курсовые,контрольные,дипломы,рефераты
Министерство образования Российской Федерации
Пензенский Государственный Университет
Медицинский Институт
Кафедра Терапии
Реферат
на тему:
ОСТРАЯ СЕРДЕЧНО-СОСУДИСТАЯ НЕДОСТАТОЧНОСТЬ
Пенза 2008
Введение
1. Параметры центральной гемодинамики
2. Минутный объем сердца (сердечный выброс)
3. Венозный приток к сердцу
4. Насосная функция сердца
5. Общее периферическое сопротивление
6. Объем циркулирующей крови
7. Преднагрузка и постнагрузка
8. Транспорт кислорода
9. Определение типа гемодинамики
Литература
ВВЕДЕНИЕ
Острая сердечно-сосудистая недостаточность (ОССН) — состояние, характеризующееся нарушением насосной функции сердца и сосудистой регуляции притока крови к сердцу.
Различают сердечную недостаточность, в том числе левого и правого отделов сердца, и сосудистую. К понятию «сердечная недостаточность» относят состояния, при которых нарушаются этапы сердечного цикла, ведущие к снижению ударного и минутного объемов сердца. При этом СВ не обеспечивает метаболических потребностей тканей. В типичных случаях острая сердечная недостаточность возникает при эмболии легочной артерии, инфаркте миокарда, полной атриовентрикулярной блокаде и других острых состояниях. Хроническая сердечная недостаточность наблюдается у лиц с медленно прогрессирующей сердечной недостаточностью, например при поражениях клапанов сердца. Понятие «сосудистая недостаточность» относится к сосудистой регуляции притока крови к сердцу. Этим термином принято обозначать возврат крови к правому и левому отделам сердца, который может быть нарушен в результате различных причин.
1. ПАРАМЕТРЫ ЦЕНТРАЛЬНОЙ ГЕМОДИНАМИКИ
Основными факторами, характеризующими состояние кровообращения и его эффективность, являются МОС, общее периферическое сопротивление сосудов и ОЦК. Эти факторы взаимообусловлены и взаимосвязаны и являются определяющими. Измерение лишь АД и частоты пульса не может дать полного представления о состоянии кровообращения. Определение МОС, ОЦК и вычисление некоторых косвенных показателей позволяют получить необходимую информацию.
Минутный объем сердца, или сердечный выброс, — количество крови, проходящее через сердце в 1 минуту; сердечный индекс — отношение СВ к площади поверхности тела: СВ составляет в среднем 5—7 л/мин.
Посредством коэффициента 80 переводятся величины давления и объема в дин-с/см5 Фактически эта величина является индексом ОПСС.
Основной функцией кровообращения является доставка тканям необходимого количества кислорода и питательных веществ. Кровь переносит энергетические вещества, витамины, ионы, гормоны и биологически активные вещества с места их образования в различные органы. Баланс жидкости в организме, сохранение постоянной температуры тела, освобождение клеток от шлаков и доставка их к органам экскреции происходят благодаря постоянной циркуляции крови по сосудам.
Сердце состоит из двух «насосов»: левого и правого желудочков, которые должны проталкивать одинаковое количество крови, чтобы предупредить застой в артериальной и венозной системах. Левый желудочек, обладающий мощной мускулатурой, может создавать высокое давление. При достаточной оксигенации он легко приспосабливается к внезапным требованиям увеличения СВ. Правый желудочек, обеспечивая достаточный МОС, не может адекватно функционировать при внезапном повышении сопротивления.
Каждый сердечный цикл длится 0,8 секунд. Систола желудочков происходит в течение 0,3 секунд, диастола — 0,5 секунд. Сердечный ритм в здоровом сердце регулируется в синусовом узле, который находится у места впадения полых вен в правое предсердие. Импульс возбуждения распространяется по предсердиям, а затем к атриовентрикулярному узлу, расположенному между предсердиями и желудочками. Из атриовентрикулярного узла электрический импульс поступает по правой и левой ветвям пучка Гиса и волокнам Пуркинье (миоциты сердечные проводящие), покрывающим эндокардиальную поверхность обоих желудочков.
