курсовые,контрольные,дипломы,рефераты
Ян Шнейберг
Имя Ампера дано одной из основных электрических единиц. Теперь тысячи людей произносят слово «ампер», почти ничего не зная об этом человеке. В то время, как бренное тело его превратилось в прах, его имя стало достоянием человечества.
Французский академик Д. Бертло
Тринадцатилетний автор математических мемуаров
Имя Ампера широко известно во всем мире, многие слышали о нем благодаря указываемым на многих электрических приборах и предохранителях значениям допустимой величины тока. Но далеко не все знают, какой научный и человеческий подвиг совершил этот необыкновенно одаренный от природы человек, еще в детстве поражавший своими выдающимися способностями и поистине энциклопедическими знаниями.
В истории науки нет другого такого примера, чтобы тринадцатилетний мальчик направил в Академию наук свои научные труды. Таким человеком оказался Ампер, пославший в Лондонскую академию наук несколько мемуаров по математике, в том числе в одном из них он высказал серьезные замечания по поводу труда всемирно известного математика Л. Эйлера. Этот факт кажется невероятным, но как писал замечательный австрийский писатель Стефан Цвейг: «Нет ничего прекрасней правды, кажущейся неправдоподобной».
Трудно представить, что этот мальчик никогда не учился в школе и не знал школьных предметов. Если выдающиеся современники Ампера Фарадей и Эдисон обучались в школе не более года, об Ампере и этого нельзя сказать. Первым источником знаний юного Ампера была обширная библиотека его отца.
Андре-Мари Ампер родился в семье богатого коммерсанта в г. Лионе 22 января 1775 года. Отец его, принадлежавший к либеральным кругам буржуазии, свято веривший в прогресс разума, был одним из образованнейших людей своего времени. Он составил богатейшую библиотеку из сочинений известных философов, писателей и ученых, включая труды греческих и римских классиков.
Несмотря на занятость, он находил время, чтобы лично заниматься воспитанием сына. Прежде чем Андре научился читать, он с огромным интересом слушал отрывки из «Естественной истории», узнавая об окружающем его мире, о жизни животных и птиц, внимательно рассматривал их рисунки. Проводя много времени в библиотеке отца, он незаметно для окружающих научился весьма бегло читать. И вскоре начал читать книги по истории и литературе.
Очень рано обнаружились математические склонности юноши. Сотрудник лионского лицея, друг отца Андре, пораженный ранним развитием юноши, помог ему понять основы высшей математики, и Андре увлекся исчислением бесконечно малых величин. Не бросая математики, юный Ампер с увлечением занимается ботаникой.
Вскоре он серьезно начал изучать физику, в том числе учение о теплоте и электричестве. Главное – он стремился разобраться и глубоко понять прочитанное. На восемнадцатом году жизни он изучил «аналитическую» механику Лагранжа, и его познания в области математики, ме того, он увлекался поэзией, писал стихи и даже поэмы, но свои поэтические произведения никогда не публиковал. Он изучил несколько иностранных языков, в частности греческий, и задумался над созданием международного языка.
Важным источником знаний для Ампера стала знаменитая Французская энциклопедия Дидро и Даламбера, все 17 томов которой вместе с приложениями он внимательно изучил: ведь энциклопедия охватывала философские и обществоведческие вопросы, все отрасли науки, искусства и техники.
Постепенно Ампер проникается все большим уважением к естественным и философским наукам, с которыми он был тесно связан всю свою жизнь. Можно только представить, насколько он опередил своих сверстников, многие из которых еще не прекратили заниматься детскими играми.
Разносторонняя творческая жизнь Ампера была нарушена страшной трагедией. В июле 1793 года грянула Великая французская революция, началась открытая борьба между умеренными – сторонниками реформ жирондистов – и революционно настроенными якобинцами. Отца Ампера революция застала на посту лионского судьи. Он примыкал к оппортунистам. По ложному доносу был арестован и в ноябре 1793 года казнен на гильотине. Узнав об этом, Андре был так потрясен, что потерял сознание. Долгое время восемнадцатилетний юноша был в состоянии душевного смятения: занятия забросил, был замкнут и не похож на себя. Ампер приехал в семейную усадьбу в Полемье близь Лиона и сутками не выходил из дома. Оказалось, что лучшими целителями стали время и природа. Только уходя в поле и лес, наблюдая деревья, цветы и травы, он постепенно обретал спокойствие. Однажды приятель ради шутки надел на нос Андре свои очки, и юноша был потрясен: окружающий его мир как бы просветлел и стал еще прекраснее.
