курсовые,контрольные,дипломы,рефераты
Катаргин Р.К.
НАСЛЕДИЕ ТЕСЛЫ
Три знаменитых электротехника мира – Вольта, Фарадей и Тесла – своими работами заставили всё человеческое общество стремительно двинуться в направлении электрификации нашего быта, транспорта, промышленности. Вольта и Фарадей воспринимаются по учебникам физики молодым поколением нормально, а вот Николу Тесла немного «отставили» в сторону, а, пожалуй, напрасно. Представляете, громадное количество электролиний, трансформаторов, миллиардные тиражи электродвигателей переменного тока, и вообще весь переменный ток, заполонившие нашу технику,- всё это работа Теслы незаслуженно забытая нашим обществом из-за войн и революций 20 века. Своими экспериментами и изобретениями он намного опередил своё время, и оставил для нас, кроме отмеченного наследия, очень уникальный аппарат способный сделать прорыв в новую цивилизацию. Такие громкие слова не просто дань гению Теслы, об этом говорят недавно выполненные эксперименты, почти одновременно проведенные в шести точках земного простора.
Начнём немного издалека. С повышением энергетического потребления населением цена на топливо для электростанций неуклонно растёт, что заставляет специалистов электриков думать о получении электричества из окружающей среды, тем более, что Никола Тесла уже получал данную энергию. Такую энергию принято называть свободной энергией. В малых мощностях получение уже происходит, для этого используют разнообразные способы; извлекают из постоянных магнитов, из тепла воды, из атмосферного конденсатора в котором мы живём, из ферромагнитных сплавов и т.д. Но задача стоит гораздо объёмнее,- надо научиться получать электричество в широких масштабах, чтобы любая семья могла пользоваться электроэнергией вне зависимости от места жительства. И такая возможность, оказывается, давно имеется, и человечество «успешно с ней борется» в полном смысле этого выражения.
Исторически известно, что Тесла в ночное время зажигал небо над Нью-Йорком, а затем и над Атлантикой. Ночью становилось светло как днём, но при этом из под копыт лошадей сыпались длинные искры, а у прохожих светились волосы и пальцы. Об этом много писали в газетах. Представляете, какая должна быть мощность излучения энергии, что бы произвести данный эффект. А, как известно, в то время электростанции были предельно слабенькими, а даже современным электростанциям, вместе взятым, сейчас это сделать не под силу. Однако доподлинно точно известно, что энергию он получал при помощи своей катушки и «черпал» её прямо из окружающей среды. Что же это за катушка такая, что способна «черпать» электроэнергии столько, сколько необходимо данному человеку в данном месте? Назовём её «тесловкой»
Как утверждал «товарищ Тесла», людей окружают три океана. Первый океан – воздушный, которым мы дышим. Второй океан – водная стихия, которая представлена водой морей, океанов и постоянными парами воды в воздухе. Третий океан – эфир окружающий нас. Им заполнено не только всё пространство вселенной, но и каждая клеточка живых и неодушевлённых предметов, поскольку известно, что природа не терпит пустоты. Причём этот эфир обладает колоссальной энергией, тепловой и электрической. Человечеству ещё предстоит освоить данный океан, так как общество людей ещё только–только начинает жить не животными инстинктами. Познание электричества есть всего лишь самая первая, крохотная ступенька на пути развития цивилизации.
Устройство катушки Теслы предельно простое. К примеру, ещё в начале 30 годов в Ленинграде (С. Петербург) была построена такая установка на 5 миллионов вольт. Первичная обмотка имела всего два медных витка с питанием 35 киловольт, вторичная обмотка выполнена на 2000 витков сечением 0,5 мм. Ёмкость конденсатора 2 микрофарады. Установка предназначалась для ускорителя ядерных частиц. На рис. 1 показана схема устройства такой катушки Тесла, где 1 – источник постоянного напряжения, 2 – конденсатор, 3 – разрядник, представляющий собой два шарика, между которыми загорается обыкновенная электрическая дуга (как при электросварке), только слабенькая. Под цифрой 4 обозначена первичная обмотка из медной трубки,
Рис.1. Принципиальная схема катушки Теслы.
