База знаний студента. Реферат, курсовая, контрольная, диплом на заказ

курсовые,контрольные,дипломы,рефераты

Моделирование процессов статического конусообразования при разработке нефтяных, газовых и нефтегазовых залежей — Геология

Министерство образования Российской Федерации

Государственное образовательное учреждение высшего профессионального образования

Курсовая работа

по курсу «Подземная гидромеханика»

тема: «Моделирование процессов статического конусообразования при разработке нефтяных, газовых и нефтегазовых залежей»

г. Тюмень 2010


Содержание

Введение…………………………………………………………..……………….3

1. Особенности разработки сложнопостроенных нефтегазовых и газоконденсатнонефтяных залежей………………………………......………….5

2. Моделирование процессов статического конусообразования при разработке нефтегазовых и газоконденсатнонефтяных залежей……........……7

2.1  Сущность проблемы конусообразования…………………………............7

2.2  Моделирование процесса статического конусообразования…………..11

2.2.1 Общие представления..................................................................................11

2.2.2 Математическая модель статического конусообразования Маскета-Чарного. Методы расчета предельных депрессий и дебитов несовершенных скважин...................................................................................................................13

2.3  Методы расчета предельных безводных и безгазовых дебитов несовершенных скважин, дренирующих нефтегазовые залежи с подошвенной водой…………………………………………………….......................................17

2.3.1 Методика расчета предельных безводных и безгазовых дебитов, основанная на гидравлической теории безнапорного притока.........................18

2.3.2 Потенциометрический метод расчета предельных безводных и безгазовых дебитов................................................................................................22

2.3.3 Методика расчета предельных безводных и безгазовых дебитов Курбанова-Садчикова, основанная на теории напорного притока...................23

2.3.4.Уточненная методика расчета предельных безводных и безгазовых дебитов....................................................................................................................24

Заключение……………………………………………………………………….34

Список литературы…………………………………………………………........35


Введение

В настоящее время большинство разрабатываемых месторождений нефти и газа относятся к категории сложнопостроенных. Специфика и основные сложности разработки таких залежей определяются условиями совместного залегания, в пласте нефти и газа, резко различающиеся по компонентному составу и физическим свойствам, а также наличием подошвенной воды. При разработке нефтегазовых и газоконденсатнонефтяных залежей существенным является очередность выработки запасов нефти и газа. Практически возможно осуществление следующих основных вариантов: опережающая разработка нефтяной зоны, одновременная разработка нефтяной зоны и газовой шапки и опережающая разработка газовой шапки. Любая из этих систем накладывает ограничения на условия извлечения одного из видов углеводородного сырья - нефти, газоконденсата или газа. Наиболее типичное осложнение при разработке нефтегазовых залежей - это внедрение нефти в газовую шапку, прорыв подошвенной воды или верхнего газа в нефтяную зону пласта.

Целью предлагаемого учебного пособия является рассмотрение вопросов моделирования процессов статического и динамического конусообразования при разработке нефтегазовых и газоконденсатнонефтяных залежей с подошвенной водой. Особенности разработки сложнопостроенных месторождений нефти и газа изложены в первом разделе пособия.

Для осуществления безводной и безгазовой эксплуатации скважин, дренирующих нефтегазовые залежи с подошвенной водой, необходимо определить предельные одновременно безводные и безгазовые дебиты, а также соответствующие им предельные депрессии. Рассмотрению этих задач на конкретных примерах с использованием различных методических подходов посвящен второй раздел пособия.

В рамках проблемы динамического конусообразования в третьем разделе работы излагаются подходы к расчету времени безводной (безгазовой) эксплуатации скважин, показана методика прогнозирования продвижения границы раздела нефть-вода или нефть-газ, а также рассматривается расчет коэффициента нефтеотдачи за безводный (безгазовый) период.

Настоящее пособие дополнено приложениями, в которых отражен цифровой, табличный и графический материал, предлагаемый для использования на занятиях студентов по курсу «Гидрогазодинамика», а также в практике нефтегазодобывающих предприятий.


1. Особенности разработки сложнопостроенных нефтегазовых и газоконденсатнонефтяных залежей

Извлечете запасов из газонефтяных и газоконденсатнонефтяных залежей обычно считается более сложным, чем разработка нефтяных месторождений. Специфические особенности указанных залежей (сложное геологическое строение, наличие в пласте нефти, газа, газоконденсата и воды) в определенной степени усложняют комплекс проблем, связанных с их разработкой. Это особенно характерно для крупных газонефтяных месторождений Западной Сибири (Самотлорское, Федоровское, Лянторское, Варьеганское и др.), в том числе для района Сургутского свода, где 48% текущих запасов нефти разрабатываемых месторождений приходится на долю нефтегазовых залежей.

Как показывают анализы, в связи с высокой выработкой более простых по геологическому строению залежей нефти перспектива развития нефтеотдачи в этом районе будет связана прежде всего с освоением слож-нопостроенных газонефтяных залежей.

Основные запасы нефти и газа газонефтяных залежей Сургутского района сосредоточены на двух объектах - Лянторском и Федоровском месторождениях, которые характеризуются сложным геологическим строением, малыми толщинами нефтяного пласта и большой долей порового объема нефтенасыщенного пласта. Извлечение этих запасов с наибольшей нефтеотдачей и наименьшими затратами является одной, из основных проблем разработки месторождений указанного типа.

Задачам рациональной разработки газоконденсатных (ГКЗ), газоконденсатнонефтяных (ГКНЗ) и нефтегазовых залежей (НГЗ) с подошвенной водой посвящен ряд работ как зарубежных, так и отечественных исследователей

В результате многолетних исследований, связанных с разработкой нефтегазовых залежей и нефтяных оторочек с верхним газом и подошвенной водой, дано обобщение мирового опыта разработки указанных залежей, разработана теория проектирования с учетом геологогидрогазодинамических особенностей НГЗ и ГКНГЗ и их классификация, рассмотрены актуальные проблемы проектирования и рациональной их разработки этих объектов.