С тех пор он не расставался с очками.
Через некоторое время материальное положение семьи несколько улучшилось, часть конфискованного имущества была возвращена.
К 20 годам Ампер начинает давать частные уроки по химии, математике, физике, латинскому языку, что позволяло ему приобрести педагогический опыт и также укрепляло материальное положение семьи. Он полон знаний, постоянно увлечен какими-либо научными идеями.
Гуляя по полям с толстой палкой в руках, он совершенно не обращает внимания на свой неряшливый костюм, грубые крестьянские ботинки, носит огромный картуз, часто страдает от головных болей и близорукости. Однажды Андре встретил красивую золотоволосую девушку, живущую недалеко от усадьбы Ампера. Он полюбил ее, как говорят, с первого взгляда, однако родители были против того, чтобы бедный и невзрачный на вид «докучливый умник» (так они его называли) стал мужем их дочери. Но высокие и благородные черты его характера, необыкновенная образованность оказались решающими. Спустя три года, в течение которых Ампер давал домашние уроки и заработал определенную сумму денег, в 1799 году была отпразднована свадьба, а через год у Амперов родился сын, которого в честь деда назвали Жан-Жаком, ставшим впосл, членом французской Академии наук.
По словам современников, Ампер преобразился, стал больше внимания уделять своей внешности, был безгранично предан своей семье. Должность домашнего учителя, которая помогла Амперу приобрести не только заработок, но и определенную известность, дала ему возможность с успехом пройти собеседование. И в 1802 году он был зачислен на должность профессора в Центральной школе города Бурга (в 60 км от Лиона) – с этого времени началась педагогическая деятельность Ампера, продолжавшаяся до последних дней его жизни.
Ампер энергично занялся реорганизацией и оборудованием физического и химического кабинетов
Центральной школы. Нередко использовал для этого свои личные средства и собственноручно ремонтировал некоторые приборы. Имея очень скромное жалование, он был вынужден продолжать давать уроки и работать в частном пансионе. В своей первой лекции, прочитанной в Центральной школе, Ампер продемонстрировал не только присущую ему эрудицию, но и осветил ряд серьезных проблем, стоящих перед наукой. В частности, отмечая успехи физики, он утверждал, что ей присущи многие открытия, «отмеченные печатью гения», и ей предстоит еще многое сделать для славы и счастья человечества. Через всю лекцию проходит четкая идея: «Наука должна служить для блага и прогресса человечества».
В те годы Ампер еще верил в существование двух гипотетических жидкостей, магнитной и электрической, но высказывал, как и его сподвижники, уверенность в существовании взаимосвязи между электричеством и магнетизмом. Занятый математическими, химическими и другими исследованиями, он, к сожалению, не принял участие в конкурсе, объявленном в 1802 году Наполеоном для поощрения исследований в области электричества, которые, по его мнению, «представляют собой путь великих открытий». Премии века удостоился английский ученый Х. Дэви, а после падения Наполеона она была упразднена. В связи с этим известный французский физик академик Поль Жаке высказал мнение, что, если бы премия продолжала существовать, она несомненно досталась бы Амперу за открытие, которое он сделал спустя 20 лет.
В течение нескольких лет Ампер успешно работает в области математики, и его мемуар по теории вероятностей получает высокую оценку крупнейших математиков, в частности академика Даламбера. Сам Ампер, будучи очень скромным человеком, писал своей жене, «что содержание его работы таково, что вряд ли во Франции найдутся математики, способные создать нечто равноценное».
По предложению Даламбера в 1803 году Ампер назначается преподавателем математики и астрономии в только что открывшемся Лионском лицее. «Теперь он почувствовал, – как писал один из биографов, – что очнулся у порога карьеры ученого».
