курсовые,контрольные,дипломы,рефераты
Курсова робота
з дисциплини: Теорема ймовірності
на тему: Незалежні випробування
Введення
При практичному застосуванні теорії ймовірностей часто доводиться зустрічатися із задачами, у яких те саме випробування повторюється неодноразово. У результаті кожного випробування може з'явитися або не з'явитися деяка подія А, причому нас не цікавить результат кожного окремого випробування, а загальне число появ події А в результаті серії досвідів. Наприклад, якщо виробляється група пострілів по однієї й тій же меті, нас, як правило, не цікавить результат кожного пострілу, а загальне число влучень. У подібних задачах потрібно вміти визначати ймовірність будь-якого заданого числа появ події в результаті серії досвідів. Такі задачі й будуть розглянуті. Вони вирішуються досить просто у випадку, коли випробування є незалежними.
Визначення. Випробування називаються незалежними, якщо ймовірність того або іншого результату кожного з випробувань не залежить від того, які результати мали інші випробування.
Наприклад, кілька кидань монети являють собою незалежні випробування.
1. Формула Бернуллі
Нехай зроблено два випробування(n=2). У результаті можливе настання одного з наступних подій:
Відповідні ймовірності даних подій такі: .
або - настання події тільки в одному випробуванні.
- імовірність настання події два рази.
- імовірність настання події тільки один раз.
- імовірність настання події нуль раз.
Нехай тепер n=3. Тоді можливе настання одного з наступних варіантів подій:
.
Відповідні ймовірності рівні .
Очевидно, що отримані результати при n=2 і n=3 є елементами
и.
Тепер допустимо, зроблено n випробувань. Подія А може наступити n раз, 0 разів, n-1 раз і т.д. Напишемо подію, що складається в настанні події А m раз
Необхідно знайти число випробувань, у яких подія А наступить m раз. Для цього треба знайти число комбінацій з n елементів, у яких А повторюється m раз, а n-m раз.
- імовірність настання події А.
(1)
Остання формула називається формулою Бернуллі і являє собою загальний член розкладання :
.
З формули (1) видно, що її зручно використовувати, коли число випробувань не занадто велике.
Приклади
№1. Кидається монета 7 разів. Знайти ймовірність настання орла три рази.
Рішення.
n=7, m=3
.
№2. Щодня акції корпорації АВС піднімаються в ціні або падають у ціні на один пункт із ймовірностями відповідно 0,75 і 0,25. Знайти ймовірність того, що акції після шести днів повернуться до своєї первісної ціни. Прийняти умову, що зміни ціни акції нагору й долілиць - незалежні події.
Рішення. Для того, щоб акції повернулися за 6 днів до своєї первісної ціни, потрібно, щоб за цей час вони 3 рази піднялися в ціні й три рази опустилися в ціні. Шукана ймовірність розраховується по формулі Бернуллі
№3. Мотори багатомоторного літака виходять із ладу під час польоту незалежно один від іншого з імовірністю р. Багатомоторний літак продовжує летіти, якщо працює не менш половини його моторів. При яких значеннях р двомоторний літак надійніше чотиримоторного літака?
Рішення. Двомоторний літак терпить аварію, якщо відмовляють обоє його мотора. Це відбувається з імовірністю р2. Чотиримоторний літак терпить аварію, якщо виходять із ладу всі 4 мотори а це відбувається з імовірністю р4, або виходять із ладу три мотори з 4-х. Імовірність останньої події обчислюється по формулі Бернуллі: . Щоб двомоторний літак був надійніше, ніж чотиримоторний, потрібно, щоб виконувалася нерівність
р2<р4+4p3(1–p)
Ця нерівність зводиться до нерівності (3 р-р-1)( р-р-1)<0. Другий співмножник у лівій частині цієї нерівності завжди негативний (за умовою задачі). Отже, величина 3 р-р-1 повинна бути позитивної, звідки треба, що повинне виконуватися умову р>1/3. Слід зазначити, що якби ймовірність виходу з ладу мотора літака перевищувала одну третину, сама ідея використання авіації для пасажирських перевезень була б дуже сумнівною.
