курсовые,контрольные,дипломы,рефераты
Министерство образования Республики Беларусь
Учреждение образования
«Гомельский государственный университет им. Ф. Скорины»
Математический факультет
Курсовая работа
О МИНИМАЛЬНЫХ -ЗАМКНУТЫХ ТОТАЛЬНО НАСЫЩЕННЫХ НЕ -ФОРМАЦИЯХ КОНЕЧНЫХ ГРУПП
Исполнитель:
Студентка группы М-32 Макаренко Л.А.
Научный руководитель:
Канд. физ-мат. наук, доцент Сафонов В.Г.
Гомель 2006
Содержание
Введение
1. Определения и обозначения
2. Используемые результаты
3. Основные результаты
Заключение
Литература
Введение
Все рассматриваемые в работе группы предполагаются конечными. Используемую терминологию можно найти в [1, 2].
При изучении внутреннего строения, а также классификации насыщенных формаций важную роль играют так называемые минимальные насыщенные не -формации [3] или -критические формации [4]. Напомним, что насыщенная формация , называется минимальной насыщенной не -формацией, если все собственные насыщенные подформации содержатся в классе групп . Задача изучения формаций такого рода впервые была поставлена Л.А. Шеметковым на VI симпозиуме по теории групп [3]. Ее решение, в классе насыщенных формаций, получено А.Н. Скибой [5].
В теории тотально насыщенных формаций изучение минимальных тотально насыщенных не -формаций было начато А.Н.Скибой в книге [2], где было дано описание разрешимых минимальных тотально насыщенных не -формаций ( – формация всех разрешимых групп нильпотентной длины ). В работах автора [6-10] теория минимальных -замкнутых тотально насыщенных не -формаций получила свое дальнейшее развитие. Основными результатами в этом направлении являются следующие теоремы.
Теорема 1 [10]. Пусть и – -замкнутые тотально насыщенные формации, . Тогда и только тогда – минимальная -замкнутая тотально насыщенная не -формация, когда , где – такая монолитическая -минимальная не -группа с монолитом , что выполняется одно из следующих условий:
1) – группа простого порядка ;
2) – неабелева группа и , где – совокупность всех собственных -подгрупп группы ;
3) ,
где – самоцентрализуемая минимальная нормальная подгруппа в при всех , а либо группа простого порядка , либо такая монолитическая -минимальная не -группа с неабелевым монолитом , что , совпадает с -корадикалом группы и
где – совокупность всех собственных -подгрупп группы .
Теорема 2 [10]. Пусть и – -замкнутые тотально насыщенные формации, . Тогда и только тогда – минимальная -замкнутая тотально насыщенная не -формация когда удовлетворяет одному из следующих условий:
1) , где – такая монолитическая -минимальная не -группа с неабелевой минимальной нормальной подгруппой , что справедливо включение , где – совокупность всех собственных -подгрупп группы ;
2) ,
где и ;
3) ,
где , а – такая монолитическая группа с неабелевой минимальной нормальной подгруппой , что совпадает с -корадикалом группы , и .
В настоящей работе, основываясь на результатах работы [10], мы даем описание -критических формаций для некоторых наиболее известных формаций .
1. Определения и обозначения
Напомним, что всякую формацию групп называют 0-кратно насыщенной. При формацию называют -кратно насыщенной, если она имеет такой локальный экран, все непустые значения которого – -кратно насыщенные формации. Формацию -кратно насыщенную для любого целого неотрицательного называют тотально насыщенной.
Подгрупповым функтором [2] называют отображение сопоставляющее каждой группе такую систему ее подгрупп , что: 1) ; 2) для любых групп и и любого эпиморфизма имеет место и
Тотально насыщенную формацию называют -замкнутой, если для любой группы . -Замкнутую тотально насыщенную формацию называют минимальной -замкнутой тотально насыщенной не -формацией (или, иначе, -критической), если , но все собственные -замкнутые тотально насыщенные подформации из содержатся в классе групп .