2. МИНУТНЫЙ ОБЪЕМ СЕРДЦА (СЕРДЕЧНЫЙ ВЫБРОС)
В здоровом организме основным регуляторным фактором МОС являются периферические сосуды. Спазм и расширение артериол влияют на динамику артериального кровообращения, регионарного и органного кровоснабжения. Венозный тонус, изменяя емкость венозной системы, обеспечивает возврат крови к сердцу.
При заболеваниях или функциональной перегрузке сердца МОС почти полностью зависит от эффективности его «насоса», т.е. функциональной способности миокарда. Способность увеличения СВ в ответ на повышение потребности тканей в кровоснабжении называется сердечным резервом. У взрослых здоровых людей он равен 300—400 % и значительно снижен при заболеваниях сердца.
В регуляции сердечного резерва основную роль играют закон Старлинга, нервная регуляция силы и частоты сердечных сокращений. Указанный закон отражает способность сердца к увеличению силы сокращения при большем наполнении его камер. Согласно этому закону, сердце «перекачивает» количество крови, равное венозному притоку, без значительного изменения ЦВД. Однако в целостном организме нервно-рефлекторные механизмы делают регуляцию кровообращения более тонкой и надежной, обеспечивая непрерывное приспособление кровоснабжения к изменяющейся внутренней и внешней среде.
Сокращения миокарда осуществляются при достаточном снабжении его кислородом. Коронарный кровоток обеспечивает кровоснабжение миокарда в соответствии с потребностями сердечной деятельности. В норме он составляет 5 % СВ, в среднем 250—300 мл/мин. Наполнение коронарных артерий пропорционально среднему давлению в аорте. Коронарный кровоток повышается при снижении насыщения крови кислородом, увеличении концентрации углекислоты и адреналина в крови. В условиях стресса СВ и коронарный кровоток увеличиваются пропорционально. При значительной физической нагрузке СВ может достигать 37—40 л/мин, коронарный кровоток — 2 л/мин. При нарушении коронарного кровообращения сердечный резерв значительно снижается.
3. ВЕНОЗНЫЙ ПРИТОК К СЕРДЦУ
В клинических условиях определить величину венозного притока крови к сердцу трудно. Он зависит от величины капиллярного кровотока и градиента давления в капиллярах и правом предсердии. Давление в капиллярах и капиллярный кровоток определяются величиной СВ и пропульсивным действием артерий. Градиенты давления в каждом участке сосудистой системы и правом предсердии различные. Они равны примерно 100 мм рт. ст. в артериальном русле, 25 мм рт. ст. в капиллярах и 15 мм рт. ст. в начале венул. Нулевой точкой для измерения давления в венах считают уровень давления в правом предсердии. Эта точка была названа «физиологическим нулем гидростатического давления».
Венозная система играет большую роль в регуляции притока крови к сердцу. Венозные сосуды обладают способностью к расширению при увеличении объема крови и к сужению при его уменьшении. Состояние венозного тонуса регулируется вегетативной нервной системой. При умеренно сниженном объеме крови приток ее к сердцу обеспечивается повышением венозного тонуса. При выраженной гиповолемии венозный приток становится недостаточным, что ведет к снижению МОС. Переливание крови и растворов увеличивает венозный возврат и повышает МОС. При сердечной недостаточности и повышении давления в правом предсердии создаются условия для снижения венозного возврата и МОС. Компенсаторные механизмы направлены на преодоление снижения венозного притока к сердцу. При слабости правого желудочка и застое крови в полых венах ЦВД значительно повышается.
4. НАСОСНАЯ ФУНКЦИЯ СЕРДЦА
Адекватность кровообращения зависит в первую очередь от функции желудочков, определяющих работу сердца как насоса. Измерение ДЗЛК стало громадным шагом вперед в оценке функции сердечно-сосудистой системы. Ранее установленные критерии венозного притока по уровню ЦВД были пересмотрены, так как в некоторых случаях ориентирование на уровень ЦВД при проведении инфузионной терапии приводило к катастрофическим результатам. Этот показатель мог быть нормальным и даже сниженным, в то время как ДЗЛК повышалось более чем в 2 раза, что являлось причиной отека легких. Рассматривая варианты преднагрузки, нельзя не учитывать величину ДЗЛК, которая в норме равна 5—12 мм рт.ст. Освоение метода катетеризации Свана—Ганца открыло новые возможности в гемодинамическом мониторинге. Стало возможным определение внутрипредсердного давления, СВ, насыщения и напряжения кислорода в смешанной венозной крови.
