База знаний студента. Реферат, курсовая, контрольная, диплом на заказ

курсовые,контрольные,дипломы,рефераты

Параллельный интерфейс: LPT-порт — Компьютеры и периферийные устройства

Параллельный интерфейс: LPT-порт

Порт параллельного интерфейса был введен в PC для подключения принтера —LP'T-порт (Line PrinTer — построчный принтер).

Адаптер параллельного интерфейса представляет собой набор регистров, расположенных в пространстве ввода/вывода. Регистры порта адресуются от­носительно базового адреса порта, стандартными значениями которого являют­ся 386h, 378h и 278h. Порт имеет внешнюю 8-битную шину дан­ных, 5-битную шину сигналов состояния и 4-битную шину управляющих сиг­налов.

BIOS поддерживает до четырех  LPT-портов (LPT1-LPT4) своим сервисом — прерыванием INT 17h, обеспечивающим через них связь с принтерами по интерфейсу Centronics. Этим сервисом BIOS осуществляет вывод символа, инициа­лизацию интерфейса и принтера, а также опрос состояния принтера.

Интерфейс Centronics

Понятие Centronics относится как к набору сигналов и протоколу взаимодейст­вия, так и к 36-контактному разъему, устанавливаемому на принтерах. Назна­чение сигналов приведено в табл. 1.

Таблица 1.

Сигналы интерфейса Centronics

Сигнал

I/O*

Контакт

Назначение

Strobe

I

1

Строб данных. Данные фиксируются по низкому уровню сигнала

Data [0:7]

I

2-9

Линии данных. Data 0 (контакт 2) — младший бит

Actt

0

10

Acknowledge — импульс подтверждения приема байта (запрос на прием сле­дующего). Может использоваться для формирования запроса прерывания

Busy

0

11

Занято. Прием данных возможен только при низком уровне сигнала

PaperEnd

0

12

Высокий уровень сигнализирует о конце бумаги

Select

0

13

Сигнализирует о включении принтера

Auto LF#

I

14

Автоматический перевод строки.

Еггогй

0

32

Ошибка: конец бумаги, состояние OFF-Line или внутренняя ошибка принтера

Imt#

I

31

Инициализация

Slot In#

I

36

Выбор принтера (низким уровнем). При высоком уровне принтер не воспринимает остальные сигналы интерфейса

GND

-

19-30 33

Общий провод интерфейса

* I/O

Задает

Направление

(вход/выход) применительно к принтеру.

Интерфейс Centronics поддерживается большинством принтеров с параллель­ным интерфейсом, его отечественным аналогом является интерфейс ИРПР-М.

Традиционный LPT-порт

Традиционный порт SPP (Standard Parallel Port) является одно­направленным портом, на базе которого программно реализуется протокол обмена Centronics. Порт обеспечивает возможность вырабатывания запроса ап­паратного прерывания по импульсу на входе АСК#. Сигналы порта выводятся на разъем DB-25S (розетка), установленный непосредственно на плате адаптера (или системной плате) или соединяемый с ней плоским шлейфом. Название и назначение сигналов разъема порта (табл. 2) соответствуют интерфейсу Centronics.

Таблица 2.

Разъем стандартного LPT-порта

Контакт DB-25S

Провод шлейфа

Назначение

I/O*

Reg.Bit**

Сигнал

1

1

0/1

CR: 0

Strobe#

2

3

0(1)

DR:0

Data 0

3

5

0(1)

DR: 1

Data 1

4

7

0(1)

DR: 2

Data 2

5

9

0(1)

DR:3

Data 3

6

11

0(1)

DR: 4

Data 4

7

13

0(1)

DR:5

Data 5

8

15

0(1)

DR:6

Data 6

9

17

0(1)

DR:7

Data 7

10

19

I

SR: 6

Ack#

11

21

I

SR: 7

Busy

12

23

I

SR: 5

PaperEnd

13

25

I

SR: 4

Select

14

2

0/1

CR: 1

Auto LF#

15

4

I

SR: 3

Error#

16

6

0/1

CR: 2

Init#

17

8

0/1

CR:3

Select In#

18-25

10, 12, 14, 16

18, 20, 22, 24, 26

-

-

* I/O задает направление передачи (вход/выход) сигнала порта; 0/I обозначает выходные линии, состояние которых считывается при чтении из соответствующих портов вывода.

** Символом «» отмечены инвертированные сигналы (1 в регистре соответствует низкому уров­ню линии).

*** Вход Ack# соединен резистором (10 кОм) с питанием +5 В.

Стандартный порт имеет три 8-битных регистра, расположенных по сосед­ним адресам в пространстве ввода/вывода, начиная с базового адреса порта (BASE).

Data Register (DR) — регистр данных, адрес= BASE. Данные, записанные в этот порт, выводятся на выходные линии интерфейса. Данные, считанные из этого регистра, в зависимости от схемотехники адаптера соответствуют либо ранее записанным данным, либо сигналам на тех же линиях.

Status Register (SR) — регистр состояния, представляющий собой 5-битный порт ввода сигналов состояния принтера (биты SR.4-SR.7), адрес= BASE+1. Бит SR.7 инвертируется — низкому уровню сигнала соответствует единичное значе­нию бита в регистре, и наоборот.

Назначение бит регистра состояния (в скобках даны номера контактов разъема):

SR.7—Busy — инверсные отображения состояния линии Busy (11);

SR.6 —АСК (Acknowledge) — отображения состояния линии Ack# (10).

SR.5 —РЕ (Paper End) — отображения состояния линии Paper End (12).

SR.4—Select — отображения состояния линии Select (13). Единичное зна­чение соответствует cигналу о включении принтера.

SR.3—Error — отображения состояния линии Error (15).

SR.2 — PIRQ — флаг прерывания по сигналу Ack# (только для порта PS/2). Бит обнуляется, если сигнал Ack# вызвал аппаратное прерывание. Единич­ное значение устанавливается по аппаратному сбросу и после чтения ре­гистра состояния.