№4. Бригада з десяти чоловік іде обідати. Є дві однакові їдальні, і кожний член бригади незалежно один від іншого йде обідати в кожну із цих їдалень. Якщо в одну з їдалень випадково прийде більше відвідувачів, чим у ній є місць, то виникає черга. Яке найменше число місць повинне бути в кожній з їдалень, щоб імовірність виникнення черги була менше 0,15?
Рішення. Рішення задачі прийде шукати перебором можливих варіантів. Спочатку помітимо, що якщо в кожній їдальні по 10 місць, то виникнення черги неможливо. Якщо в кожній їдальні по 9 місць, то черга виникне тільки у випадку, якщо всі 10 відвідувачів потраплять в одну їдальню. З умови задачі треба, що кожний член бригади вибирає дану їдальню з імовірністю 1/2. Виходить, усі зберуться в одній їдальні з імовірністю 2(1/2)10=1/512. Це число багато менше, ніж 0,15, і варто провести розрахунок для їдалень. Якщо в кожній їдальні по 8 місць, то черга виникне, якщо всі члени бригади прийдуть в одну їдальню, імовірність цієї події вже обчислена, або 9 чоловік підуть в одну їдальню, а 1 чоловік вибере іншу їдальню. Імовірність цієї події розраховується за допомогою формули Бернуллі . Таким чином, якщо в їдальнях по 8 місць, то черга виникає з імовірністю 11/512, що поки ще менше, ніж 0,15. Нехай тепер у кожній з їдалень по 7 місць. Крім двох розглянутих варіантів, у цьому випадку черга виникне, якщо в одну з їдалень прийде 8 чоловік, а в іншу 2 чоловік. Це може відбутися з імовірністю .
Виходить, у цьому випадку черга виникає з імовірністю 56/512=0,109375<0,15. Діючи аналогічним образом, обчислюємо, що якщо в кожній їдальні 6 місць, то черга виникає з імовірністю 56/512+120/512=176/512=0,34375. Звідси одержуємо, що найменше число місць у кожній їдальні повинне рівнятися семи.
№5. В урні 20 білих і 10 чорних куль. Вийняли 4 кулі, причому кожну вийняту кулю повертають в урну перед добуванням наступні й кулі в урні перемішують. Знайти ймовірність того, що із чотирьох вийнятих куль виявиться 2 білих.
Рішення. Подія А – дістали білу кулю. Тоді ймовірності
, .
По формулі Бернуллі необхідна ймовірність дорівнює
.
№6. Визначити ймовірність того, що в родині, що має 5 дітей, буде не більше трьох дівчинок. Імовірності народження хлопчика й дівчинки передбачаються однаковими.
Рішення. Імовірність народження дівчинки
, тоді .
Знайдемо ймовірності того, що в родині немає дівчинок, народилася одна, дві або три дівчинки:
бернуллі формула лаплас ймовірність
, ,
, .
Отже, шукана ймовірність
.
№7. Серед деталей, оброблюваних робітником, буває в середньому 4% нестандартні. Знайти ймовірність того, що серед узятих на випробування 30 деталей дві будуть нестандартними.
Рішення. Тут досвід полягає в перевірці кожної з 30 деталей на якість. Подія А - "поява нестандартної деталі", його ймовірність , тоді . Звідси по формулі Бернуллі знаходимо
.
№8. При кожному окремому пострілі зі знаряддя ймовірність поразки мети дорівнює 0,9. Знайти ймовірність того, що з 20 пострілів число вдалих буде не менш 16 і не більше 19.
Рішення. Обчислюємо по формулі Бернуллі:
№9. Незалежні випробування тривають доти, поки подія А не відбудеться k раз. Знайти ймовірність того, що буде потрібно n випробувань (n і k), якщо в кожному з них .
Рішення. Подія В – рівно n випробувань до k-го появи події А – є добуток двох наступних подій:
D – в n-ом випробуванні А відбулося;
С – у перші (n–1)-ом випробуваннях А з'явилося (до-1) раз.
Теорема множення й формула Бернуллі дають необхідну ймовірність:
.
№10. З n акумуляторів за рік зберігання k виходить із ладу. Вибирають m акумуляторів. Визначити ймовірність того, що серед них l справних n = 100, k = 7, m = 5, l = 3.