Нормальные величины давления в полостях сердца и легочной артерии представлены в табл. 1. Несмотря на значимость измерений ДЗЛК и СВ, нельзя считать эти показатели абсолютными критериями адекватности тканевой перфузии. Однако применение этого метода позволяет контролировать величину преднагрузки и создавать наиболее экономичные режимы работы сердца.
Таблица 1. Давление в полостях сердца и легочной артерии
Отделы сердца и легочная артерия | Давление в мм рт.ст. |
Правое предсердие |
Пиковое — 2—6 Среднее — 3—7 Диастолическое — 0—2 |
Правый желудочек |
Пиковое — 30—35 Среднее — 10—12 Диастолическое — 0—1 Конечно-диастолическое — 0—2 |
Легочная артерия |
Пиковое — 25—30 Среднее — 17—23 Диастолическое — 10—15 Заклинивания — 5—12 |
Левое предсердие |
Пиковое — 7—17 Среднее — 3—7 Диастолическое — 0—2 |
Левый желудочек |
Пиковое — 100—140 Среднее — 33—48 Диастолическое — 0—2 Конечно-диастолическое — 2—12 |
Присасывающая сила сердца. Во время систолы желудочков атриовентрикулярная перегородка смещается по направлению к желудочкам и увеличивается объем предсердий. Образующийся вакуум в предсердиях способствует присасыванию крови из центральных вен в сердце. При расслаблении желудочков напряжение их стенки обеспечивает всасывание крови из предсердий в желудочки.
Значение отрицательного давления в грудной полости. Дыхательные экскурсии относятся к экстракардиальным факторам регуляции МОС. Во время вдоха внутриплевральное давление становится отрицательным. Последнее передается на предсердия и полые вены и приток крови в эти вены и правое предсердие увеличивается. При выдохе происходит повышение давления в брюшной полости, вследствие чего кровь как бы выдавливается из брюшных вен в грудные. Отрицательное давление в плевральной полости способствует увеличению постнагрузки, а положительное (во время ИВЛ) оказывает противоположное действие. Это может служить объяснением снижения систолического давления во время фазы вдоха.
5. ОБЩЕЕ ПЕРИФЕРИЧЕСКОЕ СОПРОТИВЛЕНИЕ
Термин «общее периферическое сопротивление сосудов» обозначает суммарное сопротивление артериол. Однако изменения тонуса в различных отделах сердечнососудистой системы различны. В одних сосудистых областях может быть выраженная вазоконстрикция, в других — вазодилатация. Тем не менее ОПСС имеет важное значение для дифференциальной диагностики вида гемодинамических нарушений.
Для того чтобы представить важность ОПСС в регуляции МОС, необходимо рассмотреть два крайних варианта — бесконечно большое ОПСС и отсутствие его току крови. При большом ОПСС кровь не может протекать через сосудистую систему. В этих условиях даже при хорошей функции сердца кровоток прекращается. При некоторых патологических состояниях кровоток в тканях уменьшается в результате возрастания ОПСС. Прогрессирующее возрастание последнего ведет к снижению МОС. При нулевом сопротивлении кровь могла бы свободно проходить из аорты в полые вены, а затем в правое сердце. В результате давление в правом предсердии стало бы равным давлению в аорте, что значительно облегчило бы выброс крови в артериальную систему, а МОС возрос бы в 5—6 раз и более. Однако в живом организме ОПСС никогда не может стать равным 0, как и бесконечно большим. В некоторых случаях ОПСС снижается (цирроз печени, септический шок). При его возрастании в 3 раза МОС может уменьшиться наполовину при тех же значениях давления в правом предсердии.