а 5 – есть вторичная обмотка, благодаря которой получаются любые мыслимые напряжения. Согласно рассуждений Теслы [1] первичная обмотка при повышении тока в колебании раздвигает окружающий эфир от оси обмотки до витков и отпускает раздвижку со спадом тока. При спаде эфир «схлопывается» в изначальное состояние. Таким образом, окружающий эфир внутри первичной обмотки начинает раздвигаться и сдвигаться от «толчков» тока обмотки, вращаясь при этом, что Тесла и называл вибрациями. Вторичная обмотка, находящаяся внутри первичной, подпадает под вибрирующий поток. Естественно понять, что вихри эфира постоянно пересекают её витки в поперечном направлении, - подчеркнём, в поперечном. В результате в проводе «вторички» наводится напряжение, которое и высвечивается на острие вверху обмотки в виде короны, т.е. происходит ионизация воздуха от напряжения. Корона требует затрат определённой мощности. Этой короной и «балуются» любители катушки Теслы, извлекая длинные, красивые разряды в воздухе.
Многие снимали осциллограммы колебаний тока в катушках Теслы, но почему-то никто не обратил внимания на сопоставление полученных кривых тока. Рассмотрим колебания ленинградской катушки снятые ещё первыми осциллографами. На рис.2 взятого из [2] представлены осциллограммы синусоиды тока одного колебания, где под буквой а) график колебаний тока первичной обмотки. Для сильной индуктивной связи внутри обмоток вставлено трансформаторное железо и кривые тока на осциллограмме первичной и вторичной обмотки колебаний, как и в любом трансформаторе, сплетены между собой очень плотно и колеблются вместе. Слева на графике железо вытащили, получилась слабая индуктивная связь. В этом случае а) видно, что в первичной обмотке при одиночном импульсе тока эти колебания затухают в точке К . Под буквой б) колебания тока во вторичной обмотке при слабой связи, здесь, наоборот, колебание начинается немного позднее нулевой точки и расширяется по высоте напряжения до определённого размера и только спустя некоторое время после точки К колебания тока в максимуме обрываются лишь в точке С, хотя ток в первичной обмотке уже давно отсутствует. Спрашивается, за счёт какой же среды продолжаются колебания тока во вторичной обмотке после точки К и вплоть до С ? Вполне ясно, что «святой дух» тут не причём. Значит это инерция какой-то среды, по Тесле это однозначно эфир. Видите, он даже без осциллографа это понял, а мы, имея самые новейшие приборы, не задумываемся о таких очевидных фактах электротехники. Раз среда существует, значит, мы можем её использовать для получения электричества. А как это выполнить практически?
Рис.2. Осциллограммы колебаний напряжения в катушке Теслы; а) в первичной обмотке и б) во вторичной. Снято при сильной индуктивной связи (с трансформаторным железом внутри) и при слабой связи (без него).
Расскажем об этом на примере общения. «Болтая» на форуме интернета, мы вчетвером договорились изготовить генератор тока по статье «Тесла – генератор тока». Когда изготовили по первой катушке, было всё нормально – работали дружно переговариваясь. Но когда приступили к изготовлению второй катушки (генератор состоит из двух), тут начались споры о том, делать правую или левую намотку провода, поскольку от направления намотки, возможно, зависела работоспособность генератора, а мы не знали, как лучше сделать. Для верности был смысл делать две вторичных обмотки и правой, и левой намотки. Так оказалось, что изготовив генератор «в черновую», у каждого осталось по лишней вторичной обмотке. Договорились начать электрические испытания, используя третью, одиночную обмотку, применяя её для определения параметров генератора. Вот тут и начались необычности. При включении третьей, рядом стоящей обмотки, на верхней игле её вторички загоралась корона с шипением и треском,- красота необычайная. Но, что интересно, другие две, предназначенные для генератора тоже начинали коронировать, хотя стояли на расстоянии почти двух метров не подключённые к сети. Это было удивительно, и это произошло у всех четверых, естественно, у всех четверых и начались бурные дебаты, что это такое и как поступить дальше. Оказалось, что и правая и левая намотки неплохо коронируют в воздухе благодаря соседней, работающей. У не работающих катушек не требовались первичные обмотки, вокруг одной работающей с первичной обмоткой можно поставить и двадцать, и тридцать штук даже без «первичек» в радиусе 1,5 – 3 метров (при напряжении 180 киловольт) и все будут работать – коронировать. А, как известно корона требует расхода мощности. И тут прозвучало – ребята, да это же и есть резонанс эфира Теслы, и о котором постоянно пишет В.А. Ацюковский! И что тут началось…. Посыпалась уйма различных предложений, и в этом «ералаше» трудно было найти истину. С Дальнего востока пишут одно, с Урала другое, с Украины третье и так продолжалось почти три месяца. Совещание оборвалось летом (2009 г.), когда Тариэль Капанадзе из Грузии выступил в интернете с фильмом по получению электричества из эфира тоже на базе катушки Теслы. Всем четверым стало предельно ясно, что надо делать, и мы не одиноки в этом вопросе, и генератор, использующий топливо вообще никому не нужен. Снова началась работа и все стали «хвастаться», - у меня получилось, у меня тоже работает и т.д. Пошла лавина. Так что интернету большое, громадное спасибо, что сумел объединить и умножить наши усилия!