Основные сложности при разработке нефтегазовых залежей связаны с технологическими трудностями извлечения нефти, зависящими от режима их разработки. При этом в основном проявляют себя режимы растворенного газа и упруговодонапорный; первый имеет главенствующее значение и определяет конечный коэффициент нефтеотдачи, в большинстве случаев несущественный. В связи с увеличением мирового спроса на нефть и истощением запасов крупных нефтяных месторождений возрос интерес к разработке нефтегазовых залежей и нефтяных оторочек. Как известно, рациональным способом извлечения запасов нефтяной оторочки считается опережающая выработка ее с сохранением энергии газовой шапки. Однако, как показывает мировая практика, иногда полезен способ одновременного извлечения запасов нефти и газа из нефтегазовых залежей с сохранением неподвижности газонефтяного контакта.

Определенный опыт разработки нефтегазовых залежей имеется и в нашей стране. Например, после осуществления ППД и барьерного заводнения на Бобриковской нефтегазовой залежи Коробковского месторождения ожидалось увеличение коэффициента нефтеотдачи до 55% при одновременном извлечении нефти и газа. Применение барьерного заводнения и уплотнение сетки скважин по пласту Б1 Бахметьевской площади дало увеличение годовых отборов нефти до 20-30%. Подобные результаты разработки нефтегазовых и газоконденсатнонефтяных залежей приведены в [47-53].


2. Моделирование процессов статического конусообразования при разработке нефтегазовых и газоконденсатнонефтяных залежей

2.1 Сущность проблемы конусообразования

Большинство нефтяных, газоконденсатнонефтяных, нефтегазовых и газовых залежей, разрабатываемых в настоящее время, подстилаются частично или полностью подошвенными водами или оконтуриваются краевыми водами или имеет место то и другое одновременно. Рациональная разработка указанных месторождений невозможна без знания особенностей и закономерностей продвижения границ раздела газ-вода, нефть-вода и газ-нефть к несовершенным скважинам. Как показывают промышленные испытания и анализы разработки залежей с верхним газом и подошвенной водой, конусообразование является, в ряде случаев, основной причиной обводнения или загазовывания нефтяных скважин, пробуренных в литологически однородных пластах. Преждевременное обводнение или загазовывание скважин, незнание закономерностей и причин этого явления ведет к потерям большой доли промышленных запасов нефти и, таким образом, снижению нефтеотдачи пласта, увеличению сроков разработки и в конечном итоге к большим материальным затратам на извлечение нефти из пласта. Отсюда тщательное изучение процессов продвижения подошвенных вод и верхнего газа, сложного явления деформации поверхности раздела фаз в пористой среде (конусообразования), особенностей и закономерностей обводнения пластов и скважин, совместного притока жидкостей к забою скважины и изучение природных факторов, способствующих увеличению безводного и безгазового периодов эксплуатации и улучшению технологических условий разработки залежей с целью наибольшего извлечения нефти из пласта, одна из основных задач увеличения нефтеотдачи на современном этапе.

Большое практическое значение имеет осуществление рациональной разработки газоконденсатнонефтяных и нефтегазовых залежей с водонапорным режимом, т.е. режимом, когда основной энергией, за счет которой происходит движение пластовой жидкости к забоям скважин, является энергия напора воды. Водонапорный режим характеризуется тем, что при стабилизации пластового давления весь отбор пластовой жидкости замещается поступлением воды в продуктивную часть коллектора. Происходящее при этом продвижение водонефтяного контакта (ВНК) приводит к тому, что скважины, находящиеся в водонефтяной зоне, обводняются, и добыча нефти сопровождается непрерывным ростом содержания воды4 Обводнение скважин приводит к росту себестоимости нефти и ухудшению показателей разработки. Так как конус характеризует локальное продвижение поверхности вода-нефть или газ-нефть, то, рассматривая режим работы отдельной скважины, необходимо проводить различие между продвижением краевых вод и напором подошвенной воды. В первом случае продвижение воды происходит вдоль напластования, что характерно для относительно тонких продуктивных пластов, залегающих с заметным углом падения. Второй случай характерен для пластов, залегающих с малым углом наклона. Так как в природе такие крайние случаи наблюдаются редко, то условно можно выделить три типа притока нефти при водонапорном режиме:

- нефть поступает к скважинам в основном под напором подошвенной воды, краевые воды малоактивны, то есть скорость продвижения границы раздела нефть-вода превышает скорость, с которой происходит стягивание контура нефтеносности;

- вытеснение нефти происходит за счет продвижения краевых вод вдоль напластования. Подошвенная вода при этом малоактивна, т.е. скорость продвижения контура водоносности в несколько раз больше скорости подъема поверхности подошвенной воды;

- приток нефти к скважинам осуществляется как за счет продвижения контурных, так и подошвенных вод, а также и за счет продвижения газонефтяного контакта (ГНК) при наличии газовой шапки.

Последний вариант наиболее сложен, хотя приближенно оценить происходящий при этом процесс можно, сведя его к одному из первых двух. Качественная сторона процесса конусообразования, т.е. форма поверхности раздела вода-нефть или нефть-газ не зависит от того, является ли подошвенная вода движущим фактором или она малоактивна. Но при этом качественном подобии физические причины, вызывающие образование конуса, различны.

В случае напора подошвенной воды ввиду высокого пластового давления в водоносной области и пониженного давления на забое нефтяной скважины граница раздела испытывает значительный перепад давления. При этом линии тока будут ортогональны исходной поверхности вода-нефть и направлены вверх (рис.2.1а). Приближаясь к забою скважины, на уровне вскрытой толщины пласта они начинают отклоняться. Вытеснение нефти происходит за счет продвижения ВНК, сопровождаемого образованием конуса воды. Причина образования конусообразной формы поверхности раздела вода-нефть (нефть-газ или газ-вода) заключается в том, что величина вертикальной составляющей скорости продвижения ВНК принимает максимальное значение вдоль оси скважины. Качественно подобная форма поверхности раздела образуется и в случае, когда подошвенная вода не принимает участие в вытеснении или она малоактивна. При этом поток нефти (газа) к несовершенной скважине на расстоянии, большем одного-двух значений продуктивной толщины от ее оси (внешняя зона), можно считать плоскорадиальным, где линии тока располагаются параллельно кровле и подошве пласта.