Но судьбе было угодно нанести еще один трагический удар талантливому ученому. В июле 1803 года от «грудной болезни» скончалась любимая жена, оставив на его руках маленького сына. При поддержке и с помой деятельности, но твердо решил уехать из Лиона, где все напоминало о печальных событиях, произошедших в его жизни.
Он воспользовался предложением Даламбера переехать в Париж, где с 1804 года был назначен репетитором Политехнической школы в Париже – самой популярной среди технических школ Франции. Среди ее первых преподавателей были такие крупнейшие ученые, как Лагранж, Бертолле и др. Уже в 1809 году Ампер стал профессором математического анализа школы.
Но тяжелое душевное потрясение постоянно его преследовало. Повторный брак Ампера в 1806 году оказался очень неудачным, в 1809 году скончалась его мать, которая была ему бесконечно предана и помогала воспитывать сына. Творчеству Ампера мешали регулярные командировки в связи с исполнением обязанностей главного инспектора университета. Эта работа была утомительной для Ампера, страдавшего от сердечных приступов. Кстати, в одну из таких командировок он скоропостижно скончался в Марселе.
Однако, преодолевая невзгоды, Ампер продолжал научные исследования в области математики, химии, физики и философии. По представлению крупнейших академиков Лагранжа и Лапласа в 1814 году он избирается членом французской Академии наук благодаря его обширному труду, посвященному дифференциальным уравнениям в частных производных. Став академиком, он близко познакомился со всемирно известными учеными-математиками Лапласом, Лежандром, Фурье, механиком Монжеле, физиками Био, Араго, Саваром и др. Как писал об Ампере один из академиков, «...ни один человек не высказывает столько новых идей в разговорах и дискуссиях, как он».
Андре-Мари Ампере, круг научных интересов которого был весьма широким – математика, химия, физика, философия. Первую часть очерка автор посвятил жизненному пути этого необыкновенно одаренного от природы человека, еще в детстве поражавшего своими выдающимися способностями и поистине энциклопедическими знаниями. Сегодня речь пойдет о научных достижениях знаменитого ученого, который ввел в науку термин «электрический ток», понятие о направлении электрического тока и за полтора века предсказал возникновение науки об общих закономерностях процесса управления, связи и организованных системах – кибернетики.
Звездный час в жизни Ампера наступил в сентябре 1820 г., когда он впервые узнал об открытии датским физиком Г. Х. Эрстедом (1819) действия электрического тока на магнитную стрелку и занялся повторением его опытов.
Нужно сказать, что если бы Ампер ограничился только исследованиями в области математики, то вряд ли он был бы известным в наше время. А может, и вообще оказался бы забытым как одаренный математик, которому нелегко было бы прославиться на фоне таких его современников, как Лаплас, Фурье, Коши.
Сообщение об открытии Эрстеда было сделано на заседании французской Академии наук известным ученым другом Ампера академиком Д. Ф. Араго. На одном из этих заседаний, где присутствовал Ампер, Араго повторил опыты Эрстеда. До этого Ампер серьезно не занимался исследованиями в области электромагнетизма. Летом 1820 г. Ампера в Париже не было, и он не только не был знаком с небольшим мемуаром Эрстеда, но и ничего не знал о его экспериментах.
Если большинство присутствовавших на заседании академиков, не занимавшихся изучением электрических явлений, особого интереса к открытию Эрстеда не проявили, то Ампер буквально был потрясен этим экспериментом. Одаренный от природы необыкновенными способностями, обладавший энциклопедическими знаниями в области естественных наук и завидным чувством научного предвидения, Ампер интуитивно понял значение этого открытия для будущих успехов в области электромагнетизма. Он немедленно забросил все дела и с головой погрузился в изучение нового, ранее неизвестного явления.