Рішення: Маємо схему Бернуллі з параметрами p=7/100=0,07 (імовірність того, що акумулятор вийде з ладу), n = 5 (число випробувань), k = 5-3 =2 (число "успіхів", несправних акумуляторів). Будемо використовувати формулу Бернуллі (імовірність того, що в n випробуваннях подія відбудеться k раз).
Одержуємо
№11. Пристрій, що складається з п'яти незалежно працюючих елементів, включається за час Т. Імовірність відмови кожного з них за цей час дорівнює 0,2. Знайти ймовірність того, що відмовлять: а) три елементи; б) не менш чотирьох елементів; в) хоча б один елемент.
Рішення: Маємо схему Бернуллі з параметрами p = 0,2 (імовірність того, що елемент відмовить), n = 5 (число випробувань, тобто число елементів), k (число "успіхів", що відмовили елементів). Будемо використовувати формулу Бернуллі (імовірність того, що для n елементів відмова відбудеться в k елементах): . Одержуємо а) - імовірність того, що відмовлять рівно три елементи з п'яти. б) - імовірність того, що відмовлять не менш чотирьох елементів з п'яти (тобто або чотири, або п'ять). в) - імовірність того, що відмовить хоча б один елемент (знайшли через імовірність протилежної події - жоден елемент не відмовить).
№12. Скільки варто зіграти партій у шахи з імовірністю перемоги в одній партії, рівної 1/3, щоб число перемог було дорівнює 5?
Рішення: Число перемог k визначається з формули Тут p =1/3 (імовірність перемоги), q = 2/3 (імовірність програшу), n - невідоме число партій. Підставляючи даного значення, одержуємо:
Одержуємо, що n = 15, 16 або 17.
2. Локальна формула Муавра-Лапласа
Легко бачити, що користуватися формулою Бернуллі при більших значеннях n досить важко, тому що формула вимагає виконання дій над величезними числами. Природно, виникає питання: чи не можна обчислити ймовірність, що цікавить нас,, не прибігаючи до формули Бернуллі.
В 1730 р. інший метод рішення при p=1/2 знайшов Муавр; в 1783 р. Лаплас узагальнив формулу Муавра для довільного p, відмінного від 0 і 1.
Ця формула застосовується при необмеженому зростанні числа випробувань, коли ймовірність настання події не занадто близька до нуля або одиниці. Тому теорему, про яку мова йде, називають теоремою Муавра-Лапласа.
Теорема Муавра-Лапласа. Якщо ймовірність p появи події А в кожному випробуванні постійне й відмінна від нуля й одиниці, то ймовірність того, що подія А з'явиться в n випробуваннях рівно k раз, приблизно дорівнює(тим точніше, чим більше n) значенню функції
При .
Є таблиці, у яких поміщені значення функції
,
відповідним позитивним значенням аргументу x(див. додаток 1). Для негативних значень аргументу користуються тими ж таблицями, тому що функція парна, тобто .
Отже, імовірність того, що подія A з'явиться в n незалежних випробуваннях рівно k раз, приблизно дорівнює
,
де .
№13. Знайти ймовірність того, що подія А наступить рівно 80 разів в 400 випробуваннях, якщо ймовірність появи цієї події в кожному випробуванні дорівнює 0,2.
Рішення. За умовою n=400; k=80; p=0,2; q=0,8. Скористаємося формулою Лапласа:
.
Обчислимо обумовлене даними задачі значення x:
.
По таблиці додатка 1 знаходимо .
Шукана ймовірність
.
№14. Імовірність поразки мішені стрільцем при одному пострілі p=0,75.
Знайти ймовірність того, що при 10 пострілах стрілок уразить мішень 8 разів.
Рішення. За умовою n=10; k=8; p=0,75; q=0,25.
Скористаємося формулою Лапласа:
.
Обчислимо обумовлене даними задачі значення x:
.
По таблиці додатка 1 знаходимо
Шукана ймовірність
.
№15. Знайти ймовірність того, що подія А наступить рівно 70 разів в 243 випробуваннях, якщо ймовірність появи цієї події в кожному випробуванні дорівнює 0,25.
Рішення. За умовою n=243; k=70; p=0,25; q=0,75. Скористаємося формулою Лапласа:
.
Знайдемо значення x:
.
По таблиці додатка 1 знаходимо
.
Шукана ймовірність
.
№16. Знайти ймовірність того, що подія А наступить 1400 разів в 2400 випробуваннях, якщо ймовірність появи цієї події в кожному випробуванні дорівнює 0,6.