Пусть – -замкнутая формация. Группа называется -минимальной не -группой, если , но для любой собственной подгруппы из .
Для всякой совокупности групп через обозначают -замкнутую тотально насыщенную формацию, порожденную классом групп , т.е. пересечение всех -замкнутых тотально насыщенных формаций, содержащих . Если , то называют однопорожденной -замкнутой тотально насыщенной формацией. Для любых -замкнутых тотально насыщенных формаций и полагают . Частично упорядоченное по включению множество всех -замкнутых тотально насыщенных формаций с операциями и образует полную решетку. Формации из называют -формациями. Экран, все непустые значения которого -формации, называют -значным. Если – -формация, то через обозначают её минимальный -значный локальный экран.
Для произвольной последовательности простых чисел и всякой совокупности групп класс групп определяют следующим образом:
1) ; 2) .
Последовательность простых чисел называют подходящей для , если и для любого число . Множество всех подходящих для последовательностей обозначают через . Символом обозначают совокупность всех таких последовательностей из , у которых при всех .
Пусть – некоторая подходящая для последовательность. Тогда -значный локальный экран определяют следующим образом:
1) ; 2) .
В дальнейшем через будем обозначать некоторое непустое множество простых чисел.
2. Используемые результаты
Лемма 2.1 [9]. Пусть – монолитическая группа, – неабелева группа. Тогда имеет единственную максимальную -подформацию , где – совокупность всех собственных -подгрупп группы . В частности, .
Лемма 2.2 [2, c. 33]. Пусть , где – непустой класс групп. Тогда если – минимальный -значный экран формации , то справедливы следующие утверждения:
1) ;
2)
при всех простых числах ;
3) если – произвольный -значный экран формации , то при любом имеет место
Следующая лемма является частным случаем теоремы 2.5.5 [2, c. 94].
Лемма 2.3. Пусть , – -замкнутые тотально насыщенные формации, , – канонический экран формации . Тогда является -критической формацией в том и только в том случае, когда , где – такая монолитическая -минимальная не -группа с монолитом , что для всех формация -критична.
3. Основные результаты
Теоремы 1 и 2 могут быть использованы для нахождения описания минимальных -замкнутых тотально насыщенных не -формаций для большинства «классических», наиболее часто используемых в приложениях классов групп , поскольку большинство из них являются наследственными тотально насыщенными формациями. Приведем описание -критических формаций для некоторых конкретных классов групп.
Минимальные -замкнутые тотально насыщенные не -разрешимые формации.
Напомним, что группу называют -разрешимой, если для каждого ее главного -фактора . Пусть – формация всех -разрешимых групп. Тогда, очевидно, . Класс всех -разрешимых групп является наследственной тотально насыщенной формацией.
Теорема 3.1. Тогда и только тогда – минимальная -замкнутая тотально насыщенная не -разрешимая формация, когда , где – монолитическая -минимальная не -разрешимая группа с таким неабелевым монолитом , что и группа -разрешима.
Доказательство. Необходимость. Пусть – минимальная -замкнутая тотально насыщенная не -разрешимая формация. По теореме 1 имеем , где – такая монолитическая -минимальная не -разрешимая группа с монолитом , что выполняется одно из следующих условий:
1) – группа простого порядка ;
2) – неабелева группа и , где – совокупность всех собственных -подгрупп группы ;
3) ,
где – самоцентрализуемая минимальная нормальная подгруппа в при всех , а либо группа простого порядка , либо такая монолитическая -минимальная не -группа с неабелевым монолитом , что , совпадает с -корадикалом группы и
где – совокупность всех собственных -подгрупп группы .
Поскольку , то – неабелева группа и . Таким образом, группа удовлетворяет условию теоремы.
Достаточность. Пусть , где – группа из условия теоремы. Ввиду леммы 2.1 формация имеет единственную максимальную -замкнутая тотально насыщенную подформацию , где – совокупность всех собственных -подгрупп группы . Поскольку и , то . Следовательно, – минимальная -замкнутая тотально насыщенная не -разрешимая формация. Теорема доказана.
