База знаний студента. Реферат, курсовая, контрольная, диплом на заказ

курсовые,контрольные,дипломы,рефераты

Мозг и память человека: молекулярный аспект — Физика

Министерство высшего образования

Российской Федерации

 

Дальневосточная государственная академия

экономики и управления


РЕФЕРАТ

Мозг и память человека: молекулярный аспект


                                  Выполнил:

                                                         студент 512 Мо группы

                                             Музыченко М.А.

 

                                  Проверил:

                                                              профессор, доктор Ф.М.Н.

                                         Савченко В.Н.


Владивосток 2002 г.

            

Содержание

Введение……………………………………………………………………..3

Глава 1: «Головной мозг человека»………………………………………..4

1.1.     Клетки мозга…………………………………………………………..5

1.2.     Нервные импульсы……………………………………………………6

1.3.     Миелин и глиальные клетки………………………………………….8

1.4.     Как работает мозг……………………………………………………..8

1.5.     Основные части головного мозга……………………………………10

1.6.     Электрическая активность мозга ……………………………………13

1.7.     Нейрохимия мозга…………………………………………………….14

1.8.     Исследования мозга…………………………………………………..16

Глава 2: «Память человека»…………………………………………………19

2.1. Два вида памяти: кратковременная и долговременная……………….19

2.2. Эффективность синапсов……………………………………………….20

Список используемой литературы…………………………………………..22

ВВЕДЕНИЕ

 

     Головной мозг человека, орган, координирующий и регулирующий все жизненные функции организма и контролирующий поведение. Все наши мысли, чувства, ощущения, желания и движения связаны с работой мозга, и если он не функционирует, человек переходит в вегетативное состояние: утрачивается способность к каким-либо действиям, ощущениям или реакциям на внешние воздействия. Данный реферат посвящен мозгу человека, более сложному и высокоорганизованному, чем мозг животных. Однако существует значительное сходство в устройстве мозга человека и других млекопитающих, как, впрочем, и большинства видов позвоночных.

     Память, способность к воспроизведению прошлого опыта, одно из основных свойств нервной системы, выражающееся в способности длительно хранить информацию о событиях внешнего мира и реакциях организма и многократно вводить  ее в сферу сознания и поведения.

          Память свойственна человеку и животным, имеющим достаточно развитую центральную нервную систему. Объем памяти, длительность и надежность хранения информации, как и способность к восприятию сложных сигналов среды и выработки адекватных реакций, возрастает в ходе эволюции по мере увеличения числа нервных клеток мозга и усложнения его структуры.


Глава 1: «Головной мозг человека »

      Центральная нервная система (ЦНС) состоит из головного и спинного мозга. Она связана с различными частями тела периферическими нервами – двигательными и чувствительными.

     Головной мозг – симметричная структура, как и большинство других частей тела. При рождении его вес составляет примерно 0,3 кг, тогда как у взрослого он – 1,5 кг. При внешнем осмотре мозга внимание, прежде всего, привлекают два больших полушария, скрывающие под собой более глубинные образования. Поверхность полушарий покрыта бороздами и извилинами, увеличивающими поверхность коры (наружного слоя мозга). Сзади помещается мозжечок, поверхность которого более тонко изрезана. Ниже больших полушарий расположен ствол мозга, переходящий в спинной мозг. От ствола и спинного мозга отходят нервы, по которым к мозгу стекается информация от внутренних и наружных рецепторов, а в обратном направлении идут сигналы к мышцам и железам. От головного мозга отходят 12 пар черепно-мозговых нервов.

     Внутри мозга различают серое вещество, состоящее преимущественно из тел нервных клеток и образующее кору, и белое вещество – нервные волокна, которые формируют проводящие пути (тракты), связывающие между собой различные отделы мозга, а также образуют нервы, выходящие за пределы ЦНС и идущие к различным органам.

