курсовые,контрольные,дипломы,рефераты
Среднегодовая численность населения области выглядит следующим образом:
Год | Среднегодовая численность населения, тыс.чел. |
1992 | 2528,0 |
1993 | 2655,0 |
1994 | 2689,0 |
1995 | 2722,0 |
1996 | 2747,4 |
1997 | 2747,7 |
1998 | 2750,5 |
1999 | 2747,9 |
2000 | 2739,0 |
Рассчитать абсолютные и средние показатели динамики.
Решение
1. Требуемые показатели рассчитываются по формулам:
· Абсолютный прирост:
· Темп роста:
· Темп прироста:
Полученные данные представим в таблице:
Год | Среднегодовая численность населения, тыс. чел. | Абсолютный прирост, млн. руб. | Темпы роста, % | Темпы прироста, % | |||
к баз. | к отч. | к баз. | к отч. | к баз. | к отч. | ||
1992 | 2528,0 | 0 | - | 100 | - | 0 | - |
1993 | 2655,0 | 127 | 127 | 105,0 | 105,0 | 5 | 5 |
1994 | 2689,0 | 161 | 34 | 106,4 | 101,3 | 6,4 | 1,3 |
1995 | 2722,0 | 194 | 33 | 107,7 | 101,2 | 7,7 | 1,2 |
1996 | 2747,4 | 219,4 | 25,4 | 108,7 | 100,9 | 8,7 | 0,9 |
1997 | 2747,7 | 219,7 | 0,3 | 108,7 | 100 | 8,7 | 0 |
1998 | 2750,5 | 222,5 | 2,8 | 108,8 | 100,1 | 8,8 | 0,1 |
1999 | 2747,9 | 219,9 | -2,6 | 108,7 | 99,9 | 8,7 | -0,1 |
2000 | 2739,0 | 211 | -8,9 | 108,3 | 99,7 | 8,3 | -0,3 |
Среднегодовой абсолютный прирост определим по формуле:
тыс. чел.
Среднегодовые темпы роста и прироста:
или 100,97%
=100,97-100 = 0,97%, то есть ежегодно уровни ряда возрастали в среднем на 0,97%.
По одному из предприятий региона имеются следующие данные об объеме производства макаронных изделий:
Год |
Объем производства, т. |
1990 | 138,4 |
1991 | 155,4 |
1992 | 165,4 |
1993 | 168,1 |
1994 | 173,9 |
1995 | 178,1 |
1996 | 184,2 |
1997 | 189,7 |
1998 | 190,5 |
1999 | 200,2 |
2000 | 209,7 |
Определить:
1. среднегодовое производство макаронных изделий;
2. базисные, цепные и среднегодовые показатели абсолютного прироста, темпов роста и темпов прироста производства макаронных изделий;
3. проверьте ряд динамики производства макаронных изделий на наличие тренда. Используя метод аналитического выравнивания, постройте уравнение прямой;
4. изобразите динамику производства макаронных изделий на графике.
Решение
1. Данный динамический ряд является интервальным, поэтому для определения среднегодового производства используем формулу арифметической простой:
=,
то есть в среднем в год производится 177,6 тонн макаронных изделий.
2. Базисные, цепные и среднегодовые показатели абсолютного прироста, темпов роста и темпов прироста производства макаронных изделий рассчитываются по формулам:
· Абсолютный прирост:
· Темп роста:
· Темп прироста:
Полученные данные представим в таблице:
Год | Объем производства, т. | Абсолютный прирост, млн. руб. | Темпы роста, % | Темпы прироста, % | |||
к баз. | к отч. | к баз. | к отч. | к баз. | к отч. | ||
1990 | 138,4 | 0 | - | 100 | - | 0 | - |
1991 | 155,4 | 17 | 17 | 112,28 | 112,28 | 12,28 | 12,28 |
1992 | 165,4 | 27 | 10 | 119,51 | 106,44 | 19,51 | 6,44 |
1993 | 168,1 | 29,7 | 2,7 | 121,46 | 101,63 | 21,46 | 1,63 |
1994 | 173,9 | 35,5 | 5,8 | 125,65 | 103,45 | 25,65 | 3,45 |
1995 | 178,1 | 39,7 | 4,2 | 128,68 | 102,42 | 28,68 | 2,42 |
1996 | 184,2 | 45,8 | 6,1 | 133,09 | 103,43 | 33,09 | 3,43 |
1997 | 189,7 | 51,3 | 5,5 | 137,07 | 102,99 | 37,07 | 2,99 |
1998 | 190,5 | 52,1 | 0,8 | 137,64 | 100,42 | 37,64 | 0,42 |
1999 | 200,2 | 61,8 | 9,7 | 144,65 | 105,09 | 44,65 | 5,09 |
2000 | 209,7 | 71,3 | 9,5 | 151,52 | 104,75 | 51,52 | 4,75 |
3. Рассчитаем уравнение тренда ряда динамики.