Следствие 3.1.1. Тогда и только тогда – минимальная -замкнутая тотально насыщенная не -разрешимая формация, когда , где – монолитическая -минимальная не -разрешимая группа с таким неабелевым монолитом , что и группа -разрешима.
Следствие 3.1.2 [9]. Тогда и только тогда – минимальная -замкнутая тотально насыщенная неразрешимая формация, когда , где – монолитическая -минимальная неразрешимая группа с таким неабелевым монолитом , что группа разрешима.
Если – тривиальный подгрупповой функтор, т.е. из теоремы 3.1 вытекает
Следствие 3.1.3. Тогда и только тогда – минимальная тотально насыщенная не -разрешимая формация, когда , где – монолитическая группа с таким неабелевым монолитом , что и группа -разрешима.
Следствие 3.1.4 [7]. Тогда и только тогда – минимальная тотально насыщенная неразрешимая формация, когда , где – монолитическая группа с таким неабелевым монолитом , что группа разрешима.
В случае, когда – совокупность всех подгрупп группы из теоремы 3.1 получаем
Следствие 3.1.5. Тогда и только тогда – минимальная наследственная тотально насыщенная не -разрешимая формация, когда , где – простая неабелева минимальная не -разрешимая группа.
Следствие 3.1.6. Тогда и только тогда – минимальная наследственная тотально насыщенная не -разрешимая формация, когда , где – простая неабелева минимальная не -разрешимая группа.
Следствие 3.1.7. Тогда и только тогда – минимальная наследственная тотально насыщенная неразрешимая формация, когда , где – простая неабелева минимальная неразрешимая группа.
Если – совокупность всех нормальных подгрупп группы имеем
Следствие 3.1.8. Тогда и только тогда – минимальная нормально наследственная тотально насыщенная не -разрешимая формация, когда , где – простая неабелева -группа.
Следствие 3.1.9. Тогда и только тогда – минимальная нормально наследственная тотально насыщенная не -разрешимая формация, когда , где – простая неабелева -группа.
Следствие 3.1.10. Тогда и только тогда – минимальная нормально наследственная тотально насыщенная неразрешимая формация, когда , где – простая неабелева группа.
Минимальные -замкнутые тотально насыщенные не -нильпотентные формации.
Группа называется -нильпотентной, если она имеет нормальную -холловскую подгруппу для каждого . Класс всех -нильпотентных групп совпадает с произведением и является наследственной тотально насыщенной формацией.
Теорема 3.2. Тогда и только тогда – минимальная -замкнутая тотально насыщенная не -нильпотентная формация, когда , где – не -нильпотентная группа Шмидта.
Доказательство. Пусть формацию всех -нильпотентных групп.
Необходимость. Пусть – минимальная -замкнутая тотально насыщенная не -нильпотентная формация. В силу теоремы 1 имеет место , где – такая монолитическая -минимальная не -нильпотентная группа с монолитом , что выполняется одно из следующих условий:
1) – группа простого порядка ;
2) – неабелева группа и , где – совокупность всех собственных -подгрупп группы ;
3) ,
где – самоцентрализуемая минимальная нормальная подгруппа в при всех , а либо группа простого порядка , либо такая монолитическая -минимальная не -группа с неабелевым монолитом , что , совпадает с -корадикалом группы и
где – совокупность всех собственных -подгрупп группы .
Поскольку , то первые два случая невозможны. Поэтому – абелева -группа, где . По лемме 2.2 имеем . Поэтому , где – группа простого порядка. Таким образом, – не -нильпотентная группа Шмидта.
