
ROut: in std_logic;
RST: in std_logic;
DataOut: out std_logic_vector (7 downto 0));
end component;
–
component RA
port (
CLK: in STD_LOGIC;
DIn: in std_logic_vector (7 downto 0);
RAIn: in std_logic;
DOut: out std_logic_vector (7 downto 0));
end component;
–
component RAM
port (Adr: in STD_LOGIC_VECTOR (7 downto 0);
CS: in STD_LOGIC;
RdWr: in STD_LOGIC;
Data: inout STD_LOGIC_VECTOR (7 downto 0));
end component;
–
component RDC
port (Number: in std_logic_vector (7 downto 0);
RDCIn: in std_logic;
R1: out std_logic;
R2: out std_logic;
R3: out std_logic;
R4: out std_logic);
end component;
–
component RZ
port (CLK: in STD_LOGIC;
DIn: in STD_LOGIC_VECTOR (7 downto 0);
InvZ: in STD_LOGIC;
RST: in STD_LOGIC;
RZIn: in STD_LOGIC;
RZOut: in STD_LOGIC;
DOut: out STD_LOGIC_VECTOR (7 downto 0));
end component;
–
component R_1bit is
port (reg_in, IE: in std_logic;
CLK, Zero:in std_logic;
reg_out: out std_logic);
end component;
–
signal CS, IncPC, IrIn, MarIn, MbrIn, MbrOut, JB: STD_LOGIC;
signal S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, SR1, SR2, SR3, SR4: STD_LOGIC;
signal N1, N2, N3, FC_sig, bit_outs: STD_LOGIC;
signal PCIN, RaIn, RDCIn, RdWr, RIn, ROut, RzIn, RzOut, SADD: STD_LOGIC;
signal Adr: std_logic_vector (7 downto 0);
signal BUS2, BUS6, BUS7, BUS8, BUS11: std_logic_vector (5 downto 0);
signal BUS10: std_logic_vector (27 downto 0);
signal BUS0, BUS1, BUS3, BUS4, BUS5: std_logic_vector (7 downto 0);
signal MemOut: STD_LOGIC_VECTOR (7 downto 0);
–
begin
DD0: IR port map (Com => BUS1, Command => DataBus, IRin => IrIn, IrOut => S3,
Reset => Reset);
DD1: LogAnd port map (Sout => S5, in1 => bit_outs, in2 =>S4);
DD2: MAR port map (AdrIn => BUS0, AdrOut => Adr, CLK => CLK, MarIn => MarIn,
RST => Reset);
DD3: RAM port map (Adr => Adr, CS => CS, Data => MemOut, RdWr => RdWr);
DD4: MBR port map (CLK => CLK, DataIn => MemOut, DataOut => DataBus,
MbrIn => MbrIn, MbrInD => S6, MbrOut => MbrOut,
MbrOutD => S7, RST => Reset);
DD5: R0 port map (C => SR1, CLK => CLK, DataIn => DataBus, DataOut => DataBus,
RIn => RIn, ROut => ROut, RST => Reset);
DD6: R0 port map (C => SR2, CLK => CLK, DataIn => DataBus, DataOut => DataBus,
RIn => RIn, ROut => ROut, RST => Reset);
DD7: R0 port map (C => SR3, CLK => CLK, DataIn => DataBus, DataOut => DataBus,
RIn => RIn, ROut => ROut, RST => Reset);
DD8: R0 port map (C => SR4, CLK => CLK, DataIn => DataBus, DataOut => DataBus,
RIn => RIn, ROut => ROut, RST => Reset);
DD9: RA port map (CLK => CLK, DIn => DataBus, DOut => BUS3, RAIn => RaIn);
DD10: ALU port map (A => BUS4, B => DataBus, CLK => CLK, FC => FC_sig, FZ => S1,
Q => BUS5, SADD => SADD);
DD11: DC1 port map (Ale => S3, Com => BUS1, ComAdr => BUS2);
DD12: RZ port map (CLK => CLK, DIn => BUS5, DOut => DataBus, InvZ => JB,
RST => Reset, RZIn => RzIn, RZOut => RzOut);
DD13: INV port map (DIn => BUS3, DOut => BUS4, Inv => S2);
DD14: RDC port map (Number => DataBus, R1 => SR1, R2 => SR2, R3 => SR3,
R4 => SR4, RDCIn => RDCIn);
DD15: MUX port map (Adr0 => S9, Adr1 => S10, CLK => CLK, IN1 => BUS11,
IN2 => BUS2, IN3 => BUS6, MuxOut => N2, OUT1 => BUS7);
DD16: Add port map (Inc => N2, Reset => Reset, SIn => BUS7, SOut => BUS11);