Внутренняя зона характеризуется пространственным притоком, где линии тока искривлены (рис.2.16). В результате такого искривления линий тока появляется вертикальная составляющая скорости фильтрации, значение которой возрастает с приближением к оси скважины. Наличие вертикальной составляющей приводит к подтягиванию поверхности раздела вода-нефть или газ-нефть, а ее уменьшение с увеличением расстояния от оси скважины обусловливает образование конусообразной формы границы раздела Конус подошвенной воды или газа в данном случае может находиться в статическом равновесии и не оказывать существенного влияния на приток нефти к скважине. Равновесие характеризуется предельным дебитом или депрессией, т.е. дебитом, превышение которого приводит к прорыву воды (газа) в скважину. В случае, если дебит скважины не превышает предельного значения, то прорыв воды (газа) произойдет лишь при достижении вершиной конуса интервала перфорации за счет общего поднятия ВНК или опускания ГНК вследствие истощения залежи. Величина предельного дебита зависит от физических свойств пласта и жидкостей и относительного вскрытия продуктивной части пласта. В пластах с малой проницаемостью вдоль напластования реализация предельных дебитов ввиду их малости экономически невыгодна. Экономически невыгодна эксплуатация скважин и с максимально возможным (потенциальным) дебитом, т.к. вода или верхний газ мгновенно прорываются в скважину и начинается совместный приток нефти и воды или нефти и газа.

Рис.2.1(a). Схема линий тока, обусловленная напором подошвенной воды

Очевидно, рабочие дебита должны находиться в интервале от предельного до потенциального. Следовательно, такая скважина будет характеризоваться временем безводной или безгазовой эксплуатации.

Изучение существующих работ, связанных с разработкой указанных залежей, показывает, что эта проблема находится в стадии интенсивного теоретического и промыслового исследования.

2.2 Моделирование процесса статического конусообразования

2.2.1 Общие представления

Во многих случаях при разработке нефтегазовых залежей (НГЗ) вскрываются газоводонефтяные зоны или нефтяные оторочки при разработке газоконденсатнонефтяных залежей (ГКНЗ) с подошвенной водой. Разработка таких залежей обусловливается следующими характерными особенностями, полной гидродинамической связью нефтяной залежи с газовой шапкой и водоносным пластом и вероятной подвижностью газонефтяного и водонефтяного контактов в окрестности скважин в процессе разработки залежи; практически неподвижностью контуров газоносности и нефтеносности в пласте; равномерным распределением пластовой энергии по площади нефтеносности; равенством начального пластового давления и давления насыщения; относительной близостью расположения к забоям скважин водонефтяного и газонефтяного контактов при дренировании нефтяной оторочки; неустойчивостью процесса вытеснения нефти газом, приводящей к быстрому прорыву газа к забоям добывающих скважин и их загазованности и в конечном счете к значительной потере пластовой энергии и снижению нефтеотдачи; возможностью проявления ретроградной конденсации из-за снижения давления в газонасыщенной зоне пласта, предопределяющей пластовые потери конденсата; трудностью регулирования перемещением ГНК и ВНК и др.

Как видим, указанные особенности требуют создания технологии разработки НГЗ и нефтяных оторочек, совершенно отличных от технологии разработки как нефтяных залежей обычного типа, так и нефтегазовых залежей с краевой водой.

При разработке НГЗ и ГКНЗ с подошвенной водой темп отбора нефти обусловливается деформацией контактов и прорывом газа и воды к забоям скважин. При этом весьма важным параметром при установлении режима работы скважин и прогнозировании технологических показателей разработки является анизотропия пласта [ 1 ], обоснование которой необходимо для каждой конкретной залежи. М. Маскет также указывает [ 1 ], что анизотропность коллектора существенно влияет на эффективность размещения скважин. Низкая проницаемость по вертикали препятствует быстрому поднятию вершины конуса и способствует выполаживанию поверхности раз дела вода-нефть. Высокая проницаемость по вертикали (малая анизотропия пласта) способствует быстрому продвижению вершины конуса к забою скважины, что обусловливает концентрированную деформацию поверхности раздела вблизи скважины с низким коэффициентом охвата вытеснения нефти подошвенной водой. Поэтому М. Маскет утверждает, что критерием размещения скважин с напором подошвенной воды должен быть параметр размещения, представляющий собой отношение половины расстояния между скважинами Ro к произведению толщины продуктивного пласта h0 и анизотропии æ*, т.е.

p0=Ro/æ*h0.

Эффективность вытеснения нефти, очевидно, может быть улучшена в условиях непрерывной эксплуатации скважин при малых дебетах, когда снижение забойного давления не на много превосходит напор столба жидкости P=hH(ρB-ρH)g, а также при периодической эксплуатации скважин с продолжительными интервалами ее закрытия, приводящей к опусканию и выполаживанию возникшей конусообразной поверхности раздела вода-нефть или газ-нефть под действием сил тяжести.

2.2.2 Математическая модель статического конусообразования Маскета-Чарного. Методы расчета предельных депрессий и дебитов несовершенных скважин

Модель предполагает установившийся приток нефти или газа к открытому забою скважины, частично вскрывшей однородный или однородно-анизотропный по проницаемости ограниченный горизонтальный пласт постоянной толщины, подстилающийся подошвенной водой. На контуре пласта и на забое скважины поддерживается постоянное давление, фильтрация происходит по закону Дарси, капиллярными силами пренебрегается, вытеснение нефти или газа водой предполагается поршневое. Решение для распределения потенциала в пласте, вызванного работой несовершенной скважины, принимается для условий невозмущенной границы раздела двух жидкостей, т.е. первоначальный ВНК и ГНК предполагаются непроницаемыми.