Достаточность. Пусть , где – не -нильпотентная группа Шмидта. Поскольку насыщенная формация, то без ограничения общности можно считать, что . Поэтому , где – минимальная нормальная -подгруппа группы , а – группа простого порядка . Так как группа и все собственные подгруппы из нильпотентны, а следовательно, и -нильпотентны, то – -минимальная не -нильпотентная группа и – -нильпотентный корадикал группы . Используя теперь теорему 1 заключаем, что – минимальная -замкнутая тотально насыщенная не -нильпотентная формация. Теорема доказана.
Используя теорему 2, получим
Следствие 3.2.1. Тогда и только тогда – минимальная -замкнутая тотально насыщенная не -нильпотентная формация, когда , где и – различные простые числа, .
В случае, когда из теорем 3.2 и 2 вытекают
Следствие 3.2.2. Тогда и только тогда – минимальная -замкнутая тотально насыщенная не -нильпотентная формация, когда , где – не -нильпотентная группа Шмидта.
Следствие 3.2.3. Тогда и только тогда – минимальная -замкнутая тотально насыщенная не -нильпотентная формация, когда , где – отличное простое число.
Если теперь – множество всех простых чисел из теоремы 3.2 получаем
Следствие 3.2.4. Тогда и только тогда – минимальная -замкнутая тотально насыщенная ненильпотентная формация, когда , где – некоторая группа Шмидта.
Следствие 3.2.5. Тогда и только тогда – минимальная -замкнутая тотально насыщенная ненильпотентная формация, когда , где и – различные простые числа.
Следствие 3.2.6 [7]. Тогда и только тогда – минимальная тотально насыщенная ненильпотентная формация, когда , где и – различные простые числа.
Минимальные -замкнутые тотально насыщенные не -замкнутые формации.
Напомним, что группа называется -замкнутой, если она имеет нормальную -холловскую подгруппу. Формация всех -замкнутых групп, очевидно, совпадает с произведением и является наследственной тотально насыщенной формацией.
Теорема 3.3. Тогда и только тогда – минимальная -замкнутая тотально насыщенная не -замкнутая формация, когда , где – не -замкнутая группа Шмидта.
Доказательство. Обозначим через формацию всех -замкнутых групп.
Необходимость. Пусть – минимальная -замкнутая тотально насыщенная не -замкнутая формация. По теореме 1 имеем , где – такая монолитическая -минимальная не -замкнутая группа с монолитом , что выполняется одно из следующих условий:
1) – группа простого порядка ;
2) – неабелева группа и , где – совокупность всех собственных -подгрупп группы ;
3) ,
где – самоцентрализуемая минимальная нормальная подгруппа в при всех , а либо группа простого порядка , либо такая монолитическая -минимальная не -группа с неабелевым монолитом , что , совпадает с -корадикалом группы и
где – совокупность всех собственных -подгрупп группы .
Так как , то . Если – неабелева группа, то по лемме 2.2 имеем . Значит, Противоречие. Поэтому – абелева -группа, где . Значит, для некоторой максимальной подгруппы группы . В силу леммы 2.3 получаем, что – -критическая формация. Согласно лемме 2.2 имеем . Так как , то – группа простого порядка . Таким образом, – не -замкнутая группа Шмидта.
Достаточность. Пусть , где – не -замкнутая группа Шмидта. Так как – насыщенная формация, то не ограничивая общности можно считать, что . Поэтому , где – минимальная нормальная -подгруппа , , – группа простого порядка . Так как группа и любая собственная подгруппа из нильпотентны, а значит, и -замкнуты, то – -минимальная не -замкнутая группа и её -замкнутый корадикал. Теперь, в силу теоремы 1, мы можем заключить, что – минимальная -замкнутая тотально насыщенная не -замкнутая формация. Теорема доказана.
Следствие 3.3.1. Тогда и только тогда – минимальная -замкнутая тотально насыщенная не -замкнутая формация, когда , где и .
В случае, когда из теоремы 3.3 вытекает
Следствие 3.3.2. Тогда и только тогда – минимальная -замкнутая тотально насыщенная не -замкнутая формация, когда , где – не -замкнутая группа Шмидта.