Рішення. За умовою n=2400; k=1400; p=0,6; q=0,4. Як і в попередньому прикладі, скористаємося формулою Лапласа:
Обчислимо x:
.
По таблиці додатка 1 знаходимо
Шукана ймовірність
.
3. Формула Пуассона
Ця формула застосовується при необмеженому зростанні числа випробувань, коли ймовірність настання події досить близька до 0 або 1.
,
.
Доказ.
.
.
У такий спосіб одержали формулу:
.
Приклади
№17. Імовірність виготовлення негідної деталі дорівнює 0,0002. Знайти ймовірність того, що серед 10000 деталей тільки 2 деталі будуть негідними.
Рішення. n=10000; k=2; p=0,0002.
.
№18. Імовірність виготовлення бракованої деталі дорівнює 0,0004. Знайти ймовірність того, що серед 1000 деталей тільки 5 деталі будуть бракованими.
Рішення. n=1000; k=5; p=0,0004.
Шукана ймовірність
.
№19. Імовірність виграшу лотереї дорівнює 0,0001. Знайти ймовірність того, що з 5000 спроб виграти вдасться 3 рази.
Рішення. n=5000; k=3; p=0,0001.
Шукана ймовірність
.
4. Теорема Бернуллі про частоту ймовірності
Теорема. Імовірність того, що в n незалежних випробуваннях, у кожному з яких імовірність появи події дорівнює p, абсолютна величина відхилення відносної частоти появи події від імовірності появи події не перевищить позитивного числа , приблизно дорівнює подвоєної функції Лапласа при :
.
Доказ. Будемо вважати, що виробляється n незалежних випробувань, у кожному з яких імовірність появи події А постійна й дорівнює p. Поставимо перед собою задачу знайти ймовірність того, що відхилення відносної частоти від постійної ймовірності p по абсолютній величині не перевищує заданого числа . Інакше кажучи, знайдемо ймовірність здійснення нерівності
. (*)
Замінимо нерівність (*) йому рівносильними:
.
Множачи ці нерівності на позитивний множник , одержимо нерівності, рівносильні вихідному:
.
Тоді ймовірність знайдемо в такий спосіб:
.
Значення функції перебуває по таблиці(див. додаток 2).
Приклади
№20. Імовірність того, що деталь не стандартна, p=0,1. Знайти ймовірність того, що серед випадково відібраних 400 деталей відносна частота появи нестандартних деталей відхилиться від імовірності p=0,1 по абсолютній величині не більш, ніж на 0,03.
Рішення. n=400; p=0,1; q=0,9; =0,03. Потрібно знайти ймовірність . Користуючись формулою
,
маємо
.
По таблиці додатка 2 знаходимо . Отже, . Отже, шукана ймовірність дорівнює 0,9544.
№21. Імовірність того, що деталь не стандартна, p=0,1. Знайти, скільки деталей треба відібрати, щоб з імовірністю, рівної 0,9544, можна було затверджувати, що відносна частота появи нестандартних деталей(серед відібраних) відхилиться від постійної ймовірності p по абсолютній величині не більше ніж на 0,03.
Рішення. За умовою, p=0,1; q=0,9; =0,03; . Потрібно знайти n. Скористаємося формулою
.
У силу умови
Отже,
По таблиці додатка 2 знаходимо . Для відшукання числа n одержуємо рівняння . Звідси шукане число деталей n=400.
№22. Імовірність появи події в кожному з незалежних випробувань дорівнює 0,2. Знайти, яке відхилення відносної частоти появи події від його ймовірності можна чекати з імовірністю 0,9128 при 5000 випробуваннях.
Рішення. Скористаємося тією же формулою, з якої треба:
.
Література
1. Гмурман Е.В. Теорія ймовірностей і математична статистика. – К., 2003
2. Гмурман Е.В. Керівництво до рішення задач по теорії ймовірностей і математичній статистиці. – К., 2004.
3. Гнеденко Б.В. Курс теорії ймовірностей. – К., 2007.
4. Колемаєв В.А., Калініна В.Н., Соловйов В.И., Малихин В.І., Курочкин О.П. Теорія ймовірностей у прикладах і задачах. – К., 2004.