     Головной и спинной мозг защищены костными футлярами – черепом и позвоночником. Между веществом мозга и костными стенками располагаются три оболочки: наружная – твердая мозговая оболочка, внутренняя – мягкая, а между ними – тонкая паутинная оболочка. Пространство между оболочками заполнено спинномозговой (цереброспинальной) жидкостью, которая по составу сходна с плазмой крови, вырабатывается во внутримозговых полостях (желудочках мозга) и циркулирует в головном и спинном мозгу, снабжая его питательными веществами и другими необходимыми для жизнедеятельности факторами.

     Кровоснабжение головного мозга обеспечивают в первую очередь сонные артерии; у основания мозга они разделяются на крупные ветви, идущие к различным его отделам. Хотя вес мозга составляет всего 2,5% веса тела, к нему постоянно, днем и ночью, поступает 20% циркулирующей в организме крови и соответственно кислорода. Энергетические запасы самого мозга крайне невелики, так что он чрезвычайно зависим от снабжения кислородом. Существуют защитные механизмы, способные поддержать мозговой кровоток в случае кровотечения или травмы. Особенностью мозгового кровообращения является также наличие т.н. гематоэнцефалического барьера. Он состоит из нескольких мембран, ограничивающих проницаемость сосудистых стенок и поступление многих соединений из крови в вещество мозга; таким образом, этот барьер выполняет защитные функции. Через него не проникают, например, многие лекарственные вещества.

 

1.1.     Клетки мозга

     Клетки ЦНС называются нейронами; их функция – обработка информации. В мозгу человека от 5 до 20 млрд. нейронов. В состав мозга входят также глиальные клетки, их примерно в 10 раз больше, чем нейронов. Глия заполняет пространство между нейронами, образуя несущий каркас нервной ткани, а также выполняет метаболические и другие функции.

     Нейрон, как и все другие клетки, окружен полупроницаемой (плазматической) мембраной. От тела клетки отходят два типа отростков – дендриты и аксоны. У большинства нейронов много ветвящихся дендритов, но лишь один аксон. Дендриты обычно очень короткие, тогда как длина аксона колеблется от нескольких сантиметров до нескольких метров. Тело нейрона содержит ядро и другие органеллы, такие же, как и в других клетках тела.

 

1.2.     Нервные импульсы

 

     Передача информации в мозгу, как и нервной системе в целом, осуществляется посредством нервных импульсов. Они распространяются в направлении от тела клетки к концевому отделу аксона, который может ветвиться, образуя множество окончаний, контактирующих с другими нейронами через узкую щель – синапс; передача импульсов через синапс опосредована химическими веществами – нейромедиаторами.

     Нервный импульс обычно зарождается в дендритах – тонких ветвящихся отростках нейрона, специализирующихся на получении информации от других нейронов и передаче ее телу нейрона. На дендритах и, в меньшем числе, на теле клетки имеются тысячи синапсов; именно через синапсы аксон, несущий информацию от тела нейрона, передает ее дендритам других нейронов.

     В окончании аксона, которое образует пресинаптическую часть синапса, содержатся маленькие пузырьки с нейромедиатором. Когда импульс достигает пресинаптической мембраны, нейромедиатор из пузырька высвобождается в синаптическую щель. Окончание аксона содержит только один тип нейромедиатора, часто в сочетании с одним или несколькими типами нейромодуляторов

     Нейромедиатор, выделившийся из пресинаптической мембраны аксона, связывается с рецепторами на дендритах постсинаптического нейрона. Мозг использует разнообразные нейромедиаторы, каждый из которых связывается со своим особым рецептором.

     С рецепторами на дендритах соединены каналы в полупроницаемой постсинаптической мембране, которые контролируют движение ионов через мембрану. В покое нейрон обладает электрическим потенциалом в 70 милливольт (потенциал покоя), при этом внутренняя сторона мембраны заряжена отрицательно по отношению к наружной. Хотя существуют различные медиаторы, все они оказывают на постсинаптический нейрон либо возбуждающее, либо тормозное действие. Возбуждающее влияние реализуется через усиление потока определенных ионов, главным образом натрия и калия, через мембрану. В результате отрицательный заряд внутренней поверхности уменьшается – происходит деполяризация. Тормозное влияние осуществляется в основном через изменение потока калия и хлоридов, в результате отрицательный заряд внутренней поверхности становится больше, чем в покое, и происходит гиперполяризация.