Следствие 3.3.3. Тогда и только тогда – минимальная -замкнутая тотально насыщенная не -замкнутая формация, когда , где – отличное от простое число.
Минимальные -замкнутые тотально насыщенные не -специальные формации.
Группа называется -специальной, если она обладает нильпотентной нормальной -холловской подгруппой. Понятно, что совокупность всех -специальных групп совпадает с классом и является наследственной тотально насыщенной формацией.
Теорема 3.4. Тогда и только тогда – минимальная -замкнутая тотально насыщенная не -специальная формация, когда , где – не -специальная группа Шмидта.
Доказательство. Пусть обозначает формацию всех -специальных групп.
Необходимость. Если – минимальная -замкнутая тотально насыщенная не -специальная формация, то по теореме 1 имеет место , где – такая монолитическая -минимальная не -специальная группа с монолитом , что выполняется одно из следующих условий:
1) – группа простого порядка ;
2) – неабелева группа и , где – совокупность всех собственных -подгрупп группы ;
3) ,
где – самоцентрализуемая минимальная нормальная подгруппа в при всех , а либо группа простого порядка , либо такая монолитическая -минимальная не -группа с неабелевым монолитом , что , совпадает с -корадикалом группы и
где – совокупность всех собственных -подгрупп группы .
Поскольку , то случай 1) не имеет место и . Если – неабелева группа, то в силу леммы 2.1 имеем . Поэтому и . Пусть и . Тогда в силу леммы 2.1 имеет место включение. Противоречие. Поэтому невозможен и случай 2). Следовательно, – абелева -группа. Так как имеют место равенства , то , где – группа порядка . Таким образом, – не -специальная группа Шмидта.
Достаточность. Пусть , где – не -специальная группа Шмидта. Тогда . Поскольку – насыщенная формация, то без ограничения общности можно считать, что . Поэтому , где – минимальная нормальная -подгруппа , а – группа простого порядка . Ввиду того, что группа и любая собственная подгруппа из нильпотентны, а следовательно, и -специальны, то – -минимальная не -специальная группа и её -специальный корадикал. Привлекая теперь теорему 1 заключаем, что – минимальная -замкнутая тотально насыщенная не -специальная формация. Теорема доказана.
Следствие 3.4.1. Тогда и только тогда – минимальная -замкнутая тотально насыщенная не -специальная формация, когда , где и – различные простые числа, .
В случае, когда из теоремы 3.4 вытекает
Следствие 3.4.2. Тогда и только тогда – минимальная -замкнутая тотально насыщенная не -специальная формация, когда , где – не -специальная группа Шмидта.
Следствие 3.4.3. Тогда и только тогда – минимальная -замкнутая тотально насыщенная не -специальная формация, когда , где – отличное от простое число.
Минимальные -замкнутые тотально насыщенные не -разложимые формации.
Группа называется -разложимой, если она одновременно -специальна и -замкнута.
Класс всех -разложимых групп совпадает с пересечением и является наследственной тотально насыщенной формацией.
Теорема 3.5. Тогда и только тогда – минимальная -замкнутая тотально насыщенная не -разложимая формация, когда , где – не -разложимая группа Шмидта.
Доказательство. Обозначим через формацию всех -разложимых групп.
Необходимость. Пусть – минимальная -замкнутая тотально насыщенная не - разложимая формация. В силу теорем 3.3 и 3.4 имеем , где – такая группа Шмидта, что . Таким образом, – не - разложимая группа Шмидта.
Достаточность. Пусть , где – не -разложимая группа Шмидта. Поэтому . Ввиду насыщенности формации можно считать, что . Значит, , где – минимальная нормальная -подгруппа , а – группа простого порядка. Поскольку группа и любая собственная подгруппа из нильпотентны, а значит, и -разложимы, то – -минимальная не -разложимая группа и её -разложимый корадикал. В силу теоремы 1 имеем – минимальная -замкнутая тотально насыщенная не -разложимая формация. Теорема доказана.