Деление сосудов по их функциональному значению. Все сосуды организма можно разделить на две группы: сосуды сопротивления и емкостные сосуды. Первые регулируют величину ОПСС, АД и степень кровоснабжения отдельных органов и систем организма; вторые, вследствие большой емкости, участвуют в поддержании венозного возврата к сердцу, а следовательно, и МОС.
Сосуды «компрессионной камеры» — аорта и ее крупные ветви — поддерживают градиент давления вследствие растяжимости во время систолы. Это смягчает пульсирующий выброс и делает поступление крови на периферию более равномерным. Прекапиллярные сосуды сопротивления — мелкие артериолы и артерии — поддерживают гидростатическое давление в капиллярах и тканевый кровоток. На их долю выпадает большая часть сопротивления кровотоку. Прекапиллярные сфинктеры, изменяя число функционирующих капилляров, меняют площадь обменной поверхности. В них находятся а-рецепторы, которые при воздействии катехоламинов вызывают спазм сфинктеров, нарушение кровотока и гипоксию клеток. а-адреноблокаторы являются фармакологическими средствами, снижающими раздражение а-рецепторов и снимающими спазм в сфинктерах.
Капилляры являются наиболее важными сосудами обмена. Они осуществляют процесс диффузии и фильтрации — абсорбции. Растворенные вещества проходят через их стенку в обоих направлениях. Они относятся к системе емкостных сосудов и в патологических состояниях могут вмещать до 90 % объема крови. В нормальных условиях они содержат до 5—7 % крови.
Посткапиллярные сосуды сопротивления — мелкие вены и венулы — регулируют гидростатическое давление в капиллярах, вследствие чего осуществляется транспорт жидкой части крови и межтканевой жидкости. Гуморальный фактор является основным регулятором микроциркуляции, но нейрогенные раздражители также оказывают действие на пре- и посткапиллярные сфинктеры.
Венозные сосуды, вмещающие до 85 % объема крови, не играют значительной роли в сопротивлении, а выполняют функцию емкости и наиболее подвержены симпатическим влияниям. Общее охлаждение, гиперадреналинемия и гипервентиляция приводят к венозному спазму, что имеет большое значение в распределении объема крови. Изменение емкости венозного русла регулирует венозный возврат крови к сердцу.
Шунтовые сосуды — артериовенозные анастомозы — во внутренних органах функционируют только в патологических состояниях, в коже выполняют терморегулирующую функцию.
6. ОБЪЕМ ЦИРКУЛИРУЮЩЕЙ КРОВИ
Определить понятие «объем циркулирующей крови» довольно трудно, так как он является динамической величиной и постоянно изменяется в широких пределах. В состоянии покоя не вся кровь принимает участие в циркуляции, а только определенный объем, совершающий полный кругооборот в относительно короткий промежуток времени, необходимый для поддержания кровообращения. На этом основании в клиническую практику вошло понятие «объем циркулирующей крови».
У молодых мужчин ОЦК равен 70 мл/кг. Он с возрастом уменьшается до 65 мл/кг массы тела. У молодых женщин ОЦК равен 65 мл/кг и тоже имеет тенденцию к уменьшению. У двухлетнего ребенка объем крови равен 75 мл/кг массы тела. У взрослого мужчины объем плазмы составляет в среднем 4—5 % массы тела. Таким образом, у мужчины с массой тела 80 кг объем крови в среднем 5600 мл, а объем плазмы — 3500 мл. Более точные величины объемов крови получаются с учетом площади поверхности тела, так как отношение объема крови к поверхности тела с возрастом не меняется. У тучных пациентов ОЦК в пересчете на 1 кг массы тела меньше, чем у пациентов с нормальной массой. Например, у полных женщин ОЦК равен 55—59 мл/кг массы тела. В норме 65—75 % крови содержится в венах, 20 % — в артериях и 5—7 % — в капиллярах (табл. 2).
Потеря 200—300 мл артериальной крови у взрослых, равная примерно 1/3 ее объема, может вызвать выраженные гемодинамические сдвиги, такая же потеря венозной крови составляет всего l/10—1/13 часть ее и не приводит к каким-либо нарушениям кровообращения.