     Функция нейрона состоит в интеграции всех воздействий, воспринимаемых через синапсы на его теле и дендритах. Поскольку эти влияния могут быть возбуждающими или тормозными и не совпадать по времени, нейрон должен исчислять общий эффект синаптической активности как функцию времени. Если возбуждающее действие преобладает над тормозным и деполяризация мембраны превышает пороговую величину, происходит активация определенной части мембраны нейрона – в области основания его аксона (аксонного бугорка). Здесь в результате открытия каналов для ионов натрия и калия возникает потенциал действия (нервный импульс).

     Этот потенциал распространяется далее по аксону к его окончанию со скоростью от 0,1 м/с до 100 м/с (чем толще аксон, тем выше скорость проведения). Когда потенциал действия достигает окончания аксона, активируется еще один тип ионных каналов, зависящий от разности потенциалов, – кальциевые каналы. По ним кальций входит внутрь аксона, что приводит к мобилизации пузырьков с нейромедиатором, которые приближаются к пресинаптической мембране, сливаются с ней и высвобождают нейромедиатор в синапс.

1.3.     Миелин и глиальные клетки.

    Многие аксоны покрыты миелиновой оболочкой, которая образована многократно закрученной мембраной глиальных клеток. Миелин состоит преимущественно из липидов, что и придает характерный вид белому веществу головного и спинного мозга. Благодаря миелиновой оболочке скорость проведения потенциала действия по аксону увеличивается, так как ионы могут перемещаться через мембрану аксона лишь в местах, не покрытых миелином, – т.н. перехватах Ранвье. Между перехватами импульсы проводятся по миелиновой оболочке как по электрическому кабелю. Поскольку открытие канала и прохождение по нему ионов занимает какое-то время, устранение постоянного открывания каналов и ограничение их сферы действия небольшими зонами мембраны, не покрытыми миелином, ускоряет проведение импульсов по аксону примерно в 10 раз.

     Только часть глиальных клеток участвует в формировании миелиновой оболочки нервов (шванновские клетки) или нервных трактов (олигодендроциты). Гораздо более многочисленные глиальные клетки (астроциты, микроглиоциты) выполняют иные функции: образуют несущий каркас нервной ткани, обеспечивают ее метаболические потребности и восстановление после травм и инфекций.

1.4. Как работает мозг

     Рассмотрим простой пример. Что происходит, когда мы берем в руку карандаш, лежащий на столе? Свет, отраженный от карандаша, фокусируется в глазу хрусталиком и направляется на сетчатку, где возникает изображение карандаша; оно воспринимается соответствующими клетками, от которых сигнал идет в основные чувствительные передающие ядра головного мозга, расположенные в таламусе (зрительном бугре), преимущественно в той его части, которую называют латеральным коленчатым телом. Там активируются многочисленные нейроны, которые реагируют на распределение света и темноты. Аксоны нейронов латерального коленчатого тела идут к первичной зрительной коре, расположенной в затылочной доле больших полушарий. Импульсы, пришедшие из таламуса в эту часть коры, преобразуются в ней в сложную последовательность разрядов корковых нейронов, одни из которых реагируют на границу между карандашом и столом, другие – на углы в изображении карандаша и т.д. Из первичной зрительной коры информация по аксонам поступает в ассоциативную зрительную кору, где происходит распознавание образов, в данном случае карандаша. Распознавание в этой части коры основано на предварительно накопленных знаниях о внешних очертаниях предметов.

Планирование движения (т.е. взятия карандаша) происходит, вероятно, в коре лобных долей больших полушарий. В этой же области коры расположены двигательные нейроны, которые отдают команды мышцам руки и пальцев. Приближение руки к карандашу контролируется зрительной системой и интерорецепторами, воспринимающими положение мышц и суставов, информация от которых поступает в ЦНС. Когда мы берем карандаш в руку, рецепторы в кончиках пальцев, воспринимающие давление, сообщают, хорошо ли пальцы обхватили карандаш и каким должно быть усилие, чтобы его удержать. Если мы захотим написать карандашом свое имя, потребуется активация другой хранящейся в мозге информации, обеспечивающей это более сложное движение, а зрительный контроль будет способствовать повышению его точности.