SR[1:0] — зарезервированы.

Control Register (CR) — регистр управления, адрес=ВА5Е+2. Как и регистр дан­ных, этот 4-битный порт вывода допускает запись и чтение (биты 0-3), но его выходной буфер обычно имеет тип открытый коллектор. Это позволяет более корректно использовать линии данного регистра как входные при программи­ровании их в высокий уровень. Биты О, 1, 3 инвертируются — единичному зна­чению в регистре соответствует низкий уровень сигнала, и наоборот.

Назначение бит регистра управления:

CR[7:6] — зарезервированы.

CR.5 — Direction — бит управления направлением передачи (только для портов PS/2). Запись единицы переводит порт данных в режим ввода.

CR.4 —ACKINTEN (Ack Interrupt Enable) — единичное значение разрешает пре­рывание по спаду сигнала на линии Ackff — сигнал запроса следующего байта.

CR.3 — Select In — единичное значение бита соответствует низкому уровню на выходе Selecting (17) — сигналу, разрешающему работу принтера по интерфейсу Centronics.

CR.2 — Init — нулевое значение бита соответствует низкому уровню на выходе Imt# (16) — сигнал аппаратного сброса принтера.

CR.1 — Auto LF — единичное значение бита соответствует низкому уров­ню на выходе Auto LF# (14) — сигналу на автоматический перевод строки (LF — Line Feed) по приему байта возврата каретки (CR — Carriage Return).

CR.O —Strobe — единичное значение бита соответствует низкому уровню на выходе Strobeff (1) — сигналу стробирования выходных данных.

Запрос аппаратного прерывания (обычно IRQ7 или IRQ5) вырабатывается по отрицательному перепаду сигнала на выводе 10 разъема интерфейса (АСК#) при установке CR.4=1. Прерывание вырабатывается, когда принтер подтвер­ждает прием предыдущего байта.

Процедура вывода байта по интерфейсу Centronics через стандартный порт включает следующие шаги (в скобках приведено требуемое количество шинных операций процессора):

Вывод байта в регистр данных (1 цикл IOWR#).

Ввод из регистра состояния и проверка готовности устройства (бит SR.7 — сигнал BUSY).

По получении готовности выводом в регистр управления устанавливается строб данных, а следующим выводом строб снимается (2 цикла lOWRff).

Стандартный порт сильно асимметричен — при наличии 12 линий (и бит), нормально работающих на вывод, на ввод работает только 5 линий состояния. Если необходима симметричная двунаправленная связь, на всех стандартных портах работоспособен режим полубайтного обмена — Nibble Mode. В этом режи­ме, называемым также и Hewlett Packard Bitronics, одновременно передаются 4 бита данных, пятая линия используется для квитирования.

Функции BIOS для LPT-порта

BIOS обеспечивает поддержку LPT-порта, необходимую для организации вы­вода по интерфейсу Centronics.

В процессе начального тестирования POST BIOS проверяет наличие парал­лельных портов по адресам ЗВСЬ, 378h и 278h и помещает базовые адреса обнаруженных портов в ячейки BIOS DATA AREA 0:0408h, 040Ah, 040СП, 040ЕП. Эти ячейки хранят адреса портов с логическими именами LPT1-LPT4. В ячейки 0:0478, 0479, 047А, 047В заносятся константы, задающие выдержку тайм-аута для этих портов.

Поиск портов обычно ведется по базовому адресу. Если считанный байт совпал с записанным, считается, что найден LPT-порт, и его адрес помещают в ячейку BIOS DATA AREA. Адрес порта LPT4 BIOS самостоятельно установить не может, поскольку в списке стандартных адресов поиска имеются только три вышеука­занных.

Обнаруженные порты инициализируются — записью в регистр управления формируется и снимается сигнал Initff, после чего записывается значение 00h, соответствующее исходному состоянию сигналов интерфейса.

Программное прерывание BIOS I NT 17h обеспечивает следующие функции поддержки LPT-порта:

00h — вывод символа из регистра AL по протоколу Centronics. Данные помещаются в выходной регистр и после готовности принтера формируется строб.

01h — инициализаия интерфейса и принтера.

02h — опрос состояния принтера.

При вызове INT 17h номер функции задается в регистре АН, номер порта — в регистре DX (0 — LPT1,      1 — LPT2...). При возврате после любой функции регистр АН содержит код состояния — биты регистра состояния SR[7:3] (биты 6 и 3 инвертированы) и флаг тайм-аута в бите 0. Флаг тайм-аута устанавливается при неудачной попытке вывода символа.

Расширения параллельного порта

Недостатки стандартного порта частично устраняют новые типы портов, поя­вившихся в компьютерах семейства PS/2.

Двунаправленный порт 1 (Typel parallel port) — интерфейс, введенный с PS/2. Такой порт кроме стандартного режима может работать в режиме ввода или двунаправленном. Протокол обмена формируется программно, а для указания направления передачи в регистр управления порта введен специальный бит: при CR.5=0 буфер данных работает на вывод, при CR.5=1 — на ввод.

Порт с прямым доступом к памяти (Type 3 DMA parallel port) применялся в PS/2 моделей 57, 90, 95. Этот тип был введен для повышения пропускной способности и разгрузки процессора при выводе на принтер. Программе, рабо­тающей с данным портом, требовалось только задать блок данных в памяти, подлежащих выводу, и вывод по протоколу Centronics производился без участия процессора.

Физический и электрический интерфейс

Стандарт IEEE 1284 определяет физические характеристики приемников и пе­редатчиков сигналов.

К передатчикам предъявляются следующие требования:

Уровни сигналов без нагрузки не должны выходить за пределы -0,5... +5,5 В.