Следствие 3.5.1. Тогда и только тогда – минимальная -замкнутая тотально насыщенная не -разложимая формация, когда , где .
В случае, когда из теоремы 3.24 вытекает
Следствие 3.5.2. Тогда и только тогда – минимальная -замкнутая тотально насыщенная не -разложимая формация, когда , где – не -разложимая группа Шмидта.
Следствие 3.5.3. Тогда и только тогда – минимальная -замкнутая тотально насыщенная не -разложимая формация, когда , где – отличное от простое число.
Минимальные -замкнутые тотально насыщенные не -формации.
Класс всех разрешимых групп с нильпотентной длиной не превосходящей совпадает с произведением (число сомножителей равно ) и является наследственной тотально насыщенной формацией.
Теорема 3.6. Тогда и только тогда – минимальная тотально насыщенная не -формация, когда , где – минимальная не -группа, – самоцентрализуемая минимальная нормальная подгруппа в при всех и – группа простого порядка.
Доказательство. Обозначим через формацию .
Необходимость. Пусть – минимальная -замкнутая тотально насыщенная не -формация. По теореме 1 , где – такая монолитическая -минимальная не -группа с монолитом , что выполняется одно из следующих условий:
1) – группа простого порядка ;
2) – неабелева группа и , где – совокупность всех собственных -подгрупп группы ;
3) ,
где – самоцентрализуемая минимальная нормальная подгруппа в при всех , а либо группа простого порядка , либо такая монолитическая -минимальная не -группа с неабелевым монолитом , что , совпадает с -корадикалом группы и
где – совокупность всех собственных -подгрупп группы .
Поскольку , то случай 1) невозможен. Если группа неабелева, то по лемме 2.1 , что невозможно. Следовательно, имеет место случай 3). Поскольку группа разрешима, то , где – самоцентрализуемая минимальная нормальная подгруппа в при всех , а группа простого порядка . Таким образом, группа удовлетворяет условию теоремы.
Достаточность вытекает из теоремы 1. Теорема доказана.
Следствие 3.6.1 [2, с. 94]. Пусть – разрешимая формация. Тогда и только тогда – минимальная тотально насыщенная не -формация, когда , где – минимальная не -группа, – самоцентрализуемая минимальная нормальная подгруппа в при всех и – группа простого порядка.
Следствие 3.6.2. Тогда и только тогда – минимальная тотально насыщенная не -формация, когда для некоторой последовательности из .
Следствие 3.6.3 [2, с. 94]. Пусть – разрешимая формация. Тогда и только тогда – минимальная тотально насыщенная не -формация, когда для некоторой последовательности из .
Отметим, что полученные результаты могут быть использованы для описания -критических формаций и в случаях, когда формация не является тотально насыщенной.
Минимальные -замкнутые тотально насыщенные не -формации.
Класс всех групп с нильпотентным коммутантом, очевидно, совпадает с произведением , где – класс всех нильпотентных, а – класс всех абелевых групп. Формация не является тотально насыщенной, но содержит единственную максимальную наследственную тотально насыщенную подформацию . Следовательно, любая минимальная -замкнутая тотально насыщенная не -формация является минимальной -замкнутой тотально насыщенной не -формацией. Таким образом, привлекая следствия 3.2.4 и 3.2.5, получим
Теорема 3.7. Тогда и только тогда – минимальная -замкнутая тотально насыщенная не -формация, когда , где – некоторая группа Шмидта.
Следствие 3.7.1. Тогда и только тогда – минимальная -замкнутая тотально насыщенная не -формация, когда , где и – различные простые числа.
Минимальные -замкнутые тотально насыщенные несверхразрешимые формации.