     На приведенном примере видно, что выполнение довольно простого действия вовлекает обширные области мозга, простирающиеся от коры до подкорковых отделов. При более сложных формах поведения, связанных с речью или мышлением, активируются другие нейронные цепи, охватывающие еще более обширные области мозга.

 

1.5. Основные части головного мозга

     Головной мозг можно условно разделить на три основные части: передний мозг, ствол мозга и мозжечок. В переднем мозгу выделяют большие полушария, таламус, гипоталамус и гипофиз (одну из важнейших нейроэндокринных желез). Ствол мозга состоит из продолговатого мозга, моста (варолиева моста) и среднего мозга.

     Большие полушария – самая большая часть мозга, составляющая у взрослых примерно 70% его веса. В норме полушария симметричны. Они соединены между собой массивным пучком аксонов (мозолистым телом), обеспечивающим обмен информацией.

     Каждое полушарие состоит из четырех долей: лобной, теменной, височной и затылочной. В коре лобных долей содержатся центры, регулирующие двигательную активность, а также, вероятно, центры планирования и предвидения. В коре теменных долей, расположенных позади лобных, находятся зоны телесных ощущений, в том числе осязания и суставно-мышечного чувства. Сбоку к теменной доле примыкает височная, в которой расположены первичная слуховая кора, а также центры речи и других высших функций. Задние отделы мозга занимает затылочная доля, расположенная над мозжечком; ее кора содержит зоны зрительных ощущений.

    Области коры, непосредственно не связанные с регуляцией движений или анализом сенсорной информации, именуются ассоциативной корой. В этих специализированных зонах образуются ассоциативные связи между различными областями и отделами мозга и интегрируется поступающая от них информация. Ассоциативная кора обеспечивает такие сложные функции, как научение, память, речь и мышление.

     Подкорковые структуры. Ниже коры залегает ряд важных мозговых структур, или ядер, представляющих собой скопление нейронов. К их числу относятся таламус, базальные ганглии и гипоталамус. Таламус – это основное сенсорное передающее ядро; он получает информацию от органов чувств и, в свою очередь, переадресует ее соответствующим отделам сенсорной коры. В нем имеются также неспецифические зоны, которые связаны практически со всей корой и, вероятно, обеспечивают процессы ее активации и поддержания бодрствования и внимания. Базальные ганглии – это совокупность ядер (т.н. скорлупа, бледный шар и хвостатое ядро), которые участвуют в регуляции координированных движений (запускают и прекращают их).

     Гипоталамус – маленькая область в основании мозга, лежащая под таламусом. Богато снабжаемый кровью, гипоталамус – важный центр, контролирующий гомеостатические функции организма. Он вырабатывает вещества, регулирующие синтез и высвобождение гормонов гипофиза. В гипоталамусе расположены многие ядра, выполняющие специфические функции, такие, как регуляция водного обмена, распределения запасаемого жира, температуры тела, полового поведения, сна и бодрствования.

     Ствол мозга расположен у основания черепа. Он соединяет спинной мозг с передним мозгом и состоит из продолговатого мозга, моста, среднего и промежуточного мозга.

Через средний и промежуточный мозг, как и через весь ствол, проходят двигательные пути, идущие к спинному мозгу, а также некоторые чувствительные пути от спинного мозга к вышележащим отделам головного мозга. Ниже среднего мозга расположен мост, связанный нервными волокнами с мозжечком. Самая нижняя часть ствола – продолговатый мозг – непосредственно переходит в спинной. В продолговатом мозгу расположены центры, регулирующие деятельность сердца и дыхание в зависимости от внешних обстоятельств, а также контролирующие кровяное давление, перистальтику желудка и кишечника.

На уровне ствола проводящие пути, связывающие каждое из больших полушарий с мозжечком, перекрещиваются. Поэтому каждое из полушарий управляет противоположной стороной тела и связано с противоположным полушарием мозжечка.