Уровни сигналов при токе нагрузки 14 мА должны быть не ниже +2,4 В для высокого уровня (voh) и не выше +0,4 В для низкого уровня (vol) на постоянном токе.

Выходной импеданс ro, измеренный на разъеме, должен составлять 50(±)5 Ом на уровне voh-vol. Для обеспечения заданного импеданса в некоторых случаях используют последовательные резисторы в выходных цепях передатчика. Согласование импеданса передатчика и кабеля снижа­ет уровень импульсных помех.

Скорость нарастания (спада) импульса должна находиться в пределах 0,05-0,4 В/нс.

Требования к приемникам:

Допустимые пиковые значения сигналов -2,0...+7,0.

Пороги срабатывания должны быть не выше 2,0 В (vih) для высокого уровня и не ниже 0,8 В (vil) для низкого.

Приемник должен иметь гистерезис в пределах 0,2-1,2 В.

Входной ток микросхемы  не должен превы­шать 20 мкА.

Входная емкость не должна превышать 50 пФ.

Стандарт IEEE 1284 определяет три типа используемых разъемов. Типы Л (DB-25) и В (Centronics-36) используются в традиционных кабелях подклю­чения принтера, тип С — новый малогабаритный 36-контактный разъем.

Интерфейсные кабели, традиционно используемые для подключения принте­ров, обычно имеют от 18 до 25 проводников, в зависимости от числа провод­ников цепи GND.

Стандарт IEEE 1284 регламентирует и свойства кабелей:

 Все сигнальные линии должны быть перевитыми с отдельными обратны­ми (общими) проводами.

Каждая пара должна иметь импеданс 62(±)6 Ом в частотном диапазоне 4-16 МГц.

Уровень перекрестных помех между парами не должен превышать 10%.

Кабель должен иметь экран (фольгу), покрывающий не менее 85% внеш­ней поверхности. На концах кабеля экран должен быть окольцован и со­единен с контактом разъема.

Кабели, удовлетворяющие этим требованиям, маркируются надписью IЕЕЕ Std 1284-1994 Compliant». Они могут иметь длину до 10 метров.

Режимы передачи данных

Стандарт IEEE 1284 определяет пять режимов обмена, один из которых пол­ностью соответствует традиционному стандартному программно-управляемому выводу по протоколу Centronics. Остальные режимы используются для расшире­ния функциональных возможностей и повышения производительности интерфей­са. Стандарт определяет способ согласования режима, по которому программное обеспечение может определить режим, доступный и хосту (в нашем случае это PC), и периферийному устройству.

Режимы нестандартных портов, реализующих протокол обмена Centronics аппаратно («Fast Centronics, «Parallel Port FIFO Mode»), могут и не являться режимами IEE1284, несмотря на наличие в них черт ЕРР и ЕСР.

При описании режимов обмена фигурируют следующие понятия:

Хост — компьютер, обладающий параллельным портом.

ПУ — периферийное устройство, подключаемое к этому порту (им может оказаться и другой компьютер). обозначениях сигналов Ptr обозначает передающее периферийное устройство.

Прямой канал — канал вывода данных от хоста в ПУ.

Обратный канал  канал ввода   данных в хост из ПУ.

Полубайтный режим ввода — Nibble Mode

Режим полубайтного обмена является наиболее общим решением задачи дву­направленного обмена данными, поскольку может работать на всех стандартных (традиционных) портах. Все эти порты имеют 5 линий ввода состояния, исполь­зуя которые периферийное устройство может посылать в PC байт тетрадами (nibble — полубайт, 4 бита) за два приема. Назначение сигналов порта приведено в табл 4.

Таблица 4.

Сигналы LPT-порта в полубайтном режиме ввода

Контакт

Сигнал SPP

I/O

Использование сигнала при приеме данных в Nibble Mode

14

AUTOFEED#

0

HostBusy — сигнал квитирования. Низкий уровень означает готов­ность к приему тетрады, высокий подтверждает прием тетрады

17

SELECTIN»

0

Высокий уровень указывает на обмен в режиме IEEE 1284 (в режиме SPP уровень низкий)

10

АСК#

'

PtrClk. Низкий уровень означает действительность тетрады, переход в высокий — ответ на сигнал HostBusy

11

BUSY

I

Прием бита данных 3, затем бита 7

12

РЕ

I

Прием бита данных 2, затем бита 6

13

SELECT

I

Прием бита данных 1, затем бита 5

15

ERRORS

I

Прием бита данных 0, затем бита 4

Прием байта данных в полубайтном режиме состоит из следующих фаз:

1. Хост сигнализирует о готовности приема данных установкой низкого уров­ня на линии HostBusy.

2. ПУ в ответ помещает тетраду на входные линии состояния.

3. ПУ сигнализирует о действительности тетрады установкой низкого уровня на линии PtrClk.

4. Хост устанавливает высокий уровень на линии HostBusy, указывая на заня­тость приемом и обработкой тетрады.

5. ПУ отвечает установкой высокого уровня на линии PtrCLk.

6. Шаги 1-5 повторяются для второй тетрады.

Полубайтный режим работает на всех портах со скоростью обмена не выше 50 Кбайт/с . Его применяют в тех случаях, когда прием данных от устройства производится в небольших объемах (например, для связи с принтерами).

Двунаправленный байтный режим Byte Mode

         Данный режим обеспечивает прием данных с использованием двунаправленного порта, у которого выходной буфер данных может отключаться установкой бита CR.5=1. Как и в стандартном и в полубайтном режиме, данный режим является программно-управляемым — все сигналы квитирования анализируются и уста­навливаются программным драйвером. Назначение сигналов порта приведено в табл. 5.

Таблица 5.