При эксплуатации нефтяных или газовых скважин с подошвенной водой, а также при дренировании нефтяной оторочки в определенных условиях проявляется тенденция к деформированию поверхности раздела двух фаз, которая принимает холмообразный вид, образуя конусы воды, конусы нефти или конусы воды и газа. При некоторых установившихся условиях отбора соответствующие деформированные поверхности раздела находятся в равновесии и не оказывают существенного влияния на приток добываемого флюида к скважине. Если же превысить депрессию и, соответственно, отбор нефти или газа сверх некоторой предельной величины, то вода прорвется в скважину, что может привести к ее прогрессирующему обводнению, а при дренировании нефтяной оторочки возможен прорыв подошвенной воды и верхнего газа. Таким образом, существует предельная высота вершины конуса, которой соответствуют предельная депрессия и безводный или безгазовый дебит.

Точной теории конусообразования ввиду сложности процессов не имеется. Приближенная теория этого явления, основанная М.Маскетом и И.А.Чарным [1,2] и позволяющая рассчитывать предельные дебиты и депрессии, исходит из допущения, что отклонение поверхности раздела двух фаз от первоначальной плоской формы не влияет на распределение потенциала скорости фильтрации в нефтяной (газовой) части пласта.

Дальнейшее развитие приближенной теории устойчивых конусов Маскета-Чарного и ее практическое использование нашли отражение в работах как отечественных, так и зарубежных исследователей (Б.Б.Лапук, Б.Е Сомов, А.Л.Брудно, Д.А.Эфрос, Р.Г.Аллахвердиева, А.К.Курбанов, П.Б.Садчиков, А.П.Телков, Ю.И.Стклянин, З.С.Алиев, А.П.Власенко, Е.С.Абрамов, С.Н.Закиров, Р.Чаней, Д.Сирси и др.) Здесь изложен более универсальный метод решения задач конусообразования, основанный на двухзонной схеме притока.

Предельный безводный дебит нефтяной скважины определяется по формуле

Q1 = Q0(ρ0,Ђ); Q0 = 2πKrh02 Δρ; Δρ=ρB-ρr, (2.1)

где q(ρ0,Ђ) - безразмерный безводный дебит, определяемый по соответствующим графикам или таблицам (Прил.1) для параметра ρ0≤1 [79,82] и по графикам рис.2.3 для ρ0>1. Безразмерная ордината конуса ξ0=z0/h0 для ρ0>1 определяется по графикам рис.2.4, для ρ0<1 - по таблицам (см. Прил.1).

Для безразмерной депрессии при р0> 1 имеется формула:

ΔPпр =  = (ε0+Δε)q(ρ0,Ђ), (2.2)

где

ε0= [ln -  - ψ(ρ0,Ђ)] ; (2.3)

ψ(ρ0,Ђ) - некоторая функция, определяемая по таблице (Прил.2). Для Де построены графики (рис.2.5). Возможно другое, наиболее полное представление для функции фильтрационных сопротивлений

ε0=ln+ S; S = C1 + C2 + C0, (2.4)

Рис.2.2.Двухзонная схема притока к несовершенной скважине при статическом равновесии границы раздела

Ф0, Фс, Фс' - потенциалы скорости фильтрации на соответственно условном контуре питания радиуса R0, контуре скважины радиусом гс, условном контуре внутренней зоны притока радиусом R0' =h0; У1, У2 - расстояние от точки конуса с координатами (R0,h) до соответственно вершины конуса и ВНК; Z0 - ордината вершины конуса; b - величина вскрытия пласта

где С1 С2 и Со - добавочные фильтрационные сопротивления, обусловленные различными видами несовершенства скважины и определяемые по соответствующим формулам или графическим зависимостям [ 2-5 ].

Уравнение границы раздела (профиль конуса воды или газа) согласно [ 3,5 ], описывается уравнением

ř = r/R0 = ехр[ ] . (2.5)

2.3 Методы расчета предельных безводных и безгазовых дебитов несовершенных скважин, дренирующих нефтегазовые залежи с подошвенной водой

При разработке нефтегазовых залежей с подошвенной водой или нефтяных оторочек возникают сложные гидродинамические задачи по определению предельных безводных и безгазовых дебитов, предельных депрессий, наивыгоднейшего интервала вскрытия нефтяной оторочки относительно ГНК и ВНК, безводного периода, безводной нефтеотдачи на момент полного обводнения или загазовывания скважин. Приближенная теория стационарных конусов применительно к подгазовым нефтяным залежам с подошвенной водой была впервые разработана М.Маскетом и И. А.Чарным. Дальнейшее развитие она получила в работах А.К.Курбанова, П.Б.Садчикова, А.П.Телкова, Ю.И.Стклянина, Р.Чанея, И.Лукерена и др. Формулы Мейера, Гардера и П.М.Шульги для определения предельного безводного и безгазового дебитов исходят из теории безнапорного притока к несовершенной скважине и дают весьма приближенные завышенные против действительных предельных значения, т.к. они фиксируют дебиты уже в момент прорыва газа или воды. Рассмотрим приближенные, но более обоснованные методы.

2.3.1 Методика расчета предельных безводных и безгазовых дебитов, основанная на гидравлической теории безнапорного притока

Схема одновременного существования газового и водяного конусов показана на рис.2.6. Пусть Нr, Нв, Нн есть гидравлические напоры в газовой, водяной и нефтяной зонах соответственно. Рr, Рв и Рн - пластовые давления в указанных зонах, а Р' - давление в некоторой точке на поверхности раздела газ-нефть и вода-нефть (см.рис.2.6), ρн, ρв, и ρr- плотности нефти, воды и газа соответственно. Тогда относительно точки N можно записать следующее выражение

Hr= ; HH= . (2.6)

Если эту точку переместить на контур скважины, то в соответствии с обозначениями на схеме имеем z=(h-b)+hc. Решая совместно два уравнения, исключая Р1 и пренебрегая капиллярным давлением РК=РН-РГ, получаем

HH =  + (h - b+he) ; Δρ1 = ρH - ρr . (2.7)