DD17: CAR port map (CarIn => CLK, CarOut => N3, D => BUS7, Q => BUS8);
DD18: Memory port map (Adr => BUS8, InstrCom => BUS10, MrOut => N1, RD => N3);
DD19: CBR port map (Adr => BUS6, CS => CS, CbrIn => N1, IncPC => IncPC, Instr0 => S8,
Instr1 => S4, Instr2 => S10, InstrCom => BUS10, Inv => S2, InvZ => JB, IrIn => IrIn,
MarIn => MarIn, MbrIn => MbrIn, MbrInD => S6, MbrOut => MbrOut, MbrOutD => S7,
PCin => PCIN, RAIn => RaIn, RDCIn => RDCIn, Rin => RIn, ROut => ROut,
RdWr => RdWr,
RzIn => RzIn, RzOut => RzOut, SADD => SADD);
DD20: PC port map (AdrIn => DataBus, AdrOut => BUS0, CLK => CLK, IncPC => IncPC,
PCIn => PCIN, RST => Reset);
DD21: LogOR port map (SOut => S9, in1 => S5, in2 => S8);
DD22: R_1bit port map (CLK => CLK, reg_in =>FC_sig, reg_out => bit_outs, IE =>RzIn,
Zero=>S5);
FC<=FC_sig;
bit_out<=bit_outs;
end MPA;
Выводы
При выполнении работы было произведено моделирование процессора с устройством управления на основе памяти с одним полем адреса, имеющего ряд специальных регистров, а также четыре регистра общего назначения. Тестовая программа была успешно выполнена, что вполне свидетельствует о его корректной работе.
Структурная схема, разработанная в этой работе, естественно, не является единственно возможной. Но на ее примере можно усвоить основные принципы построения цифровых вычислительных систем, такие как микропрограммное управление, совместное использование шин процессора различными устройствами со всеми вытекающими отсюда требованиями к организации работы этих устройств: синхронизации, сингулярности передач информации и другими.
Данная схема обладает одной магистралью, она достаточно проста в исполнении, хотя одномагистральная система не всегда позволяет просто реализовать некоторые операции, а именно такая система занимает намного меньше места на печатной плате, чем двухмагистральная (и тем более трехмагистральная), что и дает ей преимущества при конструировании небольших устройств.
По диаграмме работы процессора видно, что выполнение команды JBC занимает в среднем 90 ns, команда сложения немного больше 183 ns, команд пересылки – 140ns. Полное выполнение всех команд по очереди производится за 630 ns. Начальная задержка работы процессора с четом всех задержек на всех элементах составила всего 1 ns, что очень мало.
Введение В данной работе будет разработана структурная схема процессора (операционного и управляющего автоматов) для выполнения набора машинных команд. Необходимо создать описание процессора на языке VHDL и провести тестирование. Управляющи
Моделирование работы конечного распознавателя для последовательно-сти элементов типа "дата" в немецком формате, разделенных запятыми и заключённых в фигурные скобки
Моделирование работы цеха
Моделирование системы массового обслуживания
Моделирование системы массового обслуживания
Моделирование системы массового обслуживания
Модель распределения ресурсов
Моделювання елементів і каналу системи збору даних
Моделювання надходження повідомлень від датчиків до ЕОМ
Моделювання процесу надходження до ЕОМ повідомлень
Моделювання процесу надходжень до СОП повідомлень від датчиків і вимірювальних пристроїв
Copyright (c) 2024 Stud-Baza.ru Рефераты, контрольные, курсовые, дипломные работы.