Сигналы LPT-порта в байтном режиме ввода/вывода

Контакт

Сигнал SPP

Имя в Byte Mode

I/O

Описание

1

STROBES

HostClk

0

Импульс (низкого уровня) подтверждает прием байта в конце каждого цикла

14

AUTOFEED#

HostBusy

0

Сигнал квитирования. Низкий уровень означает готовность хоста принять байт, высокий уровень устанавливается по приему байта

17

SELECT-IN»

1284Active

0

Высокий уровень указывает на обмен в режиме IEEE 1284. (В режиме SPP уровень низкий)

16

INIT#

INIT#

0

Не используется, установлен высокий уровень

10

АСКй

Ptrtik

Устанавливается в низкий уровень для инди­кации действительности данных на линиях DATA[7:0]. В низкий уровень устанавливается в ответ на сигнал HostBusy

11

BUSY

PtrBusy

I

Состояние занятости прямого канала

12

РЕ

AckDataReq*

I

Устанавливается ПУ для указания на наличие обратного канала передачи*

13

SELECT

Xflag*

I

Флаг расширяемости*

15

ERRORS

DataAvau#*

I

Устанавливается ПУ для указания на наличие обратного канала передачи*

2-9

DATA[7:0]

DATA[7:0]

I/0

Двунаправленный (прямой и обратный) канал данных

Прием байта данных в байтном режиме состоит из следующих фаз:

1. Хост сигнализирует о готовности приема данных установкой низкого уров­ня на линии HostBusy.

2. ПУ в ответ помещает байт данных на линии DATA[7:0].

3. ПУ сигнализирует о действительности байта установкой низкого уровня на линии PtrClk.

4. Хост устанавливает высокий уровень на линии HostBusy, указывая на заня­тость приемом и обработкой байта.

5. ПУ отвечает установкой высокого уровня на линии PtrClk.

6. Хост подтверждает прием байта импульсом HostClk.

7. Шаги 1-6 повторяются для каждого следующего байта.

Побайтный режим позволяет поднять скорость обратного канала до скорости прямого канала в стандартном режиме. Однако работать он может только на двунаправленных портах, которые применяются в основном лишь на малорас­пространенных машинах PS/2.

Режим ЕРР

Протокол ЕРР (Enhanced Parallel Port — улучшенный параллельный порт) предназначен для повышения производительности обмена по параллельному порту. ЕРР был реализован в чипсете Intel 386SL (микросхе­ма 82360) и используется как дополнительный протокол параллельного порта.

Протокол ЕРР обеспечивает четыре типа циклов обмена:

Цикл записи данных.

Цикл чтения данных.

Цикл записи адреса.

Цикл чтения адреса.

Адресные циклы могут быть использованы для передачи адресной, канальной и управля­ющей информации. Циклы обмена данными явно отличаются от адресных цик­лов применяемыми стробирующими сигналами. Назначение сигналов порта ЕРР и их связь с сигналами SPP приведены в табл. 6.

Таблица 6.

Сигналы LPT-порта в режиме ввода/вывода ЕРР

Контакт

Сигнал SPP

Имя в ЕРР

I/O

Описание

1

STROBE»

WRITE»

0

Низкий уровень — признак цикла записи, высокий — чтения

14

AUTOFEEDff

DATASTB#

0

Строб данных. Низкий уровень устанавливается в циклах передачи данных

17

SELECTING

ADDRSTB#

0

Строб адреса. Низкий уровень устанавливается в адресных циклах

16

INIT#

RESETS

0

Сброс ПУ (низким уровнем)

Контакт

Сигнал SPP

Имя в ЕРР

I/O

Описание

10

АСК#

INTR#

I

Прерывание от ПУ

11

BUSY

WAIT»

I

Сигнал квитирования. Низкий уровень разрешает начало цикла (установку строба в низкий уровень), переход в высокий — разрешает завершение цикла (снятие строба)

2-9

D[8:0]

AD[8:0]

I/O

Двунаправленная шина адреса/данных

12

РЕ

AckDataReq*

I

Используется по усмотрению разработчика перифе­рии

13

SELECT

Xflag*

I

Используется по усмотрению разработчика перифе­рии

15

ERROR

DataAvaiW*

I

Используется по усмотрению разработчика перифе­рии

ЕРР-порт имеет расширенный набор регистров (табл. 7), который занимает в пространстве ввода/вывода  5-8 смежных байт.

Таблица 7.

Регистры ЕРР-порта

Имя регистра

Смещение

Режим

R/W

Описание

SPP Data Port

+0

SPP/EPP

W

Регистр данных стандартного порта

SPP Status Port

+1

SPP/EPP

R

Регистр состояния стандартного порта

SPP Control Port

+2

SPP/EPP

W

Регистр управления стандартного порта

EPP Address Port

+3

EPP

R/W

Регистр адреса ЕРР. Чтение или запись в него гене­рирует связанный цикл чтения или записи адреса ЕРР

EPP Data Port

+4

EPP

R/W

Регистр данных ЕРР. Чтение (запись) генерирует свя­занный цикл чтения (записи) данных ЕРР

Not Defined

+5...+7

EPP

N/A

В некоторых контроллерах могут использоваться для 16-32-битных операций ввода/вывода

В отличие от программно-управляемых режимов, описанных выше, внешние сигналы ЕРР-порта (как информационные, так и сигналы квитирования) для каждого цикла обмена формируются аппаратно по одной операции записи или чтения в регистр порта.

Цикл записи данных состоит из следующих фаз:

1. Программа выполняет цикл записи (IOWR#) в порт 4 (ЕРР Data Port).

2. Адаптер устанавливает сигнал Writeff (низкий уровень), и данные помеща­ются на выходную шину LPT-порта.

3. При низком уровне WAIT# устанавливается строб данных.

4. Порт ждет подтверждения от ПУ (перевода WAIT# в высокий уровень).

5. Снимается строб данных — внешний ЕРР-цикл завершается.

6. Завершается процессорный цикл ввода/вывода.

7. ПУ устанавливает низкий уровень WAIT#, указывая на возможность начала следующего цикла.