Таблица 2.
Орган или система |
Процент от общего объема крови |
Малый круг кровообращения |
20-25 |
Сердце |
8-10 |
Легкие |
12-15 |
Большой круг кровообращения |
75-80 |
Артериальная система |
15-20 |
Венозная система |
65-75 |
Капиллярное русло |
5-7,5 |
Уменьшение объема крови при кровопотере обусловлено потерей эритроцитов и плазмы, при дегидратации — потерей воды, при анемии — потерей эритроцитов и при микседеме — снижением числа эритроцитов и объема плазмы. Гиперволемия характерна для беременности, сердечной недостаточности и полиглобулии.
Метаболизм и кровообращение. Существует тесная корреляционная зависимость между состоянием кровообращения и метаболизмом. Величина кровотока в любой части тела возрастает пропорционально уровню метаболизма. В различных органах и тканях кровоток регулируется разными веществами: для мышц, сердца, печени регуляторами являются кислород и энергетические субстраты, для клеток головного мозга — концентрация углекислого газа и кислород, для почек — уровень ионов и азотистых шлаков. Температура тела регулирует кровоток в коже. Несомненным, однако, является факт высокой степени корреляции между уровнем кровотока в любой части тела и концентрацией кислорода в крови. Повышение потребности тканей в кислороде приводит к возрастанию кровотока. Исключением является ткань мозга. Как недостаток кислорода, так и избыток углекислого газа в равной степени являются мощными стимуляторами мозгового кровообращения. Клетки различно реагируют на недостаток тех или иных веществ, участвующих в метаболизме. Это связано с разной потребностью в них, разными утилизацией и резервом их в крови.
Величина резерва того или иного вещества называется «коэффициентом безопасности», или «коэффициентом утилизации». Данный резерв вещества утилизируется тканями в чрезвычайных условиях и полностью зависит от состояния МОС. При постоянном уровне кровотока транспорт кислорода и его утилизация могут возрасти в 3 раза за счет более полной отдачи кислорода гемоглобином. Иными словами, резерв кислорода может увеличиться только в 3 раза без повышения МОС. Поэтому «коэффициент безопасности» для кислорода равен 3. Для глюкозы он также равен 3, а для других веществ он значительно выше — для углекислого газа — 25, аминокислот — 36, жирных кислот — 28, продуктов белкового обмена — 480. Разница между «коэффициентом безопасности» кислорода с глюкозой и таковым других веществ огромна.
7. ПРЕДНАГРУЗКА И ПОСТНАГРУЗКА
Преднагрузка на миокард определяется как сила, растягивающая сердечную мышцу перед ее сокращением. Для интактного желудочка преднагрузкой является конечный диастолический объем левого желудочка. Поскольку этот объем определить у постели больного сложно, пользуются таким показателем, как конечное диастолическое давление левого желудочка (КДДЛЖ). Если растяжимость левого желудочка нормальна, то ДЗЛК будет равно КДДЛЖ. У больных, находящихся в отделениях интенсивной терапии, растяжимость левого желудочка, как правило, изменена. Растяжимость левого желудочка может быть значительно снижена при ИБС, действии блокаторов кальциевых каналов, влиянии положительного давления во время ИВЛ. Таким образом, ДЗЛК определяет давление в левом предсердии, но не всегда является показателем преднагрузки на левый желудочек.
Постнагрузку определяют как силу, препятствующую или оказывающую сопротивление сокращению желудочков. Она эквивалентна напряжению, возникающему в стенке желудочка во время систолы. Это трансмуральное напряжение стенки желудочка в свою очередь зависит от систолического давления, радиуса камеры (желудочка), импеданса аорты и его составляющих — растяжимости и сопротивления артерий. Постнагрузка включает в себя преднагрузку и давление в плевральной полости (щели). Нагрузочные характеристики сердца выражаются в единицах давления и объема крови.
