. , , ,

,,,

,

III -

,

-

9

71 .

..,

, 2008


1.

2. -

3.

1


 

, - -, , , .

, -, Prompt, TeX, . , , , .

. ( ). , -. , Translation Memory, [].

, Perl . . :

1. , , , . ., .

2. (British English American) .

3. , . , Perl, Python , ( Perl ).

4. .


1.

(). , , . , .

, . . .

 

() ,
foot (ft) 0,3048 0,3048

foot square (ft2)

0,3048 × 0,3048

0,0929 2

cubic foot (ft3)

0,30483 = 28,317 × 10-3

28,317 × 10-3 3

pound of mass (lbm)

0,4536 0,4536
second (s) 1 ,

pound of force (lbf)

4,448 4, 448
f/s 0,3048/1 = 0,3048 0,3048 /

lbf x ft

4,448 × 0,348 = 1,356 1,356

lbf/in2 (psi)

4,448/(0,0254)2 = 6895

6895 /2


, , 980 psi. 6,757 (: 6895 × 980 /2 = 6757100 /2 6,757 ).

, . . , , , , , , , . ( ). , (.. /2), /2 = /2, /2, . (), ( ), ( 100 ), , .

. Ut, h.p./in3/min. , (h.p./in3):min h.p.(in3/min).

, : h.p. , .. ; in3, (.. , ); , . , (h.p./in3)min, h.p.min/in3.

, , :

As an example, if l = 35 deg, T1= 520 deg, approach = 16.5 deg, then P = 0.47 and ψ = 4.9.

I , T1 , a approach . , , , ?

, , T1. T1 ( , , 16,5), , , , 520F (.. 271), 100., c, , T1 .

( ):

520 = 520 273 = 247 > 100,

, . : 520R = 520 × 0,555273 = 16. , , , , , .. .

, . , :

da/dn= 1.4210-13(Δ)2.02.


[in];

[cycle];

da/dn [in/cycle];

[psi√in] = (lb/in2)in1/2;

( ) ( , ).

1,4210-13 , . - .

:

) D () :

 

da/dn = D(K)α,

α = 2,02 .

) D ( D , , , , α):

D = inin2α /(cyclelbαinα/2) = in1+2α-α/2 /(cyclelbα) = in 1+3/2α / cyclelbα.

) , α :

= 25,4 1+3/22,02 / 0,454 2,02 = 25,4 4,03 / 0,454 2,02.

) 25,4 0,454 , , :

lg 25,4 4,03 = 4,03lg 25,4 = 4,031,4048 = 5,661

( 5,661) 458100.

lg 0,454 2,02 = 2,02lg 0,454 = 2,021,6571 = 2,02 (0,3429) = 0,6926 = 1,3074

[ 1].

( 1,3074) 0,2030.

= 458100: 0,203 = 2,25106.

) :

D' = D = 1, 4210-132, 25106 = 3,19510-7 .

) :

 

da/dn = 3,19510-7 )2,02.

, , . , . , , , , , . .

:

μ

micro

10-6

m

milli

10-3

k

kilo

103

M

mega

106

G

giga

109

: $3G = 3 . .

1.5 Gbbls = 1,5 .

, m , :




106

Pressure of 230 230 (230 )
; mt

106

A throughput of 12 /yr (250,000 bbls/day). 12 (250 000 )
$M

106

Values shown in $2001M . 2001
M

103 (*)

$755M×5 = $3.775 MM

Oil Production = 70, OOO MBbl

500 MCF = 500 mille cubic feet;

2 MCFCD = 2 mille cubic feet per calendar day

755 . . × 5 = 3,775 . .

= 70 000 103

500

2

MM

106

1.7 MMTPY Cracking Unit

CAPEX 800 $MM

- 1,7 . /

= 800 106

m

I06

The estimated cost of the installation is $5.2 m

$500m

20 mcps = 20 megacycles per second

5,2 . .

500 . .

20

m

mil = 10-3 in

Corrosion rate was 4 mpy (4×25,4) /
metric tonne** 150 MT of propellant per week 150

 

:

(., , - , ..) , , a . , , . .