Аналогично для точки М, перемещенной на контур скважины, получаем

Нв =  - (h-b)  ; Δρ2 = ρв – ρн

Если поместить точки N и М на контур пласта, то получаем, соответственно, выражения

Нн =  +  ; Hн =  (2.8)

из которых следует

Нгρв = Нвρв – hΔρ1 (2.9)

Решая совместно (2.7), (2.8) и (2.9), находим нижнее положение интервала перфорации, обеспечивающее критическое значение безводного и безгазового дебита при заданном значении hc

b = h0 - (h-hc)  ; Δρ3 = ρв-ρr. (2.10)

Определим ординату z0 нейтральной линии тока. Уравнения для напоров (2.7) и (2.8) относительно плоскости z0 (см.рис.2.6) записываются в виде:

Hн =  +  ; Нн =  -  (2.11)

Решая совместно (2.11) и (2.9), получаем

z0 =  . (2.12)

Расстояние bi от нижних отверстий перфорации до нейтральной линии тока, как это следует из схемы, есгь

b1 = z0-(h - b) =. (2.13)

Таким образом, определив ординату нейтральной линии тока (горизонтальную плоскость) и заменив ее непроницаемой жесткой перегородкой, формально получаем два пласта.

Дифференциальное уравнение безнапорного притока для верхнего пласта есть

Q1 =  . (2.14)

Разделяя переменные и интегрируя (2.14) в пределах по r от rс до R0 и по z от z2 до z1, где

z1 = h-z0;

z2 = hc- (2.15)

получаем

Q1 (h2-hc2)(l- )2 . (2.16)

Интегрируя уравнение для нижнего пласта, получаем

Q2= r(z0-z) ; (2.17)

в пределах по r от r0 до R0 и по z от z1 = z0-a до z2, получаем

Q2 =  . (2.18)

Суммарный критический дебит Q=Q1+Q2 определится формулой

Q =  , [Δρ1 (1 – )2 + Δρ2()2] (2.19)

Здесь принимаются следующие размерности:

[Кг]=м2; [h]=м; [Δρ]=кг/м3; [μ]=; [Q]=m3/c.

Пример 1. Рассчитать интервал перфорации, положение нейтральной линии тока и предельный безводный и безгазовый дебит скважины, дренирующей нефтяную оторочку при следующих исходных данных:

пласт горизонтальный однородно-изотропный, æ*=1;

условный контур питания R0=200м;

толщина нефтяной оторочки h=25м;

проницаемость пласта Кг=1,02 • 0,5 10"12м2;

вскрытая толщина hc=12,5M;

радиус скважины rс=0,1м; вязкость нефти μн=2,5мПас=0,1021032,5кг с/м2;

разность плотностей жидкостей Δρ1= 870кг/м3, Δρ2=200кг/м3, Δρ3=1070кг/м3;

скважина совершенная по характеру вскрытия.

Расчеты, произведенные по формулам (2.10), (2.12), (2.13) и (2.19), дают следующие результаты: b=14,84м; z0=20,33m, b1=10,16м; Q=9,87м3/сут. Следовательно, а=2,34м и у=10,17м. Следует заметить, что полученный расчетный предельный дебит больше действительного предельного, т.к. формула (2.19) получена из условия «устойчивости» конусов уже при достижении ими вершин интервала перфорации. Строго говоря, устойчивость конусов при таком положении невозможна.

2.3.2 Потенциометрический метод расчета предельных безводных и безгазовых дебитов

Американские исследователи П.Чаней и др. [ 6 ] пользуясь потенциометрическим анализатором, разработали графический метод решения задачи по определению предельных безводных и безгазовых дебитов скважин для фиксированных характеристик пласта и жидкостей (интервал перфорации и его положения, радиус контура питания, проницаемость пласта, вязкость и плотность жидкостей и газа).

Математические уравнения, составленные для определенной геометрии пласта, были преобразованы для пластовой системы с подобной геометрией. Графики, полученные таким образом, определяют зависимость предельного дебита как функцию расстояния от верхних дыр перфорации до ГНК - в случае верхнего газа, или до кровли пласта - в случае отсутствия его.

Графики [ 6 ] построены для следующих параметров пласта и жидкостей: R0=305m, гс=0,076м; Кr=1∂=1,021012м2; μн=1мПас; Δρ1=600кг/м3; Δρ2=300кг/м3,которые соответствуют пяти фиксированным нефтенасыщенным толщинам h: 3,8; 7,6; 15,25; 22,8; 30,5 м. Кривые А, В, С, D, Е и а, Ь, с, d,e соответствуют различным интервалам вскрытия: первые относятся к конусу воды, вторые - к конусу газа.

Получены также решения и для R0=152,5m для различных толщин нефтяного пласта и интервалов вскрытия. При этом установлено, что предельный дебит при радиусе контура питания R0=l 52,5м на 10-15% больше, чем при Ro=305m.

Построенные графики оказалось возможным использовать для расчета предельных дебитов и при других характеристиках пластовых жидкостей и коллектора, но при прежней геометрии пласта.

Подробный анализ приведенного метода с иллюстрацией расчетов на конкретных примерах изложен также в книге [ 6 ].

Ограниченность метода: не обладает универсальностью, не учитывает анизотропность пласта, трудность отсчета в полулогарифмических координатах, исключающих использование приведенных графических зависимостей в качестве рабочих графиков.

2.3.3 Методика расчета предельных безводных и безгазовых дебитов Курбанова-Садчикова, основанная на теории напорного притока

При решении задачи авторы [ 7-8 ] исходили из основного допущения приближенной теории устойчивых конусов Маскета-Чарного, что отклонение поверхности двух жидкостей в пористой среде от начальной плоской формы не влияет на распределение потенциала скорости фильтрации в нефтяной зоне пласта, рассматривая нестационарное течение жидкостей как последовательную смену стационарных состояний. Область притока при этом условно разделяется на две части путем введения в поток непроницаемой горизонтальной плоскости, проходящей через середину интервала вскрытия пласта. Таким образом, получается два самостоятельных пласта с соответствующими относительными вскрытиями (см.рис.2.6), в которых может быть применен любой из существующих методов расчета предельных дебитов: относительно верхнего газа и подошвенной воды.