Каждый желающий может изготовить хотя бы две одинаковые по числу витков и диаметру катушки Теслы, одну из них включить в работу, а другую, даже просто вторичную обмотку без первички, двигать относительно работающей и получать на ней корону на близком расстоянии (в пределах полметра), а отодвигая в сторону, видеть затухающую корону. В это время надо смотреть за величиной тока работающей катушки и воочию убедиться в том, что ток питания от сети работающей катушки не меняет своего значения от пространственного положения не запитанной катушки. Спрашивается, - откуда берётся энергия на корону для пустой вторичной обмотки?
В принципе, весь мир должен был догадаться об этом раньше, и мы не исключение. Ещё в двадцатых и тридцатых годах, на заре развития электротехники, строящиеся электростанции на переменном токе, были достаточно маломощными, и каждая питала всего несколько предприятий по одной сети, на которых работало до сотен электродвигателей, нагревательных печей, сварочных аппаратов и электролитических ванн. При этом происходили интересные вещи. В процессе эксплуатации, ни с того ни с сего, в сети напряжение начинало само по себе увеличиваться выше 380 Вольт до 450 и более, и генераторы на электростанции начинали работать как бы вхолостую. А поскольку пар давил на лопатки турбин (быстро изменить давление горячего пара невозможно), турбины начинали вращаться быстрее и частота тока в сети вырастала. Все электродвигатели станков на предприятиях начинали работать быстрее (их мощность напрямую зависит от частоты тока), хотя нагрузка на генераторы тока на электростанции уменьшалась, а автоматика в этот момент перекрывала подачу пара на турбины. Естественно генераторы резко тормозились, уменьшали подачу электричества, а в этом момент избыток напряжения пропадал, и предприятия начинали «задыхаться» из-за недополучения энергии. Происходила громадная раскачка напряжения и частоты тока в данной электрической сети вплоть до полного отключения. Со временем научились в такой момент подключать другую, параллельную сеть, чем и стабилизировали положение дел. С укрупнением энергосистем данные «запарки» всё уменьшались, но теория таких колебаний уже принципиально была создана и дополнительная энергия стала называться реактивной мощностью, которая происходила от применяемых конденсаторов и катушек индуктивности в электродвигателях и трансформаторах (в радиотехнике ЭДС самоиндукции). Представляете, какие-то катушки и конденсаторы создавали мощность сопоставимую с электростанцией и работали против неё. Ток от них всегда направлен навстречу тока раскачки и получалось, что электростанция почти не работает, а провода греются как при повышенной нагрузке. Были определены и точные «виновники» данных явлений – это резонанс токов и резонанс напряжений. Но, спрашивается, откуда у конденсаторов и катушек индуктивности берётся такая мощность, способная раскачать энергетическую систему в сотню современных предприятий? При «нормальном» мышлении можно ответить единственным предположением – такая энергия исходит от окружающей среды, а по Тесле - от эфира. В Академии наук такая задача даже не ставилась, поэтому все академики и ушли в сторону вакуума в отношении миропонимания. С данным явлением боролись только рядовые инженеры. Для компенсации реактивной мощности они стали применять мощные конденсаторные батареи, громадные синхронные машины-компенсаторы, делали изменяемые схемы питания нагрузок в зависимости от напряжения и тока в сети электростанций. В общем, борьба с реактивной мощностью во всём мире развернулась колоссальная и продолжается до сих пор.