     Мозжечок расположен под затылочными долями больших полушарий. Через проводящие пути моста он связан с вышележащими отделами мозга. Мозжечок осуществляет регуляцию тонких автоматических движений, координируя активность различных мышечных групп при выполнении стереотипных поведенческих актов; он также постоянно контролирует положение головы, туловища и конечностей, т.е. участвует в поддержании равновесия. Согласно последним данным, мозжечок играет весьма существенную роль в формировании двигательных навыков, способствуя запоминанию последовательности движений.

     Другие системы. Лимбическая система – широкая сеть связанных между собой областей мозга, которые регулируют эмоциональные состояния, а также обеспечивают научение и память. К ядрам, образующим лимбическую систему, относятся миндалевидные тела и гиппокамп (входящие в состав височной доли), а также гипоталамус и ядра т.н. прозрачной перегородки (расположенные в подкорковых отделах мозга).

     Ретикулярная формация – сеть нейронов, протянувшаяся через весь ствол к таламусу и далее связанная с обширными областями коры. Она участвует в регуляции сна и бодрствования, поддерживает активное состояние коры и способствует фокусированию внимания на определенных объектах.


1.6. Электрическая активность мозга

     С помощью электродов, размещенных на поверхности головы или введенных в вещество мозга, можно зафиксировать электрическую активность мозга, обусловленную разрядами его клеток. Запись электрической активности мозга с помощью электродов на поверхности головы называется электроэнцефалограммой (ЭЭГ). Она не позволяет записать разряд отдельного нейрона. Только в результате синхронизированной активности тысяч или миллионов нейронов появляются заметные колебания (волны) на записываемой кривой.

     При постоянной регистрации на ЭЭГ выявляются циклические изменения, отражающие общий уровень активности индивида. В состоянии активного бодрствования ЭЭГ фиксирует низкоамплитудные неритмичные бета-волны. В состоянии расслабленного бодрствования с закрытыми глазами преобладают альфа-волны частотой 7–12 циклов в секунду. О наступлении сна свидетельствует появление высокоамплитудных медленных волн (дельта-волн). В периоды сна со сновидениями на ЭЭГ вновь появляются бета-волны, и на основании ЭЭГ может создаться ложное впечатление, что человек бодрствует (отсюда термин «парадоксальный сон»). Сновидения часто сопровождаются быстрыми движениями глаз (при закрытых веках). Поэтому сон со сновидениями называют также сном с быстрыми движениями глаз. ЭЭГ позволяет диагностировать некоторые заболевания мозга, в частности эпилепсию.

     Если регистрировать электрическую активность мозга во время действия определенного стимула (зрительного, слухового или тактильного), то можно выявить т.н. вызванные потенциалы – синхронные разряды определенной группы нейронов, возникающие в ответ на специфический внешний стимул. Исследование вызванных потенциалов позволило уточнить локализацию мозговых функций, в частности связать функцию речи с определенными зонами височной и лобной долей. Это исследование помогает также оценить состояние сенсорных систем у больных с нарушением чувствительности.

 

1.7. Нейрохимия мозга

     К числу самых важных нейромедиаторов мозга относятся ацетилхолин, норадреналин, серотонин, дофамин, глутамат, гамма-аминомасляная кислота (ГАМК), эндорфины и энкефалины. Помимо этих хорошо известных веществ, в мозге, вероятно, функционирует большое количество других, пока не изученных. Некоторые нейромедиаторы действуют только в определенных областях мозга. Так, эндорфины и энкефалины обнаружены лишь в путях, проводящих болевые импульсы. Другие медиаторы, такие, как глутамат или ГАМК, более широко распространены.

Действие нейромедиаторов. Как уже отмечалось, нейромедиаторы, воздействуя на постсинаптическую мембрану, изменяют ее проводимость для ионов. Часто это происходит через активацию в постсинаптическом нейроне системы второго «посредника», например циклического аденозинмонофосфата (цАМФ). Действие нейромедиаторов может видоизменяться под влиянием другого класса нейрохимических веществ – пептидных нейромодуляторов. Высвобождаемые пресинаптической мембраной одновременно с медиатором, они обладают способностью усиливать или иным образом изменять эффект медиаторов на постсинаптическую мембрану.