5. Вентцель Е.С. Теорія ймовірностей. – К., 2004
Додатки
Додаток 1
Таблиця значень функції
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
1.6 | 1109 | 1092 | 1074 | 1057 | 1040 | 1023 | 1006 | 0989 | 0973 | 0957 |
1.7 | 0940 | 0925 | 0909 | 0893 | 0878 | 0863 | 0648 | 0833 | 0818 | 0804 |
1.8 | 0790 | 0775 | 0761 | 0748 | 0734 | 0721 | 0707 | 0694 | 0681 | 0669 |
1.9 | 0656 | 0644 | 0632 | 0620 | 0608 | 0596 | 0584 | 0573 | 0562 | 0551 |
2,0 | 0540 | 0529 | 0519 | 0508 | 0498 | 0488 | 0478 | 0468 | 0459 | 0449 |
2.1 | 0440 | 0431 | 0422 | 0413 | 0404 | 0396 | 0387 | 0379 | 0371 | 0363 |
2.2 | 0355 | 0347 | 0339 | 0332 | 0325 | 0317 | 0310 | 0303 | 0297 | 0290 |
2.3 | 0283 | 0277 | 0270 | 0264 | 0258 | 0252 | 0246 | 0241 | 0235 | 0229 |
2,4 | 0224 | 0219 | 0213 | 0208 | 0203 | 0198 | 0194 | 0189 | 0184 | 0180 |
2.5 | 0175 | 0171 | 0167 | 0163 | 0158 | 0154 | 0151 | 0147 | 0143 | 0139 |
2.6 | 0136 | 0132 | 0129 | 0126 | 0122 | 0119 | 0116 | 0113 | 0110 | 0107 |
2,7 | 0104 | 0101 | 0099 | 0096 | 0093 | 0091 | 0088 | 0086 | 0084 | 0081 |
2,8 | 0079 | 0077 | 0075 | 0073 | 0071 | 0069 | 0067 | 0065 | 0063 | 0061 |
2.9 | 0060 | 0058 | 0056 | 0055 | 0053 | 0051 | 0050 | 0048 | 0047 | 0043 |
3,0 | 0044 | 0043 | 0042 | 0040 | 0039 | 0038 | 0037 | 0036 | 0035 | 0034 |
3,1 | 0033 | 0032 | 0031 | 0030 | 0029 | 0028. | 0027 | 0026 | 0025 | 0025 |
3,2 | 0024 | 0023 | 0622 | 0022 | 0021 | 0020 | 0020 | 0019 | 0018 | 0018 |
3,3 | 0017 | 0017 | 0016 | 0016 | 0015 | 0015 | 0014 | 0014 | 0013 | 0013 |
3,4 | 0012 | 0012 | 0012 | 0011 | 0011 | 0010 | 0010 | 0010 | 0009 | 0009 |
3,5 | 0009 | 0008 | 0008 | 0008 | 0008 | 0007 | 0007 | 0007 | 0007 | 0006 |
3,6 | 0006 | 0006 | 0006 | 0005 | 0005 | 0005 | 0005 | 0005 | 0005 | 0004 |
3,7 | 0004 | 0004 | 0004 | 0004 | 0004 | 0004 | 0003 | 0003 | 0003 | 0003 |
3,8 | 0003 | 0003 | 0003 | 0003 | 0003 | 0002 | 0002 | 0002 | 0002 | 0002 |
3,9 | 0002 | 0002 | 0002 | 0002 | 0002 | 0002 | 0002 | 0002 | 0001 | 0001 |
Додаток 2
Таблиця значень функції
x | x | x | x | ||||
0900 | 0,0000 | 0,32 | 0,1255 | 0,64 | 0,2389 | 0,96 | 0,3315 |
0,01 | 0,0040 | 0,33 | 0,1293 | 0,65 | 0,2422 | 0,97 | 0,3340 |
0,02 | 0,0080 | 0,34 | 0,1331 | 0,66 | 0,2454 | 0,98 | 0,3365 |
0,03 | 0,0120 | 0,35 | 0,1368 | 0,67 | 0,2486 | 0.99 | 0,3389 |
0,04 | 0,0160 | 0,36 | 0,1406 | 0,68 | 0,2517 | 1,00 | 0,3413 |