Главной отличительной чертой ЕРР является выполнение внешней передачи во время одного процессорного цикла ввода/вывода. Это позволяет достигать высоких скоростей обмена (0,5-2 Мбайт/с). Периферийное устройство, под­ключенное к параллельному порту ЕРР, может работать на уровне произво­дительности устройства, подключаемого через слот ISA. Периферийное устройство может регулировать длительность всех фаз обмена с помощью всего лишь одного сигнала WAIT#. Протокол автоматически подстраивается и под длину кабеля — вносимые задержки только приведут к удлинению цикла.

 «ЗАВИСАНИЕ» процессора на шинном цикле обмена препятствует механизм тайм-аутов PC, который принудительно завершает любой цикл обме­на, длящийся более 15 мкс.

С программной точки зрения контроллер ЕРР-порта выглядит достаточно про­сто (см. табл.7). К трем регистрам стандартного порта, имеющим смещение 0, 1 и 2 относительно базового адреса порта, добавлены два регистра (ЕРР Address Port и ЕРР Data Port), чтение и запись в которые вызывает генерацию связанных внешних циклов.

Назначение регистров стандартного порта сохранено, что обеспечивает сов­местимость ЕРР-порта с периферийными устройствами и программным обес­печением, рассчитанными на применение программно-управляемого обмена. Поскольку сигналы квитирования адаптером вырабатываются аппаратно, при записи в регистр управления CR биты 0, 1 и 3, соответствующие сигналам STROBES, AUTOFEEDS и SELECTING, должны иметь нулевые значения. В противном случае программное вмешательство может нарушить последовательность квитирова­ния. Некоторые адаптеры имеют специальные средства защиты (ЕРР Protect), при включении которых программная модификация этих бит блокируется.

Использование регистра данных ЕРР позволяет осуществлять передачу блока данных с помощью одной инструкции REP INSB или REP OUTSB вместо традици­онных циклов с интенсивными операциями ввода/вывода. Некоторые адаптеры допускают и 16/32-битное обращение к регистру данных ЕРР. Тогда 16- или 32-битное обращение по адресу регистра данных ЕРР приведет к автоматической генерации двух или четырех шинных циклов по нарастающим адресам, начиная со смещения 4. Эти циклы будут выполняться быстрее, чем то же количество одиночных циклов. Таким образом при обмене данными и обеспечивается производительность, достигающая 2 Мбайт/с, вполне достаточная и для адаптеров локальных сетей, внешних дисков, стриммеров и CD-ROM. Адресные циклы БРР всегда выполняются только в однобайтном режиме обра­щения.

Важной чертой ЕРР является то, что обращение процессора к периферийному устройству осуществляется в реальном времени. Программный драйвер всегда способен наблюдать состояние и подавать команды в точно известные моменты времени. Циклы чтения и записи могут чередоваться в произвольном порядке или идти блоками. Такой тип обмена наиболее пригоден для регистро-ориентированной периферии или периферии, работающей в реальном времени — сетевых адаптеров, устройств сбора инфор­мации и управления, дисковых устройств и т. п.

Режим ЕСР

Протокол ЕСР (Extended Capability Port — порт с расширенными возможнос­тями) был предложен фирмами Hewlett Packard и Microsoft как прогрессивный режим связи с периферией типа принтеров и сканеров. Как и ЕРР, данный про­токол обеспечивает высокопроизводительный двунаправленный обмен данными хоста с периферийными устройствами.

Протокол ЕСР в обоих направлениях обеспечивает два типа циклов:

••• Циклы записи и чтения данных.  Командные циклы записи и чтения.

Командные циклы подразделяются на два типа: передача канальных адресов и счетчика RLC (Run-Length Count).

В отличие от ЕРР вместе с протоколом ЕСР сразу появился и стандарт на программную (регистровую) модель реализации его адаптера, изложенный в документе «The IEEE 1284 Extended Capabilities Port Protocol and ISA Interface Standard» компании Microsoft. Этот документ определяет специфические свой­ства реализации протокола, не заданные стандартом IEEE 1284: компрессия данных хост-адаптером по методу RLE;

••• буферизация FIFO для прямого и обратного каналов: применение DMA и программного ввода/вывода.

Компрессия в реальном времени по методу RLE (Run-Length Encoding) позво­ляет достичь коэффициента сжатия до 64:1 при передаче растровых изображе­ний.

Канальная адресация ЕСР применяется для адресации множества логических устройств, входящих в одно физическое. Например, в комбинированном устрой­стве факс/принтер/модем, подключаемом только к одному параллельному порту, возможен одновременный прием факса и печать на принтере.

Как и в других режимах 1284, протокол ЕСР переопределяет сигналы SPP (табл. 8).

Таблица 8.

Сигналы LPT-порта в режиме ввода/вывода ЕСР

Контакт

Сигнал SPP

Имя в ЕСР

I/O

Описание

1

STROBE»

HortClk

0

Используется в паре с PeriphAck для передачи в прямом направлении (вывод)

14

AUTOFEED#

HostAck

0

Индицирует тип команда/данные при передаче в прямом направлении. Используется в паре с PeriphClk для передачи в обратном направлении

17

SELECTING

1284Active

О

Высокий уровень указывает на обмен в режиме IEEE 1284. (В режиме SPP уровень низкий)

16

INIT#

ReverseRequest#

О

Низкий уровень переключает канал на передачу в обратном направлении

10

ACK#

PeriphClk

I

Используется в паре с HostAck для передачи в обратном направлении

11

BUSY

PeriphAck

1

Используется в паре с HostClk для передачи в обратном направлении. Индицирует тип команда/ данные при передаче в обратном направлении

12

PE

AckReverse#

I

Переводится в низкий уровень как подтверждение сигналу ReverseRequestff

13

SELECT

Xflag*

I

Флаг расширяемости Extensibility flag

15

ERROR»

PeriphRequest#*

I

Устанавливается ПУ для указания на доступность (наличие) обратного канала передачи*

2-9

Data[0:7]

Data[0:7]

I/O

Двунаправленный канал данных

* Сигналы действуют в последовательности согласования (см. ниже).