Важное значение имеет недавно открытая эндорфин-энкефалиновая система. Энкефалины и эндорфины – небольшие пептиды, которые тормозят проведение болевых импульсов, связываясь с рецепторами в ЦНС, в том числе в высших зонах коры. Это семейство нейромедиаторов подавляет субъективное восприятие боли.

Психоактивные средства – вещества, способные специфически связываться с определенными рецепторами в мозгу и вызывать изменение поведения. Выявлено несколько механизмов их действия. Одни влияют на синтез нейромедиаторов, другие – на их накопление и высвобождение из синаптических пузырьков (например, амфетамин вызывает быстрое высвобождение норадреналина). Третий механизм состоит в связывании с рецепторами и имитации действия естественного нейромедиатора, например эффект ЛСД (диэтиламида лизергиновой кислоты) объясняют его способностью связываться с серотониновыми рецепторами. Четвертый тип действия препаратов – блокада рецепторов, т.е. антагонизм с нейромедиаторами. Такие широко используемые антипсихотические средства, как фенотиазины (например, хлорпромазин, или аминазин), блокируют дофаминовые рецепторы и тем самым снижают эффект дофамина на постсинаптические нейроны. Наконец, последний из распространенных механизмов действия – торможение инактивации нейромедиаторов (многие пестициды препятствуют инактивации ацетилхолина).

Давно известно, что морфин (очищенный продукт опийного мака) обладает не только выраженным обезболивающим (анальгетическим) действием, но и свойством вызывать эйфорию. Именно поэтому его и используют как наркотик. Действие морфина связано с его способностью связываться с рецепторами эндорфин-энкефалиновой системы человека. Это лишь один из многих примеров того, что химическое вещество иного биологического происхождения (в данном случае растительного) способно влиять на работу мозга животных и человека, взаимодействуя со специфическими нейромедиаторными системами. Другой хорошо известный пример – кураре, получаемое из тропического растения и способное блокировать ацетилхолиновые рецепторы. Индейцы Южной Америки смазывали кураре наконечники стрел, используя его парализующее действие, связанное с блокадой нервно-мышечной передачи.

 

1.8. Исследования мозга

     Исследования мозга затруднены по двум основным причинам. Во-первых, к мозгу, надежно защищенному черепом, невозможен прямой доступ. Во-вторых, нейроны мозга не регенерируют, поэтому любое вмешательство может привести к необратимому повреждению.

     Несмотря на эти трудности, исследования мозга и некоторые формы его лечения (прежде всего нейрохирургическое вмешательство) известны с древних времен. Археологические находки показывают, что уже в древности человек производил трепанацию черепа, чтобы получить доступ к мозгу. Особенно интенсивные исследования мозга проводились в периоды войн, когда можно было наблюдать разнообразные черепно-мозговые травмы.

     Повреждение мозга в результате ранения на фронте или травмы, полученной в мирное время, – своеобразный аналог эксперимента, при котором разрушают определенные участки мозга. Поскольку это единственно возможная форма «эксперимента» на мозге человека, другим важным методом исследований стали опыты на лабораторных животных. Наблюдая поведенческие или физиологические последствия повреждения определенной мозговой структуры, можно судить о ее функции.

     Электрическую активность мозга у экспериментальных животных регистрируют с помощью электродов, размещенных на поверхности головы или мозга либо введенных в вещество мозга. Таким образом удается определить активность небольших групп нейронов или отдельных нейронов, а также выявить изменения ионных потоков через мембрану. С помощью стереотаксического прибора, позволяющего ввести электрод в определенную точку мозга, исследуют его малодоступные глубинные отделы.

     Другой подход состоит в том, что извлекают небольшие участки живой мозговой ткани, после чего ее существование поддерживают в виде среза, помещенного в питательную среду, или же клетки разобщают и изучают в клеточных культурах. В первом случае можно исследовать взаимодействие нейронов, во втором – жизнедеятельность отдельных клеток.