0,05 | 0,0199 | 0,37 | 0,1443 | 0,69 | 0,2549 | 1,01 | 0,3438 |
0,06 | 0,0239 | 0,38 | 0,1480 | 0,70 | 0,2580 | 1,02 | 0,3461 |
0,07 | 0,0279 | 0,39 | 0,1517 | 0,71 | 0,2611 | 1,03 | 0,3485 |
0,08 | 0,0319 | 0,40 | 0,1554 | 0,72 | 0,2642 | 1,04 | 0,3508 |
0,09 | 0,0359 | 0,41 | 0,1591 | 0,73 | 0,2673 | 1,05 | 0,3531 |
0,10 | 0,0398 | 0,42 | 0,1628 | 0,74 | 0,2703 | 1,06 | 0,3554 |
0,11 | 0,0438 | 0,43 | 0,1664 | 0,75 | 0,2734 | 1,07 | 0,3577 |
0,12 | 0,0478 | 0,44 | 0,1700 | 0,76 | 0,2764 | 1,08 | 0,3599 |
0,13 | 0,0517 | 0,45 | 0,1736 | 0,77 | 0,2794 | 1.09 | 0,3621 |
0,14 | 0,0557 | 0,46 | 0,1772 | 0,78 | 0,2823 | 1.10 | 0,3643 |
0,15 | 0,0596 | 0,47 | 0,1808 | 0,79 | 0,2852 | 3665 | 0,3665 |
0,16 | 0,0636 | 0,48 | 0,1844 | 0,80 | 0,2881 | 3686 | 0,3686 |
0,17 | 0,0675 | 0,49 | 01879 | 0,81 | 0,2910 | 1,13 | 0,3708. |
0,18 | 0,0714 | 0,50 | 0,1915 | 0,82 | 0,2939 | 1,14 | 0,3729 |
0,19 | 0,0753 | 0,51 | 0,1950 | 0,83 | 0,2967 | 1,15 | 0,3749 |
0,20 | 0,0793 | 0,52 | 0,1985 | 0,84 | 0,2995 | 1,16 | 0,3770 |
0,21 | 0,0832 | 0,53 | 0,2019 | 0,85 | 0,3023 | 1,17 | 0,3790 |
0,22 | 0,0871 | 0,54 | 0,2054 | 0,86 | 0,3051 | 1,18 | 0,3810 |
0,23 | 0,0910 | 0,55 | 0,2088 | 0,87 | 0,3078 | 1,19 | 0,3830 |
0,24 | 0,0948 | 0,56 | 0,2123 | 0,88 | 0,3106 | 1,20 | 0,3849 |
0,25 | 0,0987 | 0,57 | 0,2157 | 0,89 | 0,3133 | 1.21 | 0,3869 |
0,26 | 0,1026 | 0,58 | 0,2190 | 0,90 | 0,3159 | 1,22 | 0/3883 |
0,27 | 0,1064 | 0,59 | 0,2224 | 0,91 | 0,3186 | 1,23 | 0,3907 |
0,28 | 0,1103 | 0,60 | 0,2257 | 0,92 | 0,3212 | 1.24 | 0,3925 |
0,29 | 0,1141 | 0,61 | 0,2291 | 0,93 | 0,3238 | 1,25 | 0,3944 |
0,30 | 0,1179 | 0,62 | 0,2324 | 0,94 | 0,3264 | ||
0,31 | 0,1217 | 0,63 | 0,2357 | 0,95 | 0,3289 |
x |
x |
|
x | x | |||
1,26 | 0,3962 | 1,59 | 0,4441 | 1,92 | 0,4726 | 2,50 | 0,4938 |
1,27 | 0,3980 | 1,60 | 0,4452 | 1,93 | 0,4732 | 2,52 | 0,4941 |
1,28 | 0,3997 | 1,61 | 0,4463 | 1,94 | 0,4738 | 2,54 | 0,4945 |
1,29 | 0.4015 | 1,62 | 0,4474 | 1,95 | 0,4744 | 2,56 | 0,4948 |
1,30 | 0,4032 | 1,63 | 0.4484 | 1.96 | 0,4750 | 2,58 | 0,4951 |
1,31 | 0,4049 | 1,64 | 0,4495 | 1,97 | 0,4756 | 2,60 | 0,4953 |
1,32 | 0.4066 | 1,65 | 0,4505 | 1,98 | 0,4761 | 2,62 | 0,4956 |
1,33 | 0,4082 | 1,66 | 0,4515 | 1,99 | 0,4767 | 2,64 | 0,4959 |
1,34 | 0.4099 | 1,67 | 0.4525 | 2.00 | 0,4772 | 2,66 | 0,4961 |