Адаптер ЕСР тоже генерирует внешние протокольные сигналы квитирования аппаратно.

Прямая передача данных на внешнем интерфейсе состоит из следующих шагов:

1. Хост помещает данные на шину канала и устанавливает признак цикла дан­ных (высокий уровень) или команды (низкий уровень) на линии HostAck.

2. Хост устанавливает низкий уровень на линии HostClk, указывая на действи­тельность данных.

3. ПУ отвечает установкой высокого уровня на линии PeriphAck.

4. Хост устанавливает высокий уровень линии HostClk, и этот перепад может использоваться для фиксации данных в ПУ.

5. ПУ устанавливает низкий уровень на линии PeriphAck для указания на го­товность к приему следующего байта.

Поскольку передачи в ЕСР разделены FIFO-буферами, которые могут при­сутствовать на обеих сторонах интерфейса, важно понимать, на каком этапе данные можно будет считать переданными. Данные считается переданными на шаге 4, когда линия HostClk переходит в высокий уровень. В этот момент мо­дифицируются счетчики переданных и принятых байт.

Обратная передача данных состоит из следующих шагов:

1. Хост запрашивает изменение направления канала, устанавливая низкий уровень на линии ReverseRequestff. 2 ПУ разрешает смену направления установкой низкого уровня на линии Ack-Reverse#.

3. ПУ помещает данные на шину канала и устанавливает признак цикла дан­ных (высокий уровень) или команды (низкий уровень) на линии PeriphAck.

4. ПУ устанавливает низкий уровень на линии PeriphClk, указывая на дейст­вительность данных.

5. Хост отвечает установкой высокого уровня на линии HostAck.

6. ПУ устанавливает высокий уровень линии PeriphClk, и этот перепад может использоваться для фиксации данных хостом.

7. Хост устанавливает низкий уровень на линии HostAck для указания на го­товность к приему следующего байта.

Согласование режимов IEEE 1284

Периферийные устройства в стандарте IEEE 1284 обычно не требуют от конт­роллера реализации всех режимов, предусмотренных стандартом. Для опреде­ления режимов и методов управления конкретным устройством стандарт предусматривает последовательность согласования (negotiation sequence) для ус­тановки требуемого режима интерфейса.

Во время фазы согласования контроллер выставляет на линии данных байт расширяемости (Extensibility byte), запрашивая подтверждение на перевод интер­фейса в требуемый режим или прием идентификатора периферийного устрой­ства (табл. 11). Идентификатор передается контроллеру в запрошенном режиме (любой режим обратного канала, кроме ЕРР). ПУ использует сигнал Xflag (Select в терминах SPP) для подтверждения запрошенного режима обрат­ного канала, кроме полубайтного. Полубайтный режим поддерживается всеми устройствами IEEE 1284. Бит Extensibility Link request заложен для механизма определения дополнительных режимов в будущих расширениях стандарта.

Таблица. 11.

Значение бит байта расширяемости

Бит

Описание

Допустимые комбинации бит [7:0]

7

Request Extensibility Link — запрос для будущих расширений

1000 0000

6

Запрос режима ЕРР

0100 0000

5

Запрос режима ЕСР с RLE

ООН 0000

4

Запрос режима ЕСР Mode без RLE

0001 0000

3

Резерв

0000 1000

2

Запрос идентификатора устройства с ответом в режиме:

Nibble Mode (полубайтный)

0000 0100

Byte Mode (байтный)

0000 0101

ЕСР без RLE

0001 0100

ЕСР с RLE

0011 0100

1

Резерв

0000 0010

0

Запрос Byte Mode

0000 0001

None

Запрос Nibble Mode

0000 0000

Последовательность согласования состоит из следующих шагов:

1. Хост выводит байт расширяемости на линии данных.

2. Хост устанавливает высокий уровень сигнала Selecting и низкий — Auto-Feedft, что означает начало последовательности согласования.

3. ПУ 1284 ответит установкой низкого уровня сигнала Ackff и высокого — Errorft, РЕ и Select.

4. Хост устанавливает низкий уровень сигнала Strobeff для записи байта рас­ширяемости в ПУ.

5. Хост устанавливает высокий уровень сигналов Strobeff и AutoFeedff.

6. ПУ отвечает установкой в низкий уровень сигналов РЕ и Errorff, если оно имеет обратный канал передачи данных. Если запрошенный режим поддер­живается устройством, на линии Select устанавливается высокий уровень, если не поддерживается — низкий.

7. ПУ устанавливает высокий уровень на линии Ack# для указания на завер­шение последовательности согласования, после чего контроллер устанавли­вает требуемый (и разрешенный) режим работы.

Развитие стандарта IEEE 1284

Кроме основного стандарта IEEE 1284, который уже принят, в настоящее время в стадии проработки находятся новые стандарты, не отменяющие его, а опре­деляющие дополнительные возможности. К ним относятся:

IEEE P1284.1 «Standard for Information Technology for Transport Independent Printer/Scanner Interface (TIP/SI)». Этот стандарт разрабатывается для управ­ления и обслуживания сканеров и принтеров на основе протокола NPAP (Net­work Printing Alliance Protocol).

IEEE P1284.2 «Standard for Test, Measurement and Conformance to IEEE Std. 1284» — стандарт для тестирования портов, кабелей и устройств на совмес­тимость с IEEE 1284.

IEEE P1284.3 «Standard for Interface and Protocol Extensions to IEEE Std-1284 Compliant Peripheral and Host Adapter Ports» — стандарт на драйверы и использование устройств прикладным программным обеспечением.