: , . , . freight ton = 40 (.. ); register ton = 100 (.. - ); standard ton = 3,517 ( ); ton = 4,18 ( , ). , , ; (metric ton = mton = 1000 ), (short ton = just ton = net ton = 2000 = 907 ) (long ton = gross ton = 2240 = 1016 ).


2. -

, , -. , , . : , , , . . . ( . .' . ., 1973, . 121-131), , , - . - . , ( ) .

I. , ( , . , , .). - .

The annealed hardness of the material does not provide as good a correlation with the measured erosion wear.

, , . , , ( (the annealed hardness > he annealed surface hardness = the hardness of the annealed surface) .

.

II. , .

The James [2] and Smith [3] correlations show essentially the same predictive reliability, and are somewhat poorer than Murdock.

, , "than Murdock correlation", "than that of Murdock", "than Murdock's one" "than Murdock".

, , .

[2] [3] , .

III. II -, .

Fig. 5 shows the results of these tests, the upper curve being the large protrusion. , the large protrusion = the one for the large protrusion, .

. 5, .

3.

. 60 70% . , . , , .

1.  IS .

The function f is continuous.

f .

2.  IS .

The set R is a ring.

R .

3. CONSIDER .

Consider the point (1,1)  R2.

(1,1)  R2.

4. WE HAVE  .

We have

sin2 x + cos2 x = 1.

(1)

sin2 x + cos2 x = 1.

(1)

5. LET   BE .

Let V be a vector space.

V .

6. FOR ANY   THERE EXISTS .

For any continuous map f : II there exists a fixed point cI.

f : II cI.

7. BY  DENOTE .

By R denote the set of real numbers.

R .

8. IT FOLLOWS FROM  THAT [].

It follows from Lemma 2 that α is injective.

 2 , α .

9.  IS CALLED   IF [].

A manifold is called acyclic if Hi(M) = 0 (i > 0).

, Hi(M) = 0 (i > 0).

The map s: BE is called a section of ξ if ξ ○ s = id.

s: BE ξ, ξ ○ s = id.

10. IF [], THEN [].

If Df ) is compact, then f is bounded.

Df ) , f .

11. [] IF AND ONLY IF [].

A closed 3-manifold M is S 3 if and only if π1M = 0.

M S 3 , π1M = 0.

12.  HAS THE FORM  .

The simplest parabola has the form x2 = y.

x2 = y.


 

:

1.         Translation Memory.

2.         , .

3.         , .


1.         .., . . , , , []/ .. , , 1999.

2.         . , , ., 2004.

3.         V. Zaitsev, Russian Typographical Traditions in Mathematical Literature [] / V. Zaitsev, A. Janishevsky, A. Berdnikov Euro\TeX'99 Proceedings.

4.         .., - - []/ . .. .: , 1994. 414.

5.         Encyclopedic Dictionary of Mathematics, ed. Kiyosi Ito, Vol 1 and 2, The MIT Press, Cambridge, 1993. 2171pp.

6.         .., - []/ .. .: -, 2000. 112.


1

 

#!/usr/bin/perl

# , ,

# , .

# texm

#

#

open(DICTIONARY,"dictionary.txt") || die " $!n";

#

while (<DICTIONARY>){

chomp;

if (!/[#]/){

($word,$tr)=/(.*);\s+(.*)/;

$DIC{$word}=$tr;}

}

#

close(DICTIONARY);

#

#

opendir(CURRENT,'.');

@currentfiles=grep(/\.tex$/i,readdir CURRENT);

#

foreach (@currentfiles){

open(SOURCE, $_)|| die " $!n";

open(DEST,">>$_"."m");

#

$line=join("", <SOURCE>);

#

foreach(keys %DIC){

$line=~s/$_/$DIC{$_}/;}

#

print DEST $line;

#

close(SOURCE);

close(DEST);

}

#

closedir(CURRENT);

print "work has done\n";

print "please, press enter";

$end=<STDIN>;

III - , -

 

 

 

! , , , .
. , :