Прежде всего он тщательно повторил опыты Эрстеда и сразу же отметил неточность его выводов, так как Эрстед не учел действия на магнитную стрелку магнитного поля Земли. И уже через неделю (всего через неделю!) Ампер выступает на заседании Академии наук с докладом о своих новых открытиях в области электромагнетизма. А затем почти подряд неделю за неделей (на регулярных заседаниях Академии) излагает перед крупнейшими учеными результаты своих экспериментальных и теоретических исследований, которые позднее были обобщены в его знаменитом труде по электродинамике.
Араго заметил, что проволока из мягкого железа намагничива. Ампер посоветовал Араго заменить прямолинейную проволоку проволочной спиралью, при этом помещенная внутри спирали металлическая игла намагничивалась более интенсивно. Так был создан первый соленоид, магнитные свойства которого были аналогичны постоянному магниту с двумя разноименными полюсами.
Ампер поразительно наглядно продемонстрировал магнитные свойства проволоки, согнутой в кольцо, аналогичные «тонкому листку» постоянного магнита. И кольцо, и «листок» имели разноименные магнитные полюса, что убедительно подтверждало электрическую природу магнетизма.
Соленоид можно представить как совокупность бесконечно малых сомкнутых круговых токов, перпендикулярных к одной и той же линии, проходящих через их центр тяжести и имеющих одинаковое направление. Ампер утверждает, что «какой угодно малый замкнутый ток действует на любой магнитный полюс, так же как будет действовать малый магнит, помещенный на месте тока, имеющий ту же магнитную ось». Ампер неоднократно подчеркивает, что «единственной причиной электромагнитных явлений является электричество».
Поразительно, что никто до Ампера не пришел, казалось, к очевидному выводу: если круговой ток аналогичен магниту, то и взаимодействие кольцевых проводников с током должно быть аналогичным взаимодействию магнитов.
Прежде чем рассмотреть работы Ампера с линейными токами, отметим, что он впервые ввел в науку термин «электрический ток» и понятие о направлении электрического тока. Он предложил считать за направление тока направление положительного электричества «от плюса к минусу» во внешней цепи. Он сумел сформулировать и еще одно важное правило – о направлении отклонения магнитной стрелки в зависимости от направления тока в проводнике. Это правило стало известным под названием «правило пловца» и формулировалось следующим образом: «Если мысленно расположиться человеку вдоль проводника с током так, чтобы ток проходил по направлению от ног наблюдателя к голове и чтобы лицо его было обращено к магнитной стрелке, то под влиянием тока северный полюс магнитной стрелки всегда будет отклоняться влево».
Следует отметить, что Ампер был прежде всего теоретиком и экспериментами занимался редко. Но в данном случае он почувствовал необходимость проверки на опыте правильности своих идей, и сам соорудил несколько оригинальных приборов, лишь иногда прибегая к помощи слесаря.
Для исследования линейных токов Ампер создал так называемый «станок Ампера» (см. рисунок). С помощью этого оригинального устройства он мог наблюдать изменения положения подвижного проводника от другого – неподвижного. Он экспериментально доказал, что два «линейных» тока притягивают или отталкивают друг друга в зависимости от того, имеют токи одинаковое направление или различное.
На основании многочисленных экспериментов Ампер сформулировал закон взаимодействия «линейных» токов: «два параллельных и одинаково направленных тока взаимно притягиваются, тогда как два параллельных и противоположно направлные явления Ампер предложил назвать «электрдинамическими» в отличие от известных электростатических явлений. Позднее электродинамика превратилась в один из важнейших разделов физики.
Исследования Ампера заметно отличались от работ некоторых ученых, занимавшихся изучением явлений электромагнетизма, но ограничивавшихся лишь качественными наблюдениями и не пытавшихся выяснить механизм происходящих процессов, а тем более обобщить их.
Ампер же не только дал глубокий анализ наблюдавшихся явлений, но, что очень важно, сумел теоретически обобщить результаты экспериментов и вывести формулу, позволяющую определить силу взаимодействия токов, сделав, как писал один из биографов, «немеркнущий вклад, оставшийся на все времена в сокровищнице науки».