8. ТРАНСПОРТ КИСЛОРОДА
Кислород, связанный с гемоглобином (Нb), в артериальной крови определяется с учетом его реального уровня, насыщения артериальной крови кислородом (SаO2) и константы Гюфнера 1,34, указывающей на то, что 1 г гемоглобина при полном насыщении (SaO2 = 100 %) связывает 1,34 мл кислорода: 1,34 ·Hb·SaO2
Кислород, содержащийся в плазме крови в свободном (растворенном) состоянии: 0,003 • РаО2.
Содержание кислорода в артериальной крови СаО2 — это объем кислорода, связанного с гемоглобином и находящегося в растворенном состоянии:
СаО2 = 1,34 • Нb (г/л) • SaO2 + 0,003 • РаО2.
Нетрудно заметить, что вклад величины РаО2 в содержание кислорода в артериальной крови несуществен. Гораздо более информативным в оценке транспорта кислорода является показатель SaO2.
Доставка кислорода к тканям (DO2) определяется двумя показателями — величиной СВ (л/мин) и содержанием кислорода в артериальной крови
СаО2: DО2 = СВ • СаО2.
Если пользоваться величиной СИ, а не МОС, то расчет транспорта кислорода должен производиться по следующей формуле:
DО2 = СИ х (1,34 • Нb • SаО2) • 10,
где коэффициент 10 — фактор преобразования объемных процессов (мл/с).
В норме DО2 составляет 520—720 мл/(мин-м2). Данная величина фактически является индексом DО2, поскольку рассчитана на 1 м2 поверхности тела.
Потребление кислорода тканями. Потребление кислорода тканями (VО2) является заключительным этапом его транспорта. Определение VO2 производится путем умножения величин СВ на артериовенозную разницу по кислороду. При этом следует пользоваться абсолютными величинами не МОС, а СИ, как более точного показателя. Показатель артериовенозной разницы определяется путем вычитания содержания кислорода в смешанной венозной крови (т.е. в легочной артерии) из содержания кислорода в артериальной крови:
VO2 = СИ • (СаО2 – CVO2).
При нормальных значениях СИ величина VO2 колеблется от 110 до 160 мл/(мин-м2).
Утилизация кислорода. Коэффициент утилизации кислорода (КУО2) является показателем поглощаемого кислорода из капиллярного русла. КУО2 определяют как отношение потребления кислорода к показателю его доставки:
КУО2=УО2/(DО2·100).
КУО2 может колебаться в широких пределах, в покое он равен 22—32%.
Для суммарной оценки транспорта кислорода следует пользоваться не только этими, но и другими показателями.
Большое диагностическое значение придают величинам PvO2 и SvO2. В норме РVO2 в смешанной венозной крови составляет 33—53 мм рт.ст. Уровень PvO2 ниже 30 мм рт. ст. свидетельствует о критическом состоянии транспорта кислорода. Насыщение кислородом гемоглобина смешанной венозной крови у здорового человека составляет 68— 77 %. Следует подчеркнуть, что показатели SaO2 и SvO2 более значимы в оценке транспорта кислорода, чем РаО2 и PvO2. Само по себе снижение РаО2, даже ниже 60 мм рт. ст., не служит показателем развития анаэробного гликолиза. Все зависит от величины СВ, концентрации гемоглобина и капиллярного кровотока. Важным показателем в оценке транспорта кислорода является уровень лактата сыворотки крови (норма 0—2 ммоль/л), особенно в сочетании с показателями рН, РСО2 и BE.
Гипоксия не всегда имеет четкую клиническую картину. Однако клинические признаки гипоксии и данные транспорта кислорода являются на сегодняшний день определяющими. Не существует какого-либо одного критерия гипоксии. Клиническая картина гипоксии характеризуется непостоянством многих признаков. В начальной стадии гипоксия сопровождается неадекватностью поведения пациента, замедленностью мышления и речи, отсутствием цианоза. Часто отмечаются нарушения ритма дыхания, тахипноэ, тахикардия, преходящая артериальная гипертензия. При прогрессировании гипоксии внезапно могут возникнуть потеря сознания, нерегулярное дыхание, цианоз. В дальнейшем при отсутствии лечения развиваются глубокая кома, апноэ, сосудистый коллапс и остановка сердца.