Годы | Объем производства, т. | t |
t2 |
yt | |
1990 | 138,4 | 1 | 1 | 138,4 | -151,88 |
1991 | 155,4 | 2 | 4 | 310,8 | -101,63 |
1992 | 165,4 | 3 | 9 | 196,2 | -51,38 |
1993 | 168,1 | 4 | 16 | 672,4 | -1,13 |
1994 | 173,9 | 5 | 25 | 869,5 | 49,12 |
1995 | 178,1 | 6 | 36 | 1068,6 | 99,37 |
1996 | 184,2 | 7 | 49 | 1289,4 | 149,62 |
1997 | 189,7 | 8 | 64 | 1517,6 | 199,87 |
1998 | 190,5 | 9 | 81 | 1714,5 | 250,12 |
1999 | 200,2 | 10 | 100 | 2002 | 300,37 |
2000 | 209,7 | 11 | 121 | 2306,7 | 350,62 |
Итого | 1953,6 | 66 | 506 | 12086,1 | 1093,07 |
Для выравнивания ряда динамики по прямой следует получить уравнение: =a0+a1t.
Для расчета параметров а0 и а1 решается система нормальных уравнений:
Решив систему, получаем:
a0=-202,13, a1=50,25.
Уравнение тренда примет вид: =-202,13+50,25t.
Ряд выровненных значений характеризует тенденцию стабильного увеличения выпуска продукции.
4. Изобразим динамику производства макаронных изделий на графике.
Имеются данные о вводе жилых домов по одной из строительных компаний:
Год | Введено общей площади, тыс. кв. м. |
1990 | 33 |
1991 | 35 |
1992 | 35 |
1993 | 37 |
1994 | 42 |
1995 | 46 |
1996 | 48 |
1997 | 50 |
1998 | 52 |
1999 | 54 |
2000 | 58 |
Определить:
1. среднегодовой ввод жилых домов;
2. базисные, цепные и среднегодовых показатели абсолютного прироста, темпов роста и прироста ввода жилых домов.
3. на основе средних абсолютных приростов и темпов роста определить ожидаемый уровень ввода жилых домов в 2005 г.
4. изобразить динамику ввода жилых домов на графике.
1. Данный динамический ряд является интервальным, поэтому для определения среднегодового производства используем формулу арифметической простой:
=,
то есть в среднем в год вводится 44,55 тыс. кв. м
2. Требуемые показатели рассчитываются по формулам:
· Абсолютный прирост:
· Темп роста:
· Темп прироста:
Полученные данные представим в таблице:
Год | Введено общей площади, тыс. кв. м. | Абсолютный прирост, млн. руб. | Темпы роста, % | Темпы прироста, % | |||
к баз. | к отч. | к баз. | к отч. | к баз. | к отч. | ||
1990 | 33 | 0 | - | 100 | - | 0 | - |
1991 | 35 | 2 | 2 | 106,06 | 106,06 | 6,06 | 6,06 |
1992 | 35 | 2 | 0 | 106,06 | 100 | 6,06 | 0 |
1993 | 37 | 4 | 2 | 112,12 | 105,71 | 12,12 | 5,71 |
1994 | 42 | 9 | 5 | 127,27 | 113,51 | 27,27 | 13,51 |
1995 | 46 | 13 | 4 | 139,39 | 109,52 | 39,39 | 9,52 |
1996 | 48 | 15 | 2 | 145,45 | 104,35 | 45,45 | 4,35 |
1997 | 50 | 17 | 2 | 151,51 | 104,17 | 51,51 | 4,17 |
1998 | 52 | 19 | 2 | 157,58 | 104 | 57,58 | 4 |
1999 | 54 | 21 | 2 | 163,64 | 103,85 | 63,64 | 3,85 |
2000 | 58 | 25 | 4 | 175,76 | 107,41 | 75,76 | 7,41 |
Среднегодовой абсолютный прирост определим по формуле:
тыс. кв. м.
Среднегодовые темпы роста и прироста:
или 105,8%
=105,8-100 = 5,8%, то есть ежегодно уровни ряда возрастали в среднем на 5,8%.
3. Если принять во внимание ввод жилых домов в 2000 и рассчитанный выше абсолютный прирост, то в 2005 году ввод жилых домов составит приблизительно 69,35 тыс. кв. м. (58+2,27*5).
4. Изобразим динамику ввода жилых домов на графике:
Имеются данные о ценах и количестве проданных товаров:
Вид товара | Единица измерения | Цена за единицу, руб. | Реализовано, тыс. ед. | ||
Базисный период | Отчетный период | Базисный период | Отчетный период | ||
Мясо | кг | 80 | 110 | 600 | 500 |
Молоко | л | 15 | 25 | 800 | 900 |
Определить:
1. общий индекс цен;
2. общий индекс физического объема товарооборота;
3. общий индекс товарооборота.
Решение
1. Общий индекс цен определим по формуле:
Ip=или 145%.