Есть ещё в электрической практике не вполне адекватный фактор, приводящий иногда к несчастным случаям с персоналом. Если батарею конденсаторов не подключённую ни к чему оставить без закоротки обкладок (пластин-электродов), тогда, по прошествии суток или нескольких, батарея окажется заряженной электричеством почти в полной мере. И чем высоковольтнее батарея, тем быстрее она заряжается. Откуда эта электрическая мощность воспринимается в нарушение современного закона сохранения энергии? Для рядового инженера вполне понятно, - из окружающей среды (из эфира) и это та же самая реактивная энергия, а некоторые говорят, что энергия эта из вакуума. Но, технически грамотным людям понятно, что вакуум по названию является пустотой, тогда откуда у пустоты энергия? Но что интересно, во всём мире борются с этой реактивной энергией и никому в голову не пришло использовать её в качестве источника тока вместо электростанций. Здесь, для её получения не требуется топливо, хоронить отходы не надо, тут только необходимо колебать окружающую среду возле катушек и конденсаторов электрическим же способом. А вот какова затрачиваемая мощность на данные колебания – об этом поговорим позднее.
Снова отметим, что из графиков рис.2 понятно, что катушка Теслы, в отличие от остальных электротехнических трансформаторов, имеет малую индуктивную связь между первичной и вторичной обмотками, то есть энергия от первичной обмотки легко переходит во вторичную, а наоборот – сравнительно плохо. Когда во вторичной обмотке создаётся ответный импульс тока, он раздвигает эфир от центра устройства до своих витков. Далее этих витков эфир почти не идёт и плохо попадает на первичную, из-за отсутствия железного сердечника, поскольку выполнена плохая индуктивная связь называемая «ниже критической». Понимание этого фактора наталкивает на однозначную мысль – для съёма энергии со вторички, которая находится «в свободном полёте» нужна третья обмотка, которая обязана находиться внутри вторичной, и чем успешнее будет работать «вторичка», тем эффективнее произойдёт съём энергии в третьей обмотке.
В опытах третья обмотка замыкалась накоротко медной перемычкой, которая грелась и на ней горела изоляция, а в первичной обмотке ток величиной в 1,8 Ампера даже не шелохнулся, как будто ничего не происходило, поскольку работа производится «на хвостике» между точками К и С по рис.2. Почти аналогичные условия возникают и во вторичной обмотке, но она примерно процентов на 10 – 15% обратно воздействует на первичный ток и питающее устройство начинает «чувствовать» величину нагрузки этой обмотки и обе легко выходят из резонанса. В общем, вторичная обмотка, воспринимая импульсы от первичной, становится главной и направляющей силой в раскачке эфира вокруг установки видимо за счёт своей большой площади и многовитковости. Образно говоря, энергия вторичной обмотки «трясёт эфир», а третья обмотка, помещённая внутрь вторичной «собирает на себя кусочки эфира», образуя поток электричества в третьем контуре.
Следует рассмотреть и конкретные параметры катушки Теслы в нашем опыте. Первичная обмотка выполнялась медной трубкой 6 – 10 мм в количестве 6 – 8 витков на одной катушке. Можно поставить отдельно рядом стоящих несколько «тесловок» штуки 3 или более вообще без первичных обмоток. Сама вторичная обмотка исполнялась длиной примерно 1 метр, диаметром 100 мм на полиэтиленовой или фторопластовой водопроводной трубе, с числом витков примерно 1000, с целью получения короны на верхнем конце. И самое главное, – третья обмотка внутри вторичной для каждой «тесловки» обязательна. Она выполняется толстым многожильным проводом (примерно 10 - 25 мм2) с утолщённой изоляцией с целью создания достаточного зазора между витками. Число витков определяется величиной необходимого напряжения. На концы третьей обмотки подсоединяется конденсатор с расчётом получения резонанса тока по уравнению:
1 = (2π f)2 L C, (1)
где f – частота тока, С – ёмкость конденсатора в фарадах, L – индуктивность обмотки в единицах Генри. Поскольку индуктивность зависит от числа витков, вполне естественно надо иметь прибор по замеру индуктивности в натуре при изготовлении, что ускорит настройку аппарата. Если необходимы большие мощности, тогда надо третьи обмотки соединять параллельно в общую схему через высокочастотные диоды, которая дана на рис.3. Необходимо отметить очень существенную деталь устройства. Все три обмотки каждой «тесловки» должны быть настроены на определённую частоту тока (скажем, на разрешенную радиокомитетом 100 килогерц) при помощи конденсаторов. Если первичная или вторичная обмотки будут в плохом резонансе, тогда третья обмотка теряет ток, необходимый для нагрузки, состоящей из наших с вами телевизоров, холодильников,
Рис.3 Самая простая принципиальная схема получения тока по методу Николы Теслы.