Подобно Кулону, установившему закон взаимодействия электрических зарядов, Ампер, опираясь на принципы Ньютона о взаимодействии масс, уподоблял этим массам два элемента тока, произвольно расположенных в пространстве. При этом Ампер предполагал, что взаимодействие элементов тока происходит по прямой, проходящей через середины этих элементов, и что оно пропорционально длине элементов токов и величине самих токов. Он также установил, что сила взаимодействия между токами зависит от углов между элементами токов и линией, соединяющей их середины. Измерение силы взаимодействия токов было чрезвычайно затруднительным, так как никаких измерительных приборов не существовало.
Ампером был придуман и изготовлен ряд приборов, с помощью которых он, обладая обширными математическими знаниями, сумел выполнить достаточно точные измерения силы взаимодействия токов. Позднее великий Максвелл отметил эти измерения как чрезвычайно оригинальные.
Далеко не всем известно, что Ампер был одним из пионеров электрометрии. В наше время огромную роль в исследовании электротехники и электросвязи играет точность измерений. Одним из первых электроизмерительных приборов был гальванометр. Обычно в литературе создание гальванометра связывают с именем немецкого физика профессора Иоганна С.Х. Швейггера, который в сентябре 1820 г. демонстрировал прибор, названный им «мультипликатором». Прибор представлял собой рамку с током, внутри которой на оси помещалась магнитная стрелка, отклонявшаяся при прохождении по рамке тока. Ампер в это время еще только изучал опыты Эрстеда.
Ознакомившись с прибором Швейггера, Ампер сразу же указал на его неточность – в нем не учитывалось действие на магнитную стрелку магнитного поля Земли. Для устранения этого влияния Ампер в 1821 г. предложил «астатическую пару», представляющую собой две магнитные стрелки, укрепленные на общей медной оси параллельно друг другу с полюсами, обращенными в разные стороны. Такую пару использовал в мультипликаторе в 1825 г. флорентийский профессор Л. Нобили. Этот прибор стал прообразом гальванометра, и термин «гальванометр» Ампер впервые употребляет в своих работах.
Среди электроизмерительных приборов, предложенных Ама», предназначенное для изменения направления тока в проводниках. Он также первым стал применять подключение токоведущих элементов приборов с помощью чашечек со ртутью.
Несмотря на что, что Академия наук не выделяла средств на проведение экспериментальных исследований, Ампер, нередко сам нуждающийся в средствах, строил необходимые приборы на свои сбережения. До наших дней сохранился старинный столик, сделанный руками Ампера, на котором он проделал главнейшие опыты в маленькой комнатке своей скромной квартиры на улице Фоссе-де-Сен-Виктор.
В Германском музее шедевров науки и техники хранятся оригинальные приборы Ампера, при помощи которых он производил опыты взаимодействия между полюсами. В иллюстрированном путеводителе по музею сказано, что «приборы Ампера принадлежат к числу драгоценнейших документов музея. Невзрачные, покрытые сургучом составные проволочные контуры, висящие и вращающиеся в чашечках со ртутью, соединенные с переключателем тока, они помещены в шкафу, украшенном богатой резьбой и портретом Ампера».
Выдающимся вкладом Ампера в теорию электричества и магнетизма явилась его поистине революционная теория о причине магнетизма, основывавшаяся на представлениях о молекулярных токах. Ампер решительно отвергает наличие «особой» электрической и магнитной жидкостей и утверждает, что «все магнитные явления... сводятся к чисто электрическим действиям. Магнетизм какой-либо частицы обусловлен наличием круговых токов в этой частице, а свойства магнита в целом обусловлены электрическими токами, расположенными в плоскостях, перпендикулярных к его оси». Разработанная Ампером гипотеза круговых молекулярных токов явилась новым прогрессивным шагом на пути к материалистической трактовке природы магнитных явлений.
Новая теория Ампера не сразу получила признание даже таких крупных физиков, как Фарадей и Дэви. После переписки Ампера с Фарадеем и Дэви их взгляды на теорию Ампера изменились. Так, Фарадей писал Амперу: «Прогресс электромагнетизма развивается таким образом, что приходится непрерывно ссылаться на Ваше имя, и в этих случаях я мысленно горжусь нашими отношениями и их основой». Дэви также писал Амперу, что «... его взгляды полны новизны и изобретательности и заслуживают глубокого внимания со стороны философов всех стран». В течение 1824 – 1826 гг.