1.3S | 0.4115 | 1,68 | 0,4535 | 2,02 | 0,4783 | 2,68 | 0,4963 |
1,36 | 0.4131 | 1,69 | 0,4545 | 2,04 | 0,4793 | 2,70 | 0,4965 |
1,37 | 0.4147 | 1,70 | 0,4554 | 2,06 | 0,4803 | 2,72 | 0,4967 |
1,38 | 0.4162 | 1.71 | 0,4564 | 2,08 | 0,4812 | 2,74 | 0,4969 |
1,39 | 0.4177 | 1,72 | 0,4573 | 2,10 | 0,4821 | 2,76 | 0,4971 |
1.40 | 0,4192 | 1,73 | 0,4582 | 2,12 | 0,4830 | 2,78 | 0,4973 |
1.41 | 0,4207 | 1.74 | 0,4591 | 2,14 | 0,4838 | 2,80 | 0,4974 |
1.42 | 0.4222 | 1,75 | 0.4599 | 2,16 | 0,4846 | 2,82 | 0,4976 |
1.43 | 0.4236 | 1,76 | 0,4608 | 2,18 | 0,4854 | 2,84 | 0,4977 |
1.44 | 0,4251 | 1.77 | 0,4616 | 2,20 | 0,4861 | 2,86 | 0,4979 |
1,45 | 0.4265 | 1,78 | 0.4625 | 2,22 | 0,4868 | 2,88 | 0,4980 |
1.46 | 0,4279 | 1,79 | 0,4633 | 2,24 | 0,4875 | 2,90 | 0,4981 |
1.47 | 0,4292 | 1,80 | 0,4641 | 2,26 | 0,4881 | 2,92 | 0,4982 |
1,48 | 0,4306 | 1.81 | 0,4649 | 2,28 | 0,4887 | 2,94 | 0,4984 |
1,49 | 0.4319 | 1,82 | 0,4656 | 2,30 | 0,4893 | 2,96 | 0,4985 |
1.50 | 0,4332 | 1,83 | 0,4664 | 2,32 | 0,4898 | 2.98 | 0,4986 |
1,51 | 0,4345 | 1,84 | 0,4671 | 2,34 | 0,4904 | 3,00 | 0,49865 |
1.52 | 0,4357 | 1,85 | 0,4678 | 2,36 | 0,4909 | 3,20 | 0,49931 |
1.53 | 0,4370 | 1,86 | 0,4686 | 2,38 | 0,4913 | 3.40 | 0,49966 |
1.54 | 0,4382 | 1,87 | 0,4693 | 2,40 | 0,4918 | 3,60 | 0,49984 |
1,55 | 0,4394 | 1.88 | 0,4699 | 2,42 | 0,4922 | 3,80 | 0,49992 |
1.S6 | 0,4406 | 1.89 | 0,4706 | 2,44 | 0,4927 | 4,00 | 0,49996 |
1,57 | 0,4418 | 1,90 | 0,4713 | 2,46 | 0,4931 | 4,50 | 0,49999 |
1,58 | 0,4429 | 1,91 | 0,4719 | 2,48 | 0,4934 | 5,00 | 0,49999 |
Проверка гипотезы о законе распределения генеральной совокупности X по критерию Пирсона
Моделирование движения парашютиста
Нахождение минимального остовного дерева алгоритмом Краскала
Властивості лінійних операторів та їх застосування при розв’язанні задач. Матриця лінійного оператора
Дослідження лінійно впорядкованого простору ординальних чисел
Дослідження топологічного визначення верхніх напівґрат
Интегралы, зависящие от параметра
Интеграционный метод Эйлера для решения линейных систем алгебраических уравнений
Интегрирование и дифференцирование интегралов, зависящих от параметра
Метод квадратных корней для симметричной матрицы при решении систем линейных алгебраических уравнений
Copyright (c) 2025 Stud-Baza.ru Рефераты, контрольные, курсовые, дипломные работы.