электроинструмента и т. д. Резонанс является основой всего устройства, что и отметил Капанадзе в своём видеоролике. Можно, конечно, использовать и соединение с заземлением, как это делает Капанадзе, что увеличивает отдачу тока в системе через вторичку и атмосферный объёмный заряд. Однако это привязывает устройство к месту установки, что не очень рационально для городских квартир, поскольку заземлить электрическую сеть от катушки в двух местах, скажем, находясь на девятом этаже. достаточно проблематично. Но надо отдать должное таланту Капанадзе, именно он первый после Теслы догадался использовать третью обмотку в тесловке внутри вторички. На рис.4 изображена примерная схема его устройства достойная уважения его сообразительности. Третью катушку он разделил на две части. Та часть, что находится внутри вторичной обмотки, воспринимает её электроимпульсы, соответственно муляжная обмотка – вторая часть контура тоже вынуждена совершать колебания тока, поскольку включена последовательно, к тому же она облучается с внешней стороны вторичной обмотки в такт колебаниям.
Рис.4. Оригинальная схема предполагаемого устройства катушки Теслы по Капанадзе.
Рассмотрим отношение мощностей. Если на первичную обмотку (рис.3.) подаётся 300 ватт энергии, то на вторичных обмотках рядом стоящих трёх «тесловках» выделяется тоже примерно по 250 ватт энергии, что в сумме составляет 750 ватт для короны. На трёх третьих обмотках тоже по 250 ватт, которые и можем использовать по назначению. Вторичные обмотки лучше не нагружать, поскольку они, получая свою долю энергии раскачки от первичной, через боковую поверхность, дополнительно «черпают» энергию из окружающего эфира за счёт «хвостика» от точки К до точки С по рис.2 и передают её в третьи обмотки. Данная энергия «хвостика» теоретически давно известна. К примеру, если у вас работает во дворе двигатель водяного насоса с индуктивностью обмотки 382 мГн, с сопротивлением 30 Ом, при напряжении 250 вольт (легче считать), с частотой 50 Гц. и с конденсатором 40 мкф, то двигатель потребляет 750 ватт энергии, при этом на магнитное поле уходит энергии всего лишь 9,55 дж, конденсатор расходует 6,4 дж, а вот реактивной энергии этот двигатель вырабатывает 1000 вольт-ампер реактивных, т.е. это те же ватты, только назвали их реактивными, которые идут по проводам к электростанции и на них тратится дополнительный расход топлива в генераторах для её погашения. Вот такая настоящая энергия «хвостика», поэтому и идёт борьба с реактивной энергией в любой энергетической системе из-за экономии топлива.
Шестые товарищи отдельно работают на Смоленщине. Они использовали принцип описанной выше конденсаторной установки. Примерная схема устройства приведена на рис.5. Здесь также от источника колебательной энергии подаётся ток на три последовательно соединённые конденсатора С1, С2, С3. Заряд их пластин колеблется в такт источника раскачки колебаний, но С2 включён схемой в цепь высоковольтной обмотки бытового трансформатора в виде колебательного контура. Естественно, колебательный контур С2 с обмоткой трансформатора воспринимает «маленькие порции» раскачки, и уже сам собой, в результате резонанса с эфиром, начинает выдавать необходимую мощность во вторичную обмотку на полезную нагрузку ~ 220 V.
Рис.5 Схема возбуждения источника тока на базе обычного трансформатора.
Схема предельно простая, это надо отдать должное «сообразительности» смоленских «парней». Здесь сравнительно небольшой раскачки источника колебаний вполне хватает для резонансного возбуждения силовых колебаний тока в данном контуре, а с вторичной обмотки трансформатора можно спокойно снимать трансформированный ток на любую полезную нагрузку. Возможно, что сам Тесла использовал этот приём для привода своего электромобиля в движение, недаром же он покупал радиолампы в магазине, которые и являлись источником колебательной энергии для обкладок конденсаторов, а индуктивность статорной обмотки тягового электродвигателя служила основной частью колебательного контура – источника тока (вместо первичной обмотки трансформатора в схеме рис.5).