9. ОПРЕДЕЛЕНИЕ ТИПА ГЕМОДИНАМИКИ
Возможно при измерении трех важнейших параметров: СИ, ОПСС и ДНЛЖ, которое в норме равно 12— 18 мм рт. ст. (табл. 3).
Таблица 3. Классификация типов гемодинамики
Гемодинамический профиль |
СИ, л/мин/м2 |
ОПСС, дин/с/см5 |
ДНЛЖ, мм рт.ст |
Гипокинетический | <3,0 | 1000-2000 | 12-20 |
„ » застойный | <3,0 | >2000 | >20 |
Гиповолемический | <3,0 | >2000 | <12 |
Нормокинетический | 3,0-3,5 | 1000-2000 | 12-18 |
Гиперкинетический атонический | >3,5 | <1000 | 12-20 |
Гиперкинетический спастический | >3,5 | >2000 | <£20 |
В табл. 3 приведены не все варианты гемодинамики. Преимущество данных параметров заключается в возможности их бескровного определения. Величины СИ, ОПСС и ДНЛЖ могут колебаться в широких пределах в зависимости от способа их определения. Наиболее точные результаты у больных в критическом состоянии достигаются инвазивными методами исследования.
Как управлять гемодинамикой? Прежде всего, необходимо познакомиться с законами и формулами, определяющими взаимозависимость важнейших параметров гемодинамики. Необходимо знать, что АД зависит от СВ и ОПСС. Формула, определяющая эту зависимость, может быть представлена следующим образом: САД = СВ х ОПСС,
где САД — среднее артериальное давление, СВ — сердечный выброс, ОПСС — общее периферическое сопротивление сосудов. СВ вычисляют по формуле: СВ = ЧСС х УО.
В норме СВ, или МОС, равен 5—7 л/мин. УО, т.е. количество крови, выбрасываемое сердцем за одну систолу, равен 70—80 мл и зависит от объема крови, притекающей к сердцу, и контрактильности миокарда. Эту зависимость определяет закон Франка — Старлинга: чем больше наполнение сердечных камер, тем больше УО. Такое положение является правильным для нормально функционирующего здорового сердца. Понятно, что регулировать УО можно, создавая адекватный венозный приток, т.е. такой объем крови, который определяется возможностью работы сердца как насоса. Контрактильность мышцы сердца можно повысить, назначая положительные инотропные агенты. При этом нужно всегда иметь в виду состояние преднагрузки. Величина преднагрузки зависит от наполнения венозного русла и венозного тонуса. Можно уменьшить венозный тонус с помощью вазодилататоров и таким образом сократить преднагрузку. Неправильные действия врача могут резко повысить преднагрузку (например, в результате избыточной инфузионной терапии) и создать неблагоприятные условия для работы сердца. При сниженном венозном притоке назначение положительных инотропных агентов будет неоправданным.
Итак, проблема сниженного объема крови должна решаться в первую очередь адекватной инфузионной терапией. При относительной гиповолемии, связанной с вазодилатацией и перераспределением крови, лечение также начинают с увеличения объема крови, одновременно назначая средства, повышающие венозный тонус. У больных с недостаточной сократительной способностью миокарда почти всегда отмечается повышенное наполнение камер сердца, ведущее к росту давления наполнения желудочков и отеку легких. В таких клинических ситуациях инфузионная терапия противопоказана, лечение заключается в назначении средств, снижающих пред- и постнагрузку. При анафилаксии уменьшение постнагрузки ведет к снижению АД и обусловливает применение средств, повышающих тонус артериол.
СВ и АД могут быть значительно снижены при выраженной тахикардии или брадикардии. Эти изменения могут быть связаны как с кардиальными (нарушения проводимости и автоматизма), так и с экстракардиальными факторами (гипоксия, гиповолемия, влияние повышенного тонуса вагуса и др.). Если удается найти причину нарушений ритма, то этиологическое лечение этих нарушений будет наиболее правильным.
