курсовые,контрольные,дипломы,рефераты
Типовой расчет по Электротехнике.
(Переходные процессы в линейных цепях.)
Студент Ухачёв Р.С.
Группа Ф-9-94
Преподаватель Кузнецов Э.В.
Вариант 14
Москва 1996
Типовой расчет по дисциплине
Основы теории цепей для студентов гр. Ф-9-94
Содержание работы
В коммутируемой цепи содержатся источники постоянных э.д.с. E или тока J, источники гармонической э.д.с. e=Em sin(wt +j) или тока j=Jm sin(wt +j) c частотой w =1000 c-1 или источник с заданной линейной зависимостью напряжения или тока от времени, три коммутируемых в заданные моменты времени ключа . Непосредственно перед первой коммутацией в цепи имеется установившийся режим.
Рассчитать:
1. Классическим методом ток, указанный на схеме, на трех интервалах, соответствующих коммутациям ключей, при наличии в цепи постоянных и синусоидальных источников .
2. Операторным методом тот же ток.
3. Любым методом на четвертом интервале ток i1=(t) после замены синусоидального источника источником с заданной зависимостью напряжения или тока от времени.
Задание
1. Схема замещения анализируемой цепи и значения параметров выбираются на рис. 1 и в таблице 1 в соответствии с номером варианта N-номером в списке учебной группы. Остальные параметры рассчитываются по формулам E=10N (В), Em=10N (В), J=0,4N (А), Jm=0,4N (А), j =30N (°). Для всех вариантов L=20 мГн, C=100 мкФ. Зависимости токов и напряжений источников, включаемых в начале четвертого интервала, приведены на рис. 2.
2. Ключи коммутируются по порядку их номеров через одинаковые интервалы времени Dt=T/6, где T=2|p|/wсв -период свободных колебаний. Для апериодического процесса Dt =1/|p|, где p -наименьший по модулю корень характеристического уравнения. Четвертый интервал начинается также через Dt после коммутации последнего ключа.
Указания
1. Для каждого интервала времени сначала рекомендуется провести расчет классическим методом, а затем-операторным. При совпадении результатов расчета обоими методами можно приступать к расчету переходного процесса на следующем интервале времени.
2. Результаты расчетов следует оформить с помощью ПЭВМ в отчете, содержащем описание задания, формулы, числовые значения, графики искомых функций.
Типовой расчёт по Элекротехнике вариант №14
Исходные данные:
R1=95 Ом R2=5 Ом R3=4 Ом
C=100 мкФ L=20 мГн
e=140sin(1000t+4200) В
1. Расчёт ПП для первой коммутации:
Ucпр=E=140В iCпр=0 А i1пр=i2пр=E/(R1+R2)=1,4 A
1.2 Расчёт классическим методом:
Замкнули К1 t=0 i2(0)=0 Uc(0)=E=140В
{ i1R1=Uc
{ i2=0 (1.2.1)
{ CU'c+i1=i2
решив (1.2.1) получим i1=1,47A i2=0A U'c=-14700B/c
Составим характеристическое ур-е: Zвх(р)=0
=0 или 0,000019p2+0,0675p+100=0
p1=-177,632+703.394j p2=-177,632-703.394j
Т.к. Uc(t)=Ucсв(t)+Ucпр(t) (1.2.2)
Ucсв=A1ep1t+A2ep2t Ucпр=ER1/(R1+R2)=133B
найдём константы A1 и A2 из системы
Uc(0)=A1+A2+133=0 или A1+A2=7 A1=3,5+9,565j
U'c(0)=A1p1+A2p2=0 A1p1+A2p2=-14700 A2=3,5-9,565j