Как указывают авторы [ 7-8 ], метод, основанный на таком искусственном разделении потока, может дать удовлетворительные результаты лишь в том случае, если в скважине действительно реализован интервал вскрытия, при котором предельное устойчивое состояние конусов газа и воды наступает одновременно, что на практике при неизменном положении интервала перфорации неосуществимо. Приняв за основу аналитическое решение М.Маскета для напорного притока к несовершенной по степени вскрытия пласта скважине, авторы разработали графический метод определения интервала вскрытия нефтяного пласта и предельных безводных и безгазовых дебитов.

2.3.4.Уточненная методика расчета предельных безводных и безгазовых дебитов

В основу решения этой задачи положена приближенная теория устойчивых конусов Маскета-Чарного. В отличие от предыдущего метода здесь используется аналитическое решение задачи о притоке к несовершенной скважине в однородно-анизотропном пласте, полученное в работах [3,9,10] для широкого диапазона параметра ρ0, в том числе и для ρ0<1, а условное разделение нефтяного пласта производится по нейтральной линии тока, метод отыскания которой, а также соответствующие расчеты и графические построения приведены в работах [3,9,11,12].

Кратко изложим суть этого метода. В работах А.П.Телкова и Ю.И.Стклянина [3,9] получено точное решение для распределения потенциала φ(z,r,η) в однородно-анизотропном пласте с непроницаемой кровлей и подошвой, вызванного работой точечного стока интенсивностью q с координатами z=η и г=0. Принимая скважину за линейный сток с постоянным удельным расходом

q=Q/(b-a),

потенциал несовершенной скважины, вскрывшей пласт в интервале от z=a до z=b (рис.2.7), выразится в виде

Ф – Ф0 = (z,r,η)dη, (2.20)

где Ф0 - потенциал на контуре питания R0.

На рис.2.7 представлена схема притока нефти к скважине, вскрывшей нефтяную оторочку, и показана картина линий тока при двухстороннем устойчивом конусообразовании. Очевидно, в этом случае в разрезе существует горизонтальная линия тока z=d, а плоский круг, описываемый этой линией, условно можно заменить жесткой непроницаемой перегородкой и считать течение в каждой части пласта самостоятельным и не зависящим от течения в другой области. Таким образом, формально получаем два цилиндрических пласта с непроницаемыми кровлей и подошвой, соответственно толщинами h1=d и h2=h - d (см.рис.2.7). Величина вскрытия для первого (верхнего) пласта - (d-a), для второго - (b-d). Погонный расход каждой части скважины одинаков. Оба пласта имеют общий контур питания R0; сверху образуется конус газа, снизу - конус воды

Рис.2.7.Схема одновременного существования конусов газа и воды в условиях напорного притока к несовершенной скважине

Дифференцируя (2.20) по безразмерной ординате ξ=z/h и приравнивая полученное выражение нулю, находим ординату ξ* нейтральной линии тока. Вычисленные значения безразмерной ординаты нейтральной линии тока

ξ*=d/h

как функции параметров

α=a/h

и

β=b/h

приведены в табл.2.1 и представлены графиками на рис.2.8.

Таблица 2.1 Расчетные значения ординаты нейтральной линии тока ξ*

α β
0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9
0,1 0,15 0,18 0,23 0,27 0,32 0,37 0,33 0,50
0,2 - 0,25 0,29 0,34 0,38 0,44 0,50 0,57
0,3 - - 0,35 0,40 0,45 0,50 0,55 0,60
0,4 - - - 0,45 0,50 0,55 0,62 0,68

Отыскав таким образом ординату нейтральной линии тока 4*, по известным методикам можно рассчитать предельный безводный (для нижней части пласта) и предельный безгазовый (для верхней части пласта) дебеты, а затем предельную депрессию. Наименьший дебит из расчетных принимается как предельный безводный и безгазовый дебит скважины.

В соответствии с формулой (2.1) для удельного расхода

q0=Q/hft

по верхней и нижней частям пласта (см.рис.2.7) можно записать следующие соотношения [3,12,13]:

q01=εh1Δρ1

q02=  (2.21)

где

Ђ1=;

Ђ2=;

h1=d;

h2=h-d

p01 = ;

p02 =;

ξ*=ε=

С учетом (2.22) формулы (2.21) принимают следующий вид:

q01=εhΔp1;

q02= ehΔp2. (2.23)

Безразмерные предельные дебеты q01(p1,Ђ1) и q02(p2,Ђ2) определяются по таблице (см.Прил. 1). Чтобы дебет был одновременно безводным и безгазовым, необходимо выбрать наименьший расход, т.е. принять q0=min {q01,q02}. Тогда предельный расход нефти через скважину будет

Q = q0(b-a) = q0(β-α)h . (2.24)

Очевидно, этот дебет в общем случае является предельным либо для конуса воды (и меньше предельного для конуса газа), либо для конуса газа (и меньше предельного для конуса воды).

Выражения в правых частях формул (2.23)

q1=q1(α,β,p0) =q(  ). , (2.25)

q2=q2(α,β,p0)2 = ()2=q(, ()2 (2.26)

представляют собой соответственно безразмерные предельные безгазовые и безводные плотности расходов. С учетом (2.25) и (2.26) формулы (2.23) принимают вид

q01 = q1Δp1εh

q02 = q2Δp2εh . (2.27)

Для каждой пары значений а и В и соответствующих им значений ординат нейтральной линии тока (см.табл.2.1) по формулам (2.22) подсчитаны величины относительных вскрытий Ђ1,Ђ2 в зависимости от параметров а и В и значения параметров p01 и р02. Затем, с помощью таблицы (см.Прил.1) для предельных дебитов определялись q1(α,β,p0) и q2(α,β,p0), а затем по формулам (2.25), (2.26) рассчитывались плотности расходов q1 и q2. Результаты расчетов сведены в таблицу (Прил.З), которая охватывает все практически интересные значения параметров α, β, и р0[86]. В силу симметрии каждая строка таблицы дает одновременно значения безразмерных предельных плотностей расходов q1 и q2 для соответствующих значений α и β, т.е. qI,2(α,β)=q2,1(l-α,l-β). По данным таблицы нетрудно построить сетку кривых зависимостей q1,2=q1,2(p0) для фиксированных значений пары параметров а и В, т.е. для заданного интервала вскрытия (b-а), см.рис.2,7.

