. , , ,

,,,

(-) — ,

1.

2.

2.1

2.2

3. -

4.

5.


. . , . , . , . . . , 300 . . , 6 . n-

a0xn+a1xn-1++an-1x+an=0, a0¹0

n³5 , , , , .

cos(x)=0

. , .

, " ", , . , .


f(x) =0,

- f(x), , ..

() .

.


1.

:

.

, , (, ). , F(X) [A;B].

, F(X), - X0, .

.

.

1.

, [-0.4,0].

x=f(x),


.

:

.

2.

.

.

3

x= (x),

1 .

2 .

3 .


2.

2.1

f(x)=0 (2.1)

X[a, b]. (2.1) :

x=φ(x). (2.2)

, . :

x=g(x) f(x) + x ≡ φ(x),

g(x) - , [a,b].

x(0) - - x ( x(0)=(a+b)/2). :

x(k+1)=φ(x(k)), k=0, 1, 2, ... (2.3)

x(0).

: 1 {x(k)} φ , x=φ(x)

:


. (2.4)

x(k+1)=φ(x(k)) (2.4), φ (2.4)

.

x*=φ(x*). , x* - (2.2), .. X=x*.

{x(k)}. :

2.1: ( ) x=φ(x) [a,b] :

1) φ(x) C1[a,b];

2) φ(x) [a,b] " x [a,b];

3) q > 0: | φ '(x) | ≤ q < 1 x [a,b]. T {x(k)}, x(k+1) = φ(x(k)), k=0, 1, ... x(0) [a,b].

: {x(k)}: x(k) = φ(x(k-1)) x(k+1) = φ(x(k)) T 2) x(k) x(k+1) [a,b], :

x (k+1) - x (k) = φ(x (k)) - φ(x (k-1)) = φ '(c k )(x (k) - x (k-1)),

c k (x (k-1), x (k)).

:

| x (k+1) - x (k) | = | φ '(c k ) | | x (k) - x (k-1) | ≤ q | x (k) - x (k-1)| ≤

≤ q ( q | x (k-1) - x (k-2) | ) = q 2 | x (k-1) - x (k-2) | ≤ ... ≤ q k | x (1) - x (0) |. (2.5)

S = x (0) + ( x (1) - x (0) ) + ... + ( x (k+1) - x (k) ) + ... . (2.6)

, ,

Sk = x (0) + ( x (1) - x (0) ) + ... + ( x (k) - x (k-1) ).

,

Sk = x (k)). (2.7)

, {x(k)}.

p (2.6) ( x(0))

q 0 | x (1) - x (0) | + q 1 |x (1) - x (0)| + ... + |x (1) - x (0)| + ..., (2.8)

( q < 1). (2.5) (2.6) (2.8) ( (2.8) (2.6). (2.6) . T {x(0)}.

,

|X - x (k+1)|

.

X - x(k+1) = X - Sk+1 = S- Sk+1 = (x(k+2) - (k+1) ) + (x(k+3) - x(k+2) ) + ... .

|X - x(k+1)| ≤ |x(k+2) - (k+1) | + |x(k+3) - x(k+2) | + ... ≤ qk+1 |x(1) - x(0) | + qk+2 |x(1) - x(0) | + ... = qk+1|x(1) - x(0) | / (1-q).

|X - x(k+1)| ≤ qk+1|x(1) - x(0) | / (1-q). (2.9)

x(0) x(k), x(1) - x(k+1) ( ) , qk+1 ≤ q :

|X - x(k+1)| ≤ qk+1|x(k+1) - x(k) | / (1-q) ≤ q|x(k+1) - x(k) | / (1-q).

, :

|X - x(k+1)| ≤ q|x(k+1) - x(k) | / (1-q). (2.10)

. x=φ(x) , ε,

|X - x(k+1)| ≤ ε.

(2.10) , ε ,

|x(k+1)-x(k)| ≤ (1-q)/q. (2.11)

, x=φ(x) , ε(1-q)/q.

2.2: q

.

2.2

. , - :


3.

- x .

4.

. 0, . . , :


5.


3. -

- 6, 7.

:

FN, F ;

X, START ;

E, PRECISION ;

N, COUNT_ITER .

6 SIMPLE_ITER


7


4.

SIMPLE_ITER.txt

;,

(DEFUN SIMPLE_ITER (N E X FN)

(COND

((AND (<= N 0) (> (ABS (- (FUNCALL FN X) X)) (* E (FUNCALL FN X)))) X)

(T (SIMPLE_ITER (- N 1) E (FUNCALL FN X) FN))

)

)

;

(LOAD "D:\\FUNCTION.TXT")

;

(SETQ START (/ (- (CADR INTERVAL) (CAR INTERVAL)) 2))

;

(SETQ ROOT (SIMPLE_ITER COUNT_ITER PRECISION START (FUNCTION F)))

;

(SETQ OUTPUT_STREAM (OPEN "D:\\ROOT.TXT" :DIRECTION :OUTPUT))

;

(PRINT 'ROOT OUTPUT_STREAM)

(PRINT ROOT OUTPUT_STREAM)

;

(TERPRI OUTPUT_STREAM)

(CLOSE OUTPUT_STREAM)

FUNCTION.txt ( 1)

;

(DEFUN F (X)

(/ (+ (- (* X X) (* 5 (COS X))) 3.25) 3)

)

;

(SETQ COUNT_ITER 100)

;,

(SETQ INTERVAL '(-0.4 0))

;

(SETQ PRECISION 0.0001)

FUNCTION.txt ( 2)

;

(DEFUN F (X)

(- (* X X) (COS X))

)

;

(SETQ COUNT_ITER 60)

;,

(SETQ INTERVAL '(1 1.5))

;

(SETQ PRECISION 0.0001)


5.

1.

8

9

2.

10


11


, , . , , .

. , .. . .


1.         , .. [] / .., ... .: , 2007. 708 .

2.         , .. : . [] / .., 3- .:-, 2006. C. 412.

3.         , .. . [ ] / .. . .: , 2001. . 504.

4.    [ ] : http://solidbase.karelia.ru/edu/meth_calc/files/12.shtm

5.         , .. . [] / .., ... .: , 2006. C. 346.

6.         , .. [] / .., .., ... : , 2002. 160 .

7.         , .. Lisp. [ ] / .., .. . .: , 2003. . 79.

8.         . [] / ., .. .: , 1990. 460 .

1. 2. 2.1 2.2 3. - 4.

 

 

 

! , , , .
. , :