     При изучении электрической активности отдельных нейронов или их групп в различных областях мозга вначале обычно регистрируют исходную активность, затем определяют эффект того или иного воздействия на функцию клеток. Согласно другому методу, через имплантированный электрод подается электрический импульс, с тем чтобы искусственно активировать ближайшие нейроны. Так можно изучать воздействие определенных зон мозга на другие его области. Этот метод электрической стимуляции оказался полезен при исследовании стволовых активирующих систем, проходящих через средний мозг; к нему прибегают также и при попытках понять, как протекают процессы научения и памяти на синаптическом уровне.

     Уже сто лет назад стало ясно, что функции левого и правого полушарий различны. Французский хирург П. Брока, наблюдая за больными с нарушением мозгового кровообращения (инсультом), обнаружил, что расстройством речи страдали только больные с повреждением левого полушария. В дальнейшем исследования специализации полушарий были продолжены с помощью иных методов, например регистрации ЭЭГ и вызванных потенциалов.

     В последние годы для получения изображения (визуализации) мозга используют сложные технологии. Так, компьютерная томография (КТ) произвела революцию в клинической неврологии, позволив получать прижизненное детальное (послойное) изображение структур мозга. Другой метод визуализации – позитронная эмиссионная томография (ПЭТ) – дает картину метаболической активности мозга. В этом случае человеку вводится короткоживущий радиоизотоп, который накапливается в различных отделах мозга, причем тем больше, чем выше их метаболическая активность. С помощью ПЭТ было также показано, что речевые функции у большинства обследованных связаны с левым полушарием. Поскольку мозг работает с использованием огромного числа параллельных структур, ПЭТ дает такую информацию о функциях мозга, которая не может быть получена с помощью одиночных электродов.

     Как правило, исследования мозга проводятся с применением комплекса методов. Например, американский нейробиолог Р.Сперри с сотрудниками в качестве лечебной процедуры производил перерезку мозолистого тела (пучка аксонов, связывающих оба полушария) у некоторых больных эпилепсией. В последующем у этих больных с «расщепленным» мозгом исследовалась специализация полушарий. Было выявлено, что за речь и другие логические и аналитические функции ответственно преимущественно доминантное (обычно левое) полушарие, тогда как недоминантное полушарие анализирует пространственно-временные параметры внешней среды. Так, оно активируется, когда мы слушаем музыку. Мозаичная картина активности мозга свидетельствует о том, что внутри коры и подкорковых структур существуют многочисленные специализированные области; одновременная активность этих областей подтверждает концепцию мозга как вычислительного устройства с параллельной обработкой данных.

     С появлением новых методов исследования представления о функциях мозга, вероятно, будут видоизменяться. Применение аппаратов, позволяющих получать «карту» метаболической активности различных отделов мозга, а также использование молекулярно-генетических подходов должны углубить наши знания о протекающих в мозгу процессах.

Глава 2: «Память человека»

 

     Память, способность к воспроизведению прошлого опыта, одно из основных свойств нервной системы, выражающееся в способности длительно хранить информацию о событиях внешнего мира и реакциях организма и многократно вводить  ее в сферу сознания и поведения.

2.1. Два вида памяти: кратковременная и долговременная

 

     Память свойственна человеку и животным, имеющим достаточно развитую центральную нервную систему. Объем памяти, длительность и надежность хранения информации, как и способность к восприятию сложных сигналов среды и выработки адекватных реакций, возрастает в ходе эволюции по мере увеличения числа нервных клеток мозга и усложнения его структуры. Физиологические исследования памяти обнаруживают два основных этапа ее формирования, которым соответствуют два вида памяти: кратковременная и долговременная. Кратковременная память характеризуются временем хранения информации от секунд до десятков минут и разрушается воздействиями, влияющими на согласованную работу нейронов (электрошок, наркоз, гипотермия и др.). Долговременная память, время хранения информации, в которой сравнимо с продолжительность жизни организма, устойчива к воздействиям, нарушающим кратковременную память. Переход от первого вида памяти ко второму постепенен. Нейрофизиологи полагают, что кратковременная память, основана на активных механизмах, поддерживающих возбуждение определенных нейронных систем. При переходе к долговременной памяти связи между нейронами, входящими в состав таких систем, фиксируются структурными изменениями в отдельных клетках.