Ампер работал над своим капитальным трудом «Теория электрических явлений, выведенная исключительно из опыта». Этот труд вышел в свет в 1826 г. и содержал все доклады ученого в течение 1820 – 1825 гг.
Блестящую по форме и содержанию оценку «Теории» Ампера дал Максвелл: «экспериментальный метод, посредством которого Ампер установил законы механического взаимодействия электрических токов, составляет одно из наиболее блестящих достижений науки. Кажется, будто вся эта совокупность теорий и опыта во всей своей мощи в полном своем вооружении выскочила из головы «Ньютона электричества». Форма ее совершенна, строгость безупречна... ».
Читателям жур стоял у истоков электромагнитного телеграфа. В своем выступлении на заседании Академии наук в октябре 1820 г. он впервые предложил использовать отклонения магнитной стрелки под воздействиями электрического тока для передачи на расстоянии букв алфавита. «Помещая каждую букву на отдельной стрелке, можно устроить своего рода телеграф с помощью одного вольтова столба, расположенного вдали от стрелок». Причем лицу, которое наблюдало бы за буквами над стрелками, можно было передавать сведения со всеми подробностями и через какие угодно препятствия. А на передающей станции около вольтова столба «установить клавиатуру с буквами и производить соединения нажатием клавиш... и этот способ сообщения мог бы применяться достаточно просто...».
Как известно, ранее для целей телеграфирования предлагалось использовать электростатические заряды и электрохимические реакции в сосудах с жидкостью. Но идея электромагнитного телеграфа принадлежит бесспорно Амперу. Правда, Ампер предполагал, что для устройства электромагнитного телеграфа потребуется использовать столько проводов и магнитных стрелок, сколько имеется букв». Однако если бы он занялся устройством такого телеграфа, то при его необычайной изобретательности пришел бы к необходимости сокращения числа передающих проводов и магнитных стрелок, как это сделал в 1832 г. создатель первого практически пригодного стрелочного электромагнитного телеграфа наш соотечественник П.Л. Шиллинг.
К сожалению, Ампер уже был занят исследованиями электродинамических взаимодействий токов и магнитов и, кроме того, в это время его здоровье серьезно ухудшается – нередко он был вынужден временно прекращать свои исследования. Но Ампер создал необходимые предпосылки для конструирования первого практически пригодного электромагнитного телеграфа и тем самым внес свой вклад в практическое применение электромагнетизма. Электромагнитный телеграф вскоре стал международным средством связи – первым массовым применением электричества.
Заслуживает внимания серия экспериментов Ампера, которые, как он писал в 1822 г., «показали возможность получения токов через влияние». Но он внимательно не занялся исследованием этого явления. Только после получения известия об открытии Фарадеем в 1831 г. явления электромагнитной индукции Ампер с сожалением отметил, что «держал в руках» этот физический эффект, «не сознавая этого в полной мере».
В 1824 г., когда Ампера избрали профессором физики одного из крупнейших высших учебных заведений Франции Коллеж де Франс, он решил посвятить свою педагогическую деятельность только преподаванию физики и оставался на этой должности до конца своих дней. Из-за стесненных материальных обстоятельств он продолжал работать инспектором университета «на половинном окладе».
Мы сознательно не рассматриваем чрезвычайно интересные работы Ампера в области механики, химии, биологии и оптики, его удивительное предсказание о том, что в будущем возникнет наука об общих закономерностях процесса управлеемах. Он же дал название этой науке – кибернетика, которая возникла лишь спустя полтора века после того, как Ампер указал ее в разработанных им таблицах «классификации наук».
Можно только представить, сколько новых открытий сделал бы этот гениальный ученый, если бы последние два десятилетия своей жизни не страдал от приступов тяжелой болезни сердца и легких и от безвременных потерь близких и дорогих ему отца, матери и жены. Несмотря на это, он продолжал работать и на протяжении многих лет не прекращал командировок. Одна из таких в июне 1836 г. в Марсель оказалась последней. 10 июня вдали от родных мест в яркий солнечный день на 62 году жизни великий ученый скончался.