При конкретных расчетах предельных безводных и безгазовых дебитов поступают следующим образом. По известным параметрам а, 6 и р0 из таблицы или графиков находят плотности расходов qi и q2, затем по формулам (2.27) подсчитывают удельные расходы q01 и q02, из которых выбирают наименьшее значение q0=min{q01;q02}, и по формуле (2.24) подсчитывают искомый предельный дебит. Покажем применение метода на конкретных примерах.

Пример 2. Имеется подгазовая нефтяная залежь, подстилающаяся подошвенной водой. Исходные параметры: R0=200m; п=25м; Ар1=870кг/м3; Ар2=200кг/м3 (в пластовых условиях); ц„=2,5мПас; Кг=0,5 1,0210-12м2; *=12. Требуется определить одновременно безводный и безгазовый дебит при безразмерных параметрах вскрытия: α=0,2; β=0,7 и α=0,2; β=0,5.

1. Определяем значение

p0=R0/æ *h=0,66.

2. Из таблицы (см.Прил.З) находим плотности q1=0,145 и q2=0,290 при α=0,2 и β=0,7.

3. По формулам (2.27) находим удельные расходы:

q01=0,145-870εh=126,15εh;

q02=0,290-200εh=58εh;

4. Так как q02<q01, го выбираем q02. По формуле (2.24) определяем Q=19,4м3/сут.

5. Из таблицы (см.Прил.З) при α=0,2 и β =0,5 находим плотности q1=0,165 q2=l,0.

6. Удельные расходы составят соответственно:

q0l=0,165 -870εh=143,55εh;

q02=l,0-200εh=200εh;

7. В этом случае q01<q02.Выбираем q01. Тогда расход в пластовых условиях, подсчитанный по формуле (2.24), составит Q29,2м3/сут.

Как видим, в этом случае предельный дебит оказался в 1,5 раза больше предыдущего. Таким образом, наибольший предельный дебит зависит от положения интервала вскрытия.

Пример 3. Исходные параметры принимаются для примера 1, интервал вскрытия, в котором определяемый ординатами b=14,84м и а=2,34м, соответствует безразмерным ординатам:

β=b/h=14,84/25≈0,60

и

α=a/h=2,34/25≈0,l.

1.По таблице (см.Прил.З) для параметров α≈0,1, 0,60 и р0=200/25=8 при æ*=1 определяем плотности q1≈0,02 и q2≈0,19.

2. По формулам (2.27) находим удельные расходы:

q01=0,02 -870εh=17,4εh;

q02=0,19-200εh=38εh.

3. Выбираем наименьшую плотность q01. По формуле (2.23) находим предельный дебит Q≈5,9м3/сут. Сравнивая его значение с дебитом Q=9,87м3/сут, рассчитанным по приближенной методике (см.пример 1), видим, что последний завышает в данном конкретном примере предельный дебит в 1,66 раза.

4. Для сравнения произведем расчет предельного дебита при тех же исходных данных по методике Курбанова-Садчикова, для чего пересчитаем параметры в обозначениях авторов [8]. Получаем:

γ=Δp1/Δp2=870/200= 4,35;

Ђ=hc/h= 12,5/25=0,5;

Ř=R0/æ*h=200/l -25=8.

По графикам [8] находим q≈0,47 и Ђr≈0,095 или hr≈0,095 -25≈2.38м. Предельный дебит по формуле [ 8 ] составляет

Q = =1,75 10-4м3/c= 10,15м3/сут.


Завышение предельного дебита по сравнению с расчетным, учитывающим нейтральную линию тока, в данном случае составляет 1,72 раза.

Пример 4. Принимаются исходные данные, для которых построены графические зависимости размерного предельного безводного и безгазового дебита, рассчитанные потенциометрическим методом [6,3] и приведенные на рис.8д [3]: R0=1000футов≈305м; h=100 футов≈30,5м; Δp1= 500кг/м3; Δр2=300кг/м3; Кг=1д=1мкм2; μн=1мПа -с и æ*=1.

Если принять интервал вскрытия 1=20 футов≈6,1м, то по графику рис.8д [3] точка пересечения кривых В и b дает Qnp=750 баре-лей/сут≈119м3/сут и местоположение интервала перфорации α≈30 футов≈9, 15м (см.рис.2.7). Следовательно,b=1+а=15,25м или в безразмерном виде α=0,3 и β=0,5. Параметр p0=R0/æ*h=10. Определим Qпр по уточненному методу. По таблице (см.Прил.З) находим плотности расходов q1(α,β,p0)= q1(0,3;0,5;10)≈0,18 и q2(α,β,p0)=q(0,3;0,5;10)≈0,45. Затем по формулам (2.27) определяем удельные расходы: q01=0,18600εh=108εh и q02=0,45 •300εh=135εh. Для наименьшего удельного расхода q02 по формуле (2.24) находим Qпр≈109м3/сут. В данном случае расхождение между двумя методами несущественное и составляет 8,4%.

Пример 5. За исходные примем данные в примере Курбанова-Садчикова [90]: R0=200m; h=10м; Δр1=700кг/м3; Δр2=300кг/м3; μн=2мПас; Кr=0,5 • 1,02 • 10-12 м2; æ*=5; b-а=2м; d=3,9м (см.рис.2.7).