Пусть формация всех сверхразрешимых групп. Как известно (см., например, [2, с. 28]), формация не является тотально насыщенной. Однако содержит единственную максимальную наследственную тотально насыщенную подформацию . Поэтому любая минимальная -замкнутая тотально насыщенная несверхразрешимая формация является минимальной -замкнутой тотально насыщенной ненильпотентной формацией. Значит, в силу следствий 3.2.4 и 3.2.5, имеют место
Теорема 3.8. Тогда и только тогда – минимальная -замкнутая тотально насыщенная несверхразрешимая формация, когда , где – некоторая группа Шмидта.
Следствие 3.8.1. Тогда и только тогда – минимальная -замкнутая тотально насыщенная несверхразрешимая формация, когда , где и – различные простые числа.
Заключение
В работе изучаются минимальные -замкнутые тотально насыщенные не -формации конечных групп. При этом -замкнутую тотально насыщенную формацию называют минимальной -замкнутой тотально насыщенной не -формацией или -критической, если , но все собственные -замкнутые тотально насыщенные подформации из содержатся в классе групп . Получено описание -критических формаций для таких классов групп , как классы всех -разрешимых, -нильпотентных, -замкнутых, -специальных, -разложимых групп ( – некоторое непустое подмножество множества всех простых чисел), класс разрешимых групп нильпотентной длины не превосходящей ( – некоторое натуральное число), класс всех групп с нильпотентным коммутантом, класс всех сверхразрешимых групп.
Литература
1. Шеметков, Л.А. Формации алгебраических систем / Л. А. Шеметков, А. Н. Скиба // М.: Наука, 1989.
2. Скиба, А.Н. Алгебра формаций / А. Н. Скиба // Мн.: Беларуская навука, 1997.
3. Шеметков, Л.А. Экраны ступенчатых формаций / Л. А. Шеметков // Тр. VI Всесоюзн. симпозиум по теории групп. – Киев: Наукова думка, 1980. – С. 37-50.
4. Скиба, А.Н. О критических формациях / А. Н. Скиба // Изв. АН БССР. Сер. физ.-мат. наук. 1980. – № 4. – С. 27-33.
5. Скиба, А.Н. О критических формациях / А. Н. Скиба // В кн.: Бесконечные группы и примыкающие алгебраические структуры. Киев: Ин-т математики АН Украины, 1993. – С. 258-268.
6. Сафонов, В.Г. О тотально насыщенных формациях конечной длины / В. Г. Сафонов // Известия Гомельского госуниверситета, 2004. – № 6. – С. 150-155.
7. Сафонов, В.Г. О двух задачах теории тотально насыщенных формаций / В. Г. Сафонов // Докл. НАН Беларуси, 2005. – Т. 49, № 5, – C. 16-20.
8. Сафонов, В.Г. О приводимых тотально насыщенных формациях нильпотентного дефекта 3 / В. Г. Сафонов // Известия Гомельского госуниверситета, 2005. № 4 (31). – С. 157-162.
9. Сафонов, В.Г. Характеризация разрешимых однопорожденных тотально насыщенных формаций конечных групп / В.Г. Сафонов // Сибирский матем. журнал, 2007 – Т. 48, № 1. – С. 185-191.
10. Сафонов, В.Г. -критические формации / В. Г. Сафонов // Известия Гомельского госуниверситета, 2008. № 2 (47). – С. 169-176.
Министерство образования Республики Беларусь Учреждение образования «Гомельский государственный университет им. Ф. Скорины» Математический факультет Курсовая работа О МИНИМАЛЬНЫХ -ЗАМКНУТЫХ ТОТАЛ
Обобщение классических средних величин
Обобщённо булевы решетки
Обратимые матрицы над кольцом целых чисел
Кручение стержней
Дослідження розвитку теорії ймовірності
Оценка периметра многоугольника заданного диаметра
Структура некоторых числовых множеств
Элективный курс по теме: "Сюжетные задачи"
Теоремы о неподвижных точках и их применения
Схема Бернулли. Цепи Маркова
Copyright (c) 2025 Stud-Baza.ru Рефераты, контрольные, курсовые, дипломные работы.