IEEE P1284.4 «Standard for Data Delivery and Logical Channels for IEEE Std. 1284 Interfaces». Этот стандарт направлен на реализацию пакетного протокола достоверной передачи данных через параллельный порт. Исходной точкой яв­ляется протокол MLC (Multiple Logical Channels) фирмы Hewlett-Packard.

Конфигурирование LPT-портов

Управление параллельным портом разделяется на два этапа — предварительное конфигурирование (Setup) аппаратных средств порта и текущее (оперативное) переключение режимов работы прикладным или системным ПО. Оперативное переключение возможно только в пределах режимов, разрешенных при конфи­гурировании. Таким образом обеспечивается возможность согласования аппа­ратуры и программного обеспечения и блокирования ложных переключении, вызванных некорректными действиями программы.

Способ и возможности конфигурирования LPT-портов зависят от его испол­нения и местоположения. Порт, расположенный на плате расширения (обычно на мультикарте), устанавливаемой в слот ISA или ISA+VLB, обычно конфи­гурируется джамперами на самой плате. Порт, расположенный на системной плате, обычно конфигурируется через BIOS Setup.

Конфигурированию подлежат следующие параметры:

Базовый адрес, который может иметь значение 3BCh, 378h и 278h. При инициализации BIOS проверяет наличие портов по адресам именно в этом порядке и, соответственно, присваивает обнаруженным портам логи­ческие имена LPT1, LPT2, LPT3. Адрес 3BCh имеет адаптер порта, распо­ложенный на плате MDA или HGC. Большинство портов по умолчанию конфигурируется на адрес 378h и может переключаться на 278h.

Используемая линия запроса прерывания: для LPT1 обычно используется IRQ7, для LPT2 — IRQ5.

Использование канала DMA для режимов ЕСР и Fast Centronics — разреше­ние и номер канала DMA.

Использование параллельных портов

Наиболее распространенным применением LPT-порта является, естественно, подключение принтера. Практически все принтеры могут работать с портом в режиме SPP, но применение расширенных режимов дает дополнительные пре­имущества:

Двунаправленный режим (Bi-Di) дает дополнительные возможности для сообщения состояния и параметров принтера. Скоростные режимы (Fast Centronics) существенно повышают производительность практически любого принтера (особенно лазерного), но могут потребовать более качественного кабеля.

Режим ЕСР потенциально самый эффективный, и он имеет системную поддержку во всех вариантах Windows. Из распространенных семейств ЕСР поддерживают принтеры HP DeskJet моделей BXX, LaserJet начиная с 4-го, современные модели фирмы Lex­mark требуют применения кабеля по частотным свойствам соответствую­щего IEEE 1284.

Простейший вариант кабеля подключения принтера — 18-проводный кабель с неперевитыми проводами с успехом может использоваться для работы порта в режиме SPP.

Идеальным вариантом являются кабели, в которых все сигнальные линии перевиты с общими проводами и заключены в общий экран — то, что требует IEEE 1248. Такие кабели гарантированно работают на скоростях до 2 Мбайт/с, и допускается их длина до 10 метров.

В табл. 12 приводится распайка кабеля подключения принтера с разъемом XI типа A (DB-25P) со стороны PC и Х2 типа В (Centronics-36) или типа С (миниатюрный) со стороны принтера.

Таблица 12. Кабель подключения принтера

XI, разъем PC типа А

Сигнал

X2,

разъем PRN типа В X2, разъем PRN типа С

1

-Strobe#

1

15

2

Data 0

2

6

3

Datal

3

7

4

Data г

4

8

5

Data3

5

9

6

Data 4

6

10

7

Data 5

7

11

8

Data 6

8

12

9

Data 7

9

13

10

AckS

10

3

11

Busy

11

1

12

PaperEnd

12

5

13

Select

13

2

14

Auto LF«

14

17

15

Error»

32

4

16

Imt#

31

14

17

Sict In#

36

16

18

GND(l)

19

33

19

GND(2 3)

20 21

24 25

20

GND(4 5)

22 23

26 27

21

GND(6 7)

24 25

28 29

22

GND(8 9)

26 27

30 31

23

GND(11 15)

29

19 22

24

GND(10 12 13)

28

20 21 23

25

GND(14 16 17)

30

32 34 35

Для связи двух компьютеров по параллельному интерфейсу применяются раз­личные варианты кабелей, зависящие от режимов используемых портов. Самый простой способ (и самый медленный обмен) обеспечивает режим полубайтно­го обмена Nibble Mode, работающий на всех (исправных) портах. Для этого ре­жима в кабеле достаточно иметь 10 сигнальных и один общий провод.

Высокоскоростная связь двух компьютеров может выполняться и в режиме ЕСР (режим ЕРР для этих целей неудобен, поскольку он требует синхронизации шинных циклов ввода/вывода двух компьютеров). В табл. 13 приведена распайка кабеля для этого режима. В ней в качестве вспомогательной информации приведены имена сигналов, которые аппаратно генерируются адаптерами портов. Этот же кабель может использоваться и для связи в режиме Byte Mode (при наличии двунаправленных портов). Связь компь­ютеров с помощью такого кабеля поддерживается Windows 95.

Таблица 13.

Кабель связи PC-PC в режиме ЕСР и Byte Mode

Разъем XI

Разъем Х2

Контакт

Имя в ЕСР

Имя в ЕСР

Контакт

1

HostClk

PeriphClk

10

14

HostAck

PeriphAck

11

17

1284Active

+PeriphRequest#

15

16

Reverse Request^

AckReverse#

12

10

PeriphClk

HostClk

1

11

PeriphAck

HostAck

14

12

AckReverse#

ReverseRequest#

16

13

Xflag

-

-

15

PeriphRequestf»

+284Active

17

2-9

Data[0:7]

Data [0:7]

2-9

Подключение сканера к LPT-порту эффективно, только если порт обеспе­чивает хотя бы двунаправленный режим (Bi-Di), поскольку в основном здесь используется ввод. Но лучше использовать порт ECP, если этот режим поддер­живается сканером.