А сейчас поговорим о главном – о величине мощности раскачки эфира вокруг ёмкостей и индуктивностей с целью получения свободной энергии (реактивной мощности), поисками которой заняты специалисты во всём техническом мире. Сначала рассмотрим теоретическую сторону вопроса. Поскольку формула реактивной мощности для любой обмотки Q = I2 2π f L, где I –величина тока, f – частота тока, L- индуктивность. Величина L задана геометрией обмотки трансформатора или контура, её изменять трудновато, но её и использовал Капанадзе. Другая величина - частота f может изменяться. В реактивной мощности она задаётся частотой электростанции (источником колебаний), но с увеличением её увеличивается мощность свободной энергии, значит, разумно её повышать при раскачке индуктивности. А раскачать индуктивность по частоте, для получения и повышения тока I необходим конденсатор, подключённый к индуктивности по формуле (1). Но, чтобы начать раскачку контура, нужен первоначальный импульс тока. А его сила, в свою очередь, зависит от активного сопротивления самой обмотки, сопротивления соединительных проводов и, как не удивительно, волнового сопротивления этой цепочки тока. Для постоянного тока этого параметра не существует, а для переменного обязательно возникает и ограничивает наши возможности, а с другой стороны помогает нам. Из уравнений длинных линий связи известно,- волновое сопротивление движения для любой электромагнитной волны по проводам должно быть согласовано с сопротивлением нагрузки в конце линии. Чем лучше согласование, тем экономичнее устройство. В контурах, состоящих из ёмкости и индуктивности, из которых состоит «тесловка», волновое сопротивление определяется величиной
Zв = √ L / C ,
которая, если её поделить на активное сопротивление проводников, в принципе, является добротностью контура, т.е. числом, показывающим во сколько раз напряжение в катушке контура возрастает по отношению к задающему напряжению от генератора электростанции (источника раскачки). Вот этим принципом и пользовался Тесла, изготавливая катушки всё более солидные по размеру, т. е. увеличивая, и увеличивая L - индукцию катушки и чисто интуитивно стремился к волновому числу Zв = 377 Ом. А это и есть волновое сопротивление не чего нибудь, а обыкновенного эфира по Максвеллу, хотя его конкретную величину определили позднее исходя из условий распространения электромагнитных волн в атмосфере и космосе. Приближение к этому числу волнового сопротивления уменьшает мощность раскачки. Отсюда всегда можно хотя бы приблизительно вычислить даже частоту колебаний самого эфира, при которой требуется минимальная энергия раскачки от электростанции для «тесловки» вырабатывающей реактивную энергию, но это отдельная тема рассмотрения.
В будущем видится предельно простой генератор тока для любых мощностей. Это трансформатор приемлемой мощности, первичная обмотка которого подсоединяется через рассчитанный конденсатор (с соответствующей реактивной мощностью) к источнику электрической раскачки сравнительно небольшой мощности, работающего при запуске от аккумулятора. Вторичная обмотка трансформатора через выпрямитель и инвертор выдаёт в расходную сеть необходимый ток с частотой 50 Герц для потребителей и одновременно питает, минуя аккумуляторы, схему раскачки, точнее сам себя (по рис.5.). Сейчас это кажется нереальным в силу закона сохранения энергии, поскольку не учитывается действие эфира, однако в ближайшем будущем такие установки будут широко распространёнными в быту и на производствах. Реактивная мощность, точнее свободная энергия эфира, подчеркнём, эфира Максвелла и Кельвина, должна и будет работать на людей в полной мере, как это предсказывал великий Никола Тесла. Время, которое он предвидел, уже наступило благодаря воспитанной промышленностью громадной армии специалистов электриков и интернету, позволяющему обмениваться мировым опытом.
Доказательство работы эфира может видеть каждый на своём столе. Для этого много не надо. Гвоздь однозначно подскакивает со стола к полюсу магнита за счёт чего-то. Какой же разумный человек может сказать, что гвоздь к магниту подскакивает со стола вод действием вакуума (пустоты). Схема данного повседневного опыта, предельно простая (на наш взгляд). В доменах магнита, которые видны по металлическим опилкам не вооружённым глазом, природой организованы обычные сверхпроводящие токи, которые существуют независимо от наших теоретических измышлений. Вот эти токи (обладающие точкой Кюри перехода к обычной проводимости) и перекачивают эфир с одного конца магнита на другой как короткозамкнутые кольца, а такой вращающийся эфирный поток, попадая в металлический гвоздь, наводит в нём тоже обычные сверхпроводящие токи, полюса-магнитики которых «тянутся» навстречу исходящего из магнита потока эфира. А поскольку эти маленькие «точишки» привязаны к атомам и молекулам гвоздя, на которых они образуются, получается, что движение эфира порождает ответное движение гвоздя в целом. Спрашивается – где же тут пустота, то есть вакуум? Так что уважаемым вакуумщикам придётся быстренько исправлять свои вакуумные знания на познания эфира. Мировой опыт развития электротехники утверждает такое положение однозначно.