Подставив данные в (1.2.2) получим Uc(t)=e-177,632t(7cos(703.394t)-19.14sin(703.394t))+133 B
ic(t)=CU'c(t)=-e-177,632t(1.471cos(703.394t)+0.152sin(703.394t)) A
i1(t)=Uc/R1= A
i2(t)=ic(t)+i1(t)= A
1.2 Расчёт операторным методом:
{ I2(pL+R2)+Ic/pC=Li2(0)+E/p-Uc(0)/p
{ I2-Ic-I1=0
{ I1R1=Ic/pC-Uc(0)/p
решив систему для I2,Ic,I1 имеем вектор решений
далее используя обратные преобразования Лапласа получим окончательно
ic(t)=CU'c(t)=-e-177,632t(1.471cos(703.394t)+0.152sin(703.394t)) A
i1(t)=Uc/R1= A
i2(t)=ic(t)+i1(t)= A
2. Расчёт ПП для второй коммутации:
Возьмём интервал времени Dt=T/6=|p|/3wсв=0,001с
тогда Uc(Dt)=133,939 В
2.2 Расчёт классическим методом:
Составим характеристическое ур-е: Zвх(р)=0
=0 p=-2105,63
Ucпр(t)=133 В Ucсв(Dt)=Ae-2106,63t
Uc(Dt)=A=0.939 В
Uc(t)=0.939e-2106,63t+133 В
ic(t)=CU'c(t)=-0,198e-2106,63t A
i1(t)=Uc(t)/R1=0,0099e-2106,63t+1,4 A
i2(t)=ic(t)+i1(t)=-0,188e-2106,63t+1,4 A
2.3 Расчёт операторным методом:
{ I1R1=Ic/pC+Uc(Dt)/p
{ I2=I1+Ic
{ I1R1+I2R2=E/p
решив систему для I1,I2,Iс имеем вектор решений
Обратные преобразования Лапласа дают окончательно
ic(t)=CU'c(t)=-0,198e-2106,63t A
i1(t)=Uc(t)/R1=0,0099e-2106,63t+1,4 A
i2(t)=ic(t)+i1(t)=-0,188e-2106,63t+1,4 A
3 . Расчёт ПП для третьей коммутации:
3.1 Расчёт классическим методом:
Принуждённые составляющие токов
рассчитаем как суперпозицию от
постоянного и синусоидального источника
3.2 Расчёт на постоянном токе:
| i1R1+i2R2=E
{ i2R2+i3R3=0 ---> i1=1.44sin(1000t)
| i1+i3=i2
3.3 Расчёт на синусоидальном токе:
{ I1R2+I3R3=E=140ej 73,27
{ I2R2-jXcIc=0
{ I1R1+jXcIc=0
{ I2-I1-I3-Ic=0
i2=14.85sin(1000t+0.83)A
i1=0.02sin(1000t+0.29) A
Суперпозиция даёт для i1пр=
Ucпр(t)=i1пр/R1
Uc(t)= Ucпр(t)+Aept
Составим характеристическое ур-е: Zвх(р)=0
p=
Dt=1/|p|=0.00022 c
Uc(Dt)=133.6 В
A=3.2
i2(t)=(E-Uc(t))/R2
2(t)= A
3.4 Расчёт операторным методом:
e=140sin(1000t+4200)
{ I1R1=Ic/pC+Uc(0)/p
{ I2R2+I3R3=E(p) =>I1,I2,I3,Ic
{ I1R1+I2R2=E/p
{ I2-I3-I1-Ic=0
I2(p)=
Используя обратные преобразования Лапласа получим окончательно
i2(t)= A
4. Расчёт ПП после замены синусоидального источника источником с заданной линейной
зависимостью ЭДС от времени.
Начальные условия Uc(0)=0
Для расчёта воспользуемся операторным методом
{ I2R2+I3R3=1/p
{ I1R1=Ic/pC+Uc(0)/p =>I1,I2,I3,Ic
{ I1R1+I2R2=0
{ I2-I3-I1-Ic=0
Обратные преобразования Лапласа дают i2(t)=h(t)= A
Запишем интеграл Дюамеля:
fв(t)=140-140t/t
f’в(t)=-140/t
Графики тока i2(t) для 1-й,2-й и 3-ей коммутации:
E
Перспективные технологии в энергетике
Перспективы развития автомобильного двигателестроения (zip 1.6 Mb)
Перспективы развития телекоммуникации
Печатные платы
Печные изразцы
Пиление древесины
Пищевые производства
План горных работ для улучшения проветривания выработок II блока шахты Северная
Побудова та розкрій жіночої сукні
Поверочный тепловой расчет котла Е-25-24 225 ГМ
Copyright (c) 2025 Stud-Baza.ru Рефераты, контрольные, курсовые, дипломные работы.