Из условия задачи имеем численные значения параметров α≈0,3; β≈0,5 и р0=4. По таблице (см.Прил.З) определяем безразмерные плотности расходов: q1≈0,213 и q2≈0,557. Удельные расходы составляют: q01 ≈0,149εh и q02≈0,167εh. Подсчитывая предельный дебит по формуле (2.24) по наименьшему удельному расходу q01, получаем Q≈6,1м3/сут.

По расчетам авторов [7,8] этот дебит равен Q4,33м3/сут, т.е. отклонение составляет порядка 40%. Такое расхождение, очевидно, объясняется тем, что авторы при решении задачи делают допущение, что нейтральная линия тока проходит через середину интервала вскрытия (см.рис.2.6 и 2.7) при любом его положении, тогда как уточненная методика определяет положение нейтральной линии тока ξ* в зависимости от положения интервала вскрытия α и β. Заметим, что в своей предпосылке при решении задачи несовершенная скважина считалась линией стоков с постоянным удельным расходом. В действительности на скважине должен быть постоянным потенциал. Физически ясно, что картины линий тока будут отличаться несущественно, а, следовательно, положения горизонтальных линий тока будут близки друг к другу [3].

Метод Курбанова-Садчикова и предлагаемый уточненный метод решения задачи конусообразования имеют следующие преимущества перед потенциометрическим и другими существующими методами: они универсальны, т.е. расчетные зависимости представлены в безразмерном виде и применимы как для однородных, так и для однородно-анизотропных пластов; графические решения даны в широком диапазоне безразмерных параметров вскрытия (α,β) и радиуса контура питания (R0) и охватывают все практически интересные случаи; технически удобны и просты, не требуют сложной вычислительной техники.


Заключение

Большинство нефтяных, газоконденсатнонефтяных, нефтегазовых и газовых залежей, разрабатываемых в настоящее время, подстилаются частично или полностью подошвенными водами или оконтуриваются краевыми водами или имеет место то и другое одновременно. Рациональная разработка указанных месторождений невозможна без знания особенностей и закономерностей продвижения границ раздела газ-вода, нефть-вода и газ-нефть к несовершенным скважинам. Как показывают промышленные испытания и анализы разработки залежей с верхним газом и подошвенной водой, конусообразование является, в ряде случаев, основной причиной обводнения или загазовывания нефтяных скважин, пробуренных в литологи-чески однородных пластах. Преждевременное обводнение или загазовыва-ние скважин, незнание закономерностей и причин этого явления ведет к потерям большой доли промышленных запасов нефти и, таким образом, снижению нефтеотдачи пласта, увеличению сроков разработки и в конечном итоге к большим материальным затратам на извлечение нефти из пласта. Отсюда тщательное изучение процессов продвижения подошвенных вод и верхнего газа, сложного явления деформации поверхности раздела фаз в пористой среде (конусообразования), особенностей и закономерностей обводнения пластов и скважин, совместного притока жидкостей к забою скважины и изучение природных факторов, способствующих увеличению безводного и безгазового периодов эксплуатации и улучшению технологических условий разработки залежей с целью наибольшего извлечения нефти из пласта, одна из основных задач увеличения нефтеотдачи на современном этапе.


Список используемой литературы

1.Маскет М. Течение однородных жидкостей в пористой среде (пер. с англ.).-М.: Гостоптехиздат, 1949.

2.Чарный И.А. Подземная газогидродинамика. -М: Гостоптехиздат, 1963.

З.Телков А.П., Стклянин Ю.И. Образование конусов воды при добыче нефти и газа.-М..Недра, 1965..

5.Телков А.П. Некоторые особенности эксплуатации нефтяных залежей с подошвенной водой. -НТО.М: ВНИИОЭНГ, 1972. - 136с.

6.Курбанов A.K., Садчиков П.Б. Расчет положения интервала вскрытия в нефтяном пласте с подошвенной водой и газовой шапкой// Тр.ВНИИ, 1962.- Вып.37. - С.29-40.

7. Справочное руководство по проектированию разработки и эксплуатации нефтяных месторождений/Под ред. Ш.К.Гиматудинова. - М: Недра, 1983.

8.Телков А.П., Стклянин Ю.И. Расчет предельных безводных и безгазовых дебитов в подгазовых нефтяных залежах с подошвенной водой// Тр.МИНГиГП,1963. -Вып.42.

9.Стклянин Ю.И., Телков А.П. Расчет предельных безводных дебитов в однородно-анизотропных пластах с осевой симметрией // Изв. АН СССР, 1961-№5.

10.П.Краснова Т.Л. Особенности притока нефти к несовершенным скважинам в нефтегазовых залежах с подошвенной водой// Новые технологии в разработке и эксплуатации нефтяных и газовых месторождений. Сб.науч.тр. - Тюмень: ТюмГНГУ, 1997.

11.Краснова Т.Л. Уточненная методика расчета предельных одновременно безводных и безгазовых дебитов и депрессий// Новые технологии в разработке и эксплуатации нефтяных и газовых месторождений. Сб.науч.тр. - Тюмень. ТюмГНГУ, 1997.

12.Краснова Т.Л, Телков А.П. Обоснование технологических режимов работы несовершенных скважин, дренирующих нефтегазовые залежи с подошвенной водой//Нефтепромысловое дело - 1997. - № 4-5. - С.2.

13. Телков А.П., Федорцов В.К. Приток к несовершенной скважине и выбор плотности перфорации// Управление гидродинамическими процессами при разведке и эксплуатации месторождений нефти/ Тр.ЗапСибНИГНИ. - Тюмень, 1986. - С.61-68.

Министерство образования Российской Федерации Государственное образовательное учреждение высшего профессионального образования Курсовая работа по курсу «Подземная гидромеханика» тема: «Моделирование

 

 

 

Внимание! Представленная Курсовая работа находится в открытом доступе в сети Интернет, и уже неоднократно сдавалась, возможно, даже в твоем учебном заведении.
Советуем не рисковать. Узнай, сколько стоит абсолютно уникальная Курсовая работа по твоей теме:

Новости образования и науки

Заказать уникальную работу

Свои сданные студенческие работы

присылайте нам на e-mail

Client@Stud-Baza.ru