Следовательно, цены увеличились в среднем на 45%.
2. Общий индекс физического объема оборота рассчитаем по формуле:
или 89%.
Следовательно, физическая масса продажи снизилась на 11%.
3. Общий индекс оборота в действующих ценах:
или129%.
Взаимосвязь: 1,45*0,89=1,29
В коммерческом банке в порядке собственно-случайной выборки обследовано 5% кредитных договоров, в результате чего установлено:
Группы договоров с ссудозаемщиками по размеру кредита, тыс. руб. | Число договоров с ссудозаемщиками |
До 200 | 47 |
200-600 | 117 |
600-1400 | 105 |
1400-3000 | 47 |
3000 и более | 34 |
ИТОГО | 350 |
Определить:
1. по договорам, включенным в выборку:
а) средний размер выданного ссудозаемщиком кредита;
б) долю ссудозаемщиков, получивших кредит в размере более 3000 тыс. руб.
2. с вероятностью 0,954 пределы, в которых можно ожидать средний размер выданного ссудозаемщикам кредита и доли судозаемщиков, получивших кредит в размере более 3000 тыс. руб. в целом по отделению банка.
Решение
1. Закроем интервалы, определим центры интервалов, рассчитаем размер кредитов во всех договорах и занесем расчетные показатели в таблицу:
Группы договоров с ссудозаемщиками по размеру кредита, тыс. руб. |
Число договоров с ссудозаемщиками (fi) |
Группы договоров с ссудозаемщиками по размеру кредита, тыс. руб. |
Середина интервала () |
Размер кредитов во всех договорах, тыс. руб. (xifi) |
x2f |
До 200 | 47 | 0-200 | 100 | 4700 | 470000 |
200-600 | 117 | 200-600 | 400 | 46800 | 18720000 |
600-1400 | 105 | 600-1400 | 1000 | 105000 | 105000000 |
1400-3000 | 47 | 1400-3000 | 2200 | 103400 | 227480000 |
3000 и более | 34 | 3000-4600 | 3800 | 129200 | 490960000 |
ИТОГО | 350 | - | - | 389100 | 842630000 |
б) доля ссудозаемщиков, получивших кредит в размере более 3000 тыс. руб. равна:
2. Определим с вероятностью 0,954 пределы, в которых можно ожидать средний размер выданного ссудозаемщикам кредита и доли судозаемщиков, получивших кредит в размере более 3000 тыс. руб. в целом по отделению банка.
Дисперсия рассчитывается по формуле:
Средняя ошибка выборки составит:
t=2
тыс. руб.
Установим границы: 1111,714-115,7≤≤1111,714+115,7
996,014≤≤1227,414
Значит, на основании проведенного обследования с вероятностью 0,954 можно заключить, что средний размер выданного ссудозаемщикам кредита, получивших кредит в размере более 3000 тыс. руб., в целом по отделению банка лежит в пределах от 996,014 до 1227,414 тыс. руб.
1. Теория статистики: Учебник / Р. А. Шмойлова, В. Г. Минашкин, Н. А. Садовникова, Е. Б. Шувалова; Под ред. Р. А. Шмойловой. – 4-е изд., перераб. и доп. – М.: Финансы и статистика, 2005. – 656с.
2. Гусаров В.М. Статистика: Учебное пособие для вузов. - М.: ЮНИТИ-ДАНА, 2001.
3. Октябрьский П. Я. Статистика: Учебник. – М.: ТК Велби, Изд-во Проспект, 2005. – 328 с.
4. Сборник задач по теории статистики: Учебное пособие/ Под ред.проф. В.В.Глинского и к.э.н., доц. Л.К.Серга. Изд.З-е.- М.:ИНФРА-М; Новосибирск: Сибирское соглашение, 2002.
5. Статистика: Учебное пособие/Харченко Л-П., Долженкова В.Г., Ионин В.Г. и др., Под ред. В.Г.Ионина. - Изд. 2-е, перераб. и доп. - М.: ИНФРА-М.2003.
Задача 4 Среднегодовая численность населения области выглядит следующим образом: Год Среднегодовая численность населения, тыс.чел. 1992 2528,0 1993 2655,0 1994 2689,0 1995 2722,0 1996 27
Определение стоимости объектов недвижимости рыночным подходом
Определение стоимости основных фондов
Определение стоимости производственных фондов
Определение точки равновесия прибыли и точки безубыточности эксплуатации станка
Оптовые цены и их виды
Опыт государственного регулирования малого бизнеса в странах Азии.
Организационная структура и межотраслевые связи молочного подкомплекса РБ
Организация внешнеэкономической деятельности на предприятии и перспективы ее развития
Организация внутрихозяйственных производственно-экономических отношений в автопарке
Организация и ведение бухгалтерского учёта на малых предприятия
Copyright (c) 2024 Stud-Baza.ru Рефераты, контрольные, курсовые, дипломные работы.