 

2.2. Эффективность синапсов

  

 Опыты с иссечением участков коры больших полушарий головного мозга и электрофизиологические исследования показывают, что «запись» каждого события распределена по большим и малым обширным зонам мозга. Это позволяет думать, что информация о разных событиях отражается не в возбуждении разных нейронов, а в различных комбинациях совозбужденных участков и клеток мозга. Нервные клетки не делятся в течение жизни, и новые реакции могут вырабатываться и запоминаться нервной системой только на основе создания новых связей между имеющимися в мозге нейронами. Новые нейронные системы фиксируются за счет изменений в межнейронных контактах – синапсах, в которых нервный импульс вызывает выделение специальных химических веществ – медиатора, способного облегчить или затормозить генерацию импульса следующим нейроном. Долговременные изменения эффективности синапсов могут быть обусловлены изменениями в биосинтезе белков, от которых зависит чувствительность синаптичекой мембраны к медиатору. Установлено, что биосинтез белков активируется при возбуждении нейронов на разных уровнях организации ЦНС, а блокада синтеза нуклеиновых кислот или белков затрудняет или исключает формирование долговременной памяти. Очевидно, что одна из функций активации синтеза при возбуждении – структурная фиксация нейронных систем, что и лежит в основе долговременной памяти. Имеющиеся экспериментальные данные не позволяет пока решить, происходит ли проторение путей распространения возбуждения за счет увеличения проводимости имеющихся синапсов или в результате возникновения дополнительных межнейронных связей. Оба возможных механизма нуждаются в интенсификации белкового синтеза. Первый – сводится к частично изученным явлениям клеточной адаптации, и хорошо согласуются с представлением об универсальности основных биохимических систем клетки. Второй – требует направленного роста отростков нейронов и, в конце концов, кодирование поведенческой информации в структуре химических агентов, управляющих таким ростов и заложенных в генетическом аппарате клетки.

     Для исследования памяти применяют методы клинической и экспериментальной психофизиологии, физиологии поведения, морфологии и гистохимии, электрофизиологии мозга и отдельных нейронов, фармакологические методы, а также методы аналитической биохимии. В зависимости от задач подлежащих решению, исследованию механизмов памяти осуществляется на разных объектах – от человека до культуры нервных клеток.

 

Список используемой литературы

1.   Жуков Н.И. Проблема сознания. – Минск: Университетское, 1987. – 207 с.

2.   Никифоров А.С. Этюды о разуме/ Худож. В.В. Суриков. – М.: Сов. Россия, 1981. – 280 с.: ил.

3.   Барон М.А., Майорова Н.А. Функциональная стереоморфология мозговых оболочек: Атлас. – М.: Медицина, 1982. – 352 с.: ил.

4.   Горелов А.А. Концепции современного естествознания : Учеб. Пособие для вузов. – М.:  ВЛАДОС, 1999. – 512 с.

5.   Берн Э. Введение в психиатрию и психоанализ для непосвященных. – Минск: Попурри, 1998. – 528 с.

6.   Грудинкин А. Вечная молодость мозга / А. Грудинкин // Знание-Сила. – 2002. - №2. – с. 6-7.

7.   Годфруа Ж. Что такое психология: Пер. с франц./Под ред. Г.Г. Аракелова.-М.: Мир. Т. 1-1992.-496с.

8.   Куприянович Л.И. Резервы улучшения памяти: Кибернетические аспекты.-М.: Наука, 1970.-141с.

 

Министерство высшего образования Российской Федерации Дальневосточная государственная академия экономики и управленияРЕФЕРАТ Мозг и память человека: молекулярный аспект                                  Выполнил:                  

 

 

 

Внимание! Представленный Реферат находится в открытом доступе в сети Интернет, и уже неоднократно сдавался, возможно, даже в твоем учебном заведении.
Советуем не рисковать. Узнай, сколько стоит абсолютно уникальный Реферат по твоей теме:

Новости образования и науки

Заказать уникальную работу

Свои сданные студенческие работы

присылайте нам на e-mail

Client@Stud-Baza.ru