До 1869 г. останки Ампера покоились в Марселе, а затем были перенесены на Монмартское кладбище в Париже в фамильный склеп. На надгробии Ампера выгравирована эпитафия: «Он был так же добр и так же прост, как и велик».
Имя ученого было увековечено в 1893 г. на Международном конгрессе электриков в Чикаго, давшего единице силы тока название «ампер». Теперь фамилию гениального ученого знают все.
Научные заслуги Ампера получили признание крупнейших научных учреждений мира. Он был почетным членом десятков академий и научных обществ во Франции, Америке, Италии, Германии, Швейцарии. В 1830 г. он был избран почетным иностранным членом петербургской Академии наук. В Америке в штате Нью-Джерси одна из железнодорожных станций получила название «Ампер», а на здании вокзала был установлен мемориальный медальон в честь Ампера. Его имя присвоено промышленному городку, где был построен электротехнический завод одной из крупнейших американских фирм. Усадьба близ Парижа Полемье, где многие годы жил Ампер, превратилась в национальный музей.
Чрезвычайно торжественно в крупнейших странах мира было отмечено столетие со дня смерти Ампера. На торжества в Лионе была приглашена делегация Академии наук СССР, а в Москве состоялось юбилейное заседание Академии наук, где с докладами о вкладе Ампера в мировую науку выступили крупнейшие ученые- академики нашей страны.
В заключение несколько слов о судьбе трудов Ампера в области электромагнетизма и оценке его подлинных заслуг перед наукой. Как известно из истории науки, труды многих выдающихся ученых не были по достоинству оценены их современниками. Ампер занялся исследованием явлений электромагнетизма, когда ему уже было более 45 лет. До этого он с успехом занимался математикой, химией, ботаникой, оптикой, философией, продолжал эти исследования и после завершения работ по электромагнетизму, которые продолжались всего семь лет. Поэтому после его смерти вдали от Парижа в течение некоторого времени было опубликовано несколько статей его коллег, темы которых не имели отношения к электромагнитным явлениям.
Исключение составляет лишь «Похвальное слово» об Ампере. Его автор, близкий друг и соратник Ампера Ф. Араго в 1839 г. на заседании Академии наук воздал должное заслугам ученого в области электромагнесо дня рождения Ампера в 1875 г. была издана часть переписки ученого. Но, во-первых, она была очень краткой, а во-вторых, очень мало касалась его работ по электромагнетизму.
Популяризации трудов ученого способствовало решение Международного конгресса электриков назвать единицу силы тока «ампером». После этого почти на четверть века публикации об Ампере прекратились. Но приближалось столетие со дня выдающихся исследований по электродинамике, первые сообщения о которых Ампер сделал в 1820 г. К этому времени были достигнуты огромные успехи в области электромагнетизма и электросвязи, у истоков которых стояли Ампер и Фарадей. Были переизданы главнейшие труды Ампера по электродинамике и более полная переписка, а также дневники, содержавшие ценные мысли и идеи ученого, намного опередившего свое время.
Французская Академия наук и научно- техническая общественность Франции организовали в 1921 г. научную конференцию, посвященную памяти Ампера. В докладах ученых впервые была дана достойная оценка трудов Ампера с современной точки зрения. Как писал один из биографов: «Это был первый случай, когда Франция оказала исключительную честь своему великому соотечественнику».
Закон Ленца
От первых электрических звонков до «звонкового» реле в радиоприемнике А. С. Попова
Великий физик Америки
Основоположник отечественной высокочастотной техники
Вернер Сименс. Начало пути выдающегося изобретателя и промышленника
Трансформация трансформатора
Ли де Форест и первые шаги электроники
Провозвестник отечественной электроавтоматики
Радиосвязь в годы Великой Отечественной войны
Колыбель отечественной радиотехники и радиосвязи
Copyright (c) 2025 Stud-Baza.ru Рефераты, контрольные, курсовые, дипломные работы.