Подключение внешних накопителей (lomega Zip Drive, CD-ROM), адаптеров ЛВС и других симметричных устройств ввода/вывода имеет общую специфику. Большинство таких устройств способно работать в любом из режимов порта (обычно исключая ECP), что обеспечивает их неограниченное применение на любых компьютерах.

Неисправности и тестирование параллельных портов

Тестирование параллельных портов целесообразно начинать с проверки их наличия в системе. Список адресов установленных портов обычно появляется в таблице заставки, выводимой BIOS на экран перед загрузкой ОС. Кроме этой таблицы, список можно посмотреть и с помощью тестовых программ или прямо в BIOS DATA AREA с помощью любого отладчика.

Если BIOS обнаруживает меньше портов, чем установлено физически, скорее всего, каким-либо двум портам присвоен один адрес. Программное тестирование порта без диагностической заглушки (Loop Back) не покажет оши­бок, поскольку при этом читаются данные выходных регистров, а они у всех конфликтующих (по отдельности исправных портов) совпадут. Именно такое тестирование и производит BIOS при проверке на наличие портов. Разбираться с такой ситуацией имеет смысл последовательно устанавливая порты и наблю­дая за адресами, появляющимися в списке.

Если физически установлен только один порт и его не обнаруживает BIOS, то либо он отключен при конфигурировании, либо вышел из строя скорее всего из-за нарушений правил подключения.

Тестирование портов с помощью диагностических программ позволяет про­верить их выходные регистры, а при использовании специальных заглушек — и входные линии. Поскольку количество выходных линий порта (12) и входных (5) различно, то полная проверка порта с помощью пассивной заглушки прин­ципиально невозможна. Разные программы тестирования требуют применения специально на них ориентированных заглушек (рис. 1),

Рис. 1. Схема заглушки для тестирования LPT-порта программой Checkit

Большинство неприятностей при работе с LPT-портами доставляют разъемы и кабели. Для проверки порта, кабеля и принтера можно воспользоваться специальными тестами из популярных диагностических программ (Checkit, PCCheck и т. п.), а можно вывести на принтер какой-либо сим­вольный файл.

Если вывод файла с точки зрения DOS проходит (копирование файла на устройство с именем LPTn или PRN проходит быстро и успешно), а принтер (исправный) не напечатал ни одного символа — скорее всего, это обрыв (неконтакт в разъеме) цепи STROBES.

Если принтер по своему индикатору находится в состоянии On Line, a появляется сообщение о его неготовности (Not Ready Error), то причину следует искать в линии Busy.

Если принтер искажает информацию при печати, возможен обрыв (или замыкание) линий данных. В этом случае удобно воспользоваться фай­лом, содержащим последовательность кодов всех печатных символов (его можно создать с помощью простой программы, написанной даже на языке Basic, — ее текст приведен ниже).

10 OPEN "bincod.chr" FOR OUTPUT AS #1

20 FORJ=2T015

30 FOR 1=0 ТО 15

40 PRINT#1, CHR$(16*J+I);

50 NEXT I 60 PRINT#1,

70 NEXTJ

80 CLOSE #1

90 END

Файл BINCOD.CHR, созданный данной программой, представляет собой таблицу всех печатных символов (управляющие коды пропущены), расположен­ных по 16 символов в строке. Если файл печатается с повтором некоторых символов или их групп, по периодичности повтора можно легко вычислить оборванный провод данных интерфейса. Этот же файл удобно использовать для проверки аппаратной руссификации принтера.

Если принтер, подключенный к порту, в стандартном режиме (SPP) печа­тает нормально, а при переходе на ЕСР начинаются сбои, следует прове­рить кабель — соответствует ли он требованиям IEEE 1284. Кабели с неперевитыми проводами нормально работают на скоростях 50-100 Кбайт/с, но при скорости 1-2 Мбайт/с, обеспечивае­мой ЕСР, они могут не работать, особенно при длине более 2 метров.

Если при установке драйвера РпР-принтера появилось сообщение о необходимости применения «двунаправленного кабеля», проверьте нали­чие связи контакта 17 разъема DB-25 с контактом 36 разъема Centronics.

Аппаратные прерывания от LPT-порта используются далеко не всегда. Неисправности, связанные с цепью прерывания от порта, проявляются не часто. Однако по-настоящему многозадачные ОС (например, сервер NetWare) стара­ются работать с портом именно по прерываниям. Тестировать линию прерывания можно, только подключив к порту периферийное устройство или специаль­ную заглушку.

Параллельный порт и РпР

Большинство современных периферийных устройств, подключаемых к LPT-порту, поддерживает стандарт 1284 и функции РпР. Для поддержки этих функ­ций компьютером с аппаратной точки зрения достаточно иметь контроллер интерфейса, поддерживающий стандарт 1284. Для работы РпР подключенное устройство должно со­общить операционной системе все необходимые сведения о себе (идентификаторы производителя, модели и набор поддерживаемых команд). Более развернутая информация об устройстве может содержать идентификатор класса, подробное описание и идентификатор устройства, с которым обеспечи­вается совместимость.

Параллельный интерфейс: LPT-порт Порт параллельного интерфейса был введен в PC для подключения принтера —LP'T-порт (Line PrinTer — построчный принтер). Адаптер параллельного интерфейса представляет собой набор регистров, расположенных в прос

 

 

 

Внимание! Представленный Реферат находится в открытом доступе в сети Интернет, и уже неоднократно сдавался, возможно, даже в твоем учебном заведении.
Советуем не рисковать. Узнай, сколько стоит абсолютно уникальный Реферат по твоей теме:

Новости образования и науки

Заказать уникальную работу

Свои сданные студенческие работы

присылайте нам на e-mail

Client@Stud-Baza.ru