Другим, не менее важным доказательством существования эфира является экспериментальный материал, наработанный ещё с шестидесятых годов академиком Уральского отделения РАН А.В. Вачаевым, который производил электрический разряд трубчатыми электродами в воде примерно по схеме рис.6, и этот разряд в виде небольшой шаровой молнии служил источником раскачки для схемы в широком диапазоне частот. Разряд делал питающий трансформатор генератором тока, т.е источником реактивной энергии (даже отключались от сети и работали на дополнительную нагрузку) и одновременно в воде возникали различные химические элементы от малых по массе и вплоть до тяжёлого свинца, которые выпадали из циркулирующей воды в фильтрах. Такие явления уже вакуумом никак не объяснишь, как не старайся. Данный эксперимент однозначно указывает на работу эфира.
Рис.6. Примерная схема опыта Вачаева по получению электричества.
Но наиболее сильным доказательством эфира является работа детекторного приёмника. При учёбе в техникуме в городе Кирове нас организовали в радиотехнический кружок. Изучали детекторные приёмники и их изготовление. Поскольку данный приёмник не имеет источника питания, нам говорили, что он питается от электромагнитной волны передатчика. По окончании мы, восемь человек, сдавали зачёт. Все включили свои детекторные приёмники, и руководитель подходил к каждому и слушал его наушник, в котором играла музыка от Московской радиостанции. Класс, в котором занимались, был площадью 50 кв.м. Мощность потребления каждого приёмника примерно 30 – 50 милливатт (0,04 ватта), а работает без батареек. Радиостанция, работающая в Москве за 1100 километров не «почувствовала» наших 0,04 х 8 = 0,32 ватта израсходованной энергии на детекторные приёмники. А если площадь России поделить на те 50 метров и умножить на 0,32 ватта – какую же цифру мощности мы получим в итоге? И, что интересно, данные сто киловатт энергии радиостанции в Москве, которые раскачивали наши приёмники, не изменят своей величины, если даже покрыть всю Россию детекторными приёмниками. А представьте, предполагаемая электромагнитная волна от радиостанции пересекает не только наши антенны, но на своём пути пронизывает миллиарды проводников в электролиниях, различных металлоломах, водяных ручейках и любых электрических схемах и при этом не теряет своей мощности, уверенно работает на своей территории. Спрашивается, откуда же поступает мощность в детекторные приёмники? Ответ предельно простой, - любая радиостанция является источником сотрясения окружающего эфира, а детекторные приёмники и все мыслимые проводники на пути «радиоволны» получают реактивную мощность от «вибрирующего» эфира на данной частоте. В принципе это те же самые вторички катушек Теслы с короной вокруг одной работающей «Тесловки». Так это или нет – судить об этом вам, читателям.
Литература
1. Никола Тесла. Лекции и статьи. Tesla Print. Москва. 2003.
2. Высоковольтное испытательное оборудование и измерения. Госэнергоиздат. Москва, 1960 г.
Катаргин Р.К. НАСЛЕДИЕ ТЕСЛЫ Три знаменитых электротехника мира – Вольта, Фарадей и Тесла – своими работами заставили всё человеческое общество стремительно двинуться в направлении электрификации нашего быта, транспорта, промышлен
Колебания продольные… и рождение неопределённости
Коронный разряд
Космические лучи и реликтовое излучение во Вселенной
Розробка спеціальних засобів для боротьби органів внутрішніх справ з розукомплектуванням мереж електропостачання та викраденням електроенергії
Парадоксы специальной и общей теорий относительности
Synchronization and sommerfeld effect as typical resonant patterns
Энергетический потенциал воды
Енергетична стратегія України
Графен и его свойства
Copyright (c) 2024 Stud-Baza.ru Рефераты, контрольные, курсовые, дипломные работы.