Важнейшим условием нормальной работы сердца является кислородный баланс. У сердечной мышцы, выполняющей громадную работу, чрезвычайно высок уровень потребления кислорода. Насыщение кислородом крови в коронарном синусе равно 25 %, т.е. намного меньше, чем в смешанной венозной крови. Чем больше работа сердца, тем больше потребность его в кислороде и питательных веществах. Нетрудно представить, что в неишемизированном здоровом миокарде потребление кислорода зависит от ЧСС, контрактильности, сопротивления сокращению сердечных волокон. Доставка же кислорода к сердцу обеспечивается нормальным содержанием переносчиков кислорода, т.е. гемоглобина, РаО2, 2,3-ДФГ, общим и коронарным кровообращением. Всякое уменьшение доставки кислорода или невозможность потребления кислорода (закупорка коронарной артерии) сразу же приводит к нарушению функций сердечнососудистой системы. Коронарный кровоток прямо пропорционален величине давления и радиусу сосуда и обратно пропорционален вязкости крови и длине сосуда (закон Хагена — Пуазейля). Эта зависимость не линейная, поскольку коронарный сосуд — не трубка с ламинарным течением. Ухудшение коронарного кровообращения и повышение КДД левого желудочка приводят к снижению кровообращения в субэндокардиальной зоне. Вязкость крови возрастает при высокой концентрации гемоглобина, высоком гематокритном числе, повышении концентрации белков (особенно фибриногена) в плазме. Уменьшая вязкость крови путем назначения кристаллоидных растворов и реологических средств, поддерживая гематокритное число на уровне 30—40 % и концентрацию плазменных белков несколько ниже нормы, мы создаем оптимальные условия для коронарного кровотока.
Метаболические потребности сердца максимально удовлетворяются в условиях аэробного гликолиза. В норме потребности миокарда в энергии обеспечиваются в основном за счет аэробного метаболизма глюкозы, в покое в основном за счет углеводов и, лишь незначительно, за счет жирных кислот. Гипоксия и ацидоз, изменения обмена калия, магния и других электролитов сопровождаются нарушением нормального метаболизма сердечной мышцы.
Для управления гемодинамикой необходим мониторинг сердечнососудистой системы. В условиях отделений интенсивной терапии общего профиля предпочтение следует отдавать использованию неинвазивных способов (насколько это возможно). Среди инвазивных показателей особенно важным является ДЗЛК. Гемодинамика тесно связана с функцией ЦНС, легких, почек и других органов и систем.
ЛИТЕРАТУРА
1. «Неотложная медицинская помощь», под ред. Дж. Э. Тинтиналли, Рл. Кроума, Э. Руиза, Перевод с английского д-ра мед. наук В.И. Кандрора, д. м. н. М.В. Неверовой, д-ра мед. наук А.В. Сучкова, к. м. н. А.В.Низового, Ю.Л. Амченкова; под ред. д.м.н. В.Т. Ивашкина, д.м.н. П.Г. Брюсова; Москва «Медицина» 2001
2. Интенсивная терапия. Реанимация. Первая помощь: Учебное пособие / Под ред. В.Д. Малышева. — М.: Медицина.— 2000.— 464 с.: ил.— Учеб. лит. Для слушателей системы последипломного образования.— ISBN 5-225-04560-Х
Министерство образования Российской Федерации Пензенский Государственный Университет Медицинский Институт Кафедра Терапии Реферат на тему: ОСТРАЯ СЕРДЕЧНО-СОСУДИСТАЯ НЕДОСТАТОЧНОСТЬ
Острая спаечная кишечная непроходимость
Острая хирургическая и гинекологическая патология
Острая хирургическая патология
Острая хирургическая патология у детей
Острое нарушение мозгового кровообращения в бассейне левой СМА по ишемическому типу. Правосторонний гемипарез. ГБ III ст, риска IV. Ожирение II ст
Острое поражение периферической нервной системы
Острые аллергические реакции
Острые инфекционные деструкции легких: диагностика, диагноз и осложнения деструктивных пневмонитов
Острые инфекционные деструкции легких: классификация, клинико-рентгенологическая характеристика и течение
Острые инфекционные деструкции легких: определение понятия, этиология, патогенез
Copyright (c) 2024 Stud-Baza.ru Рефераты, контрольные, курсовые, дипломные работы.