курсовые,контрольные,дипломы,рефераты
МОСКОВСКИЙ
ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
ПУТЕЙ СООБЩЕНИЯ (МИИТ)
ИНСТИТУТ ТРАНСПОРТНОЙ ТЕХНИКИ
И ОРГАНИЗАЦИИ ПРОИЗВОДСТВА
Кафедра деталей машин
Курсовая работа
по дисциплине
Прикладная механика
Проектирование привода конвейера
Москва - 2008
Введение
1.Техническое задание на проектирование
.
Пб
6
2
5
Тб
Х
4
3
1. - зубчатый редуктор;
2. - ведомый шкив;
3. – Электродвигатель;
4. – ведущий шкив;
5. – ремни;
6. – барабан конвеера
Исходные данные:
nб=100 об/мин
Тб=500 н.м.
число полюсов 4
α=20 тыс.ч.
число смен в сутки 1
кmax=1,6
Расчеты. Энергетический и кинематический расчеты привода
1.1 Выбор электродвигателя. Электродвигатель серии 4А асинхронный с короткозамкнутым ротором
Определяем мощность на валу барабана конвейера
Рб = Тб nб / 9550 – мощность [кВт]
Рб = 500*100 / 9550 = 1,67
Требуемая мощность электродвигателя. (Из-за потерь в подшипнике).
Рэ = Рб / ŋ – в зубчатом колесе и в ременной передаче,
где ŋ – общее КПД привода
ŋ = ŋ²п ŋр ŋз,
где
ŋ²п - КПД подшипниковой передачи
ŋр – КПД ременной передачи
ŋз – КПД зубчатой передачи
Из табл. П1 с.64 [1]
Выбираем: ŋп = 0,99; ŋр = 0,94; ŋз = 0,96
ŋ = (0,99)² * 0,94 * 0,96 = 0,89
Рэ = 1,67 / 0,89 = 1,87
Из табл. П2 с.65 [1]
Выбираем стандартную мощность электродвигателя с условием
Р´э ≥ ´Рэ
Рэ = 2.2 кВт
Т.к. частота вращения nс = 1500 об/мин; число полюсов 4 и S% = 5,1, то
По табл. П2 с.65 [1] выбираем условное обозначение электродвигателя
4А132S5
1.2 Кинематический расчет привода
Определяем асинхронную частоту вращения.
nq = nc (1 – (S% / 100))
nq = 1500(1-(5.1 / 100)) = 1423
Определяем общее передаточное число привода.
U = nq /nб
U = 1423/160 = 8.9
U = Uз * Uр,
где Uз – передаточное число зубчатой передачи; Uр - передаточное число ременной передачи По табл. П1 с.64 [1] выбираем передаточное число для зубчатой и ременной передач.
Uз = 3,5, а Uр = U/Uз = 8,9/3,5 = 2,5
Определяем частоты вращения валов зубчатого редуктора.
Ведущий вал n1 = nq / np
Ведомый вал n2 = n1 / Uз
n1 = 1423/2.5 = 569
n2 = 569/3.5 = 160
Определяем крутящие моменты на валах привода.
Ведомый вал Т2 = Тб
Т2 = 160
Ведущий вал Т1 = Т2 / Uз*ŋп*ŋз
Т1 = 160 / 3,5*0,99*0,96 = 160 / 3,34 = 50
Вал электродвигателя Тэ = Т1 / Up*ŋп*ŋз
Тэ = 50 / 3,5*0,99*0,96 = 50 / 2,4 = 21
2. Расчет ременной передачи
2.1 Определяем максимальный расчетный момент на ведущем шкиве
Трmax = Тэ [0,5(кд+1)+креж], где
креж – коэффициент режима работы, определяется по табл. П6 с.67 [1], в зависимости от числа смен.
кд = 2; креж = 1
Тmax = 21[0,5(2+1)+1] = 53
По табл. П5 с.66 [1]
Так как 15нм < Трmax < 60нм
lo = 1700мм
m = 0,105 кг/м
a = 90 min
По табл. П7 с.68 [1] назначаем диаметр ведущего шкива
dз = 140 мм
Диаметр ведомого шкива
d4 = d3 * Uз * 0,985
d4 = 140 * 2,5 * 0,985 = 345мм
Согласовываем d4 с R 40 по табл. П4 с.66 [1]
d4 = 355 мм
Определяем минимальное межцентровое расстояние
amin ≈ d4
amin ≈ 355мм
Определяем необходимую минимальную длину ремня
lmin = 2 amin + [π(dз + d4)/2] + [(d4 – dз)²/4 amin]
lmin = 2 *355 + [3.14(495/2] + [(355 – 140)²/4 * 355] = 1521
Выбираем стандартный ремень по табл. П5 с.66 [1]
l > lmin
l = 1600 мм
Уточняем межцентровое расстояние
а = amin + 0,5(l - lmin)
a = 355 + 0.5(1600 – 1521) = 394 мм
Определяем угол обхвата ведущего шкива
αз = π – [d4 – dз / a]
αз = 3.14 – [355 – 140 / 394] = 2.6 рад
Определяем линейную скорость ремня
V = π * d4 * n1 / 60 * 1000
V = 3.14 * 355 1423 / 60000 = 10.4 м/с
Определяем число пробега ремня
γ = 10³*V / l
γ = 10³ * 10.4 / 1600 = 6.5
Определяем требуемое число ремней
z ≥ Pэ [a5(kд + 1) + kреж] / Ро*Ср*Сl*Cα*Cz , где
Ро – мощность передаваемая одним ремнем, определяется по табл. П7 с.68 [1] в зависимости от диаметра ведущего шкива dз и линейной скорости V;
Ср. – коэффициент нагрузки определяется по табл. П6 с.67 [1] в зависимости от кmax;
Сl – коэффициент учитывающий длину ремня
Сl = 0,3 * (l/lo) + 0.7
Cα – коэффициент учитывающий угол обхвата ведущего шкива
Cα = 1 – 0,15 (π – αз)
Cz – коэффициент учитывающий число ремней с.8 [1]
Ро = 291
Ср = 0,75
Сl = 0,3*(1600/1700) + 0,7 = 1
Cα = 0,95
z ≥ 1.8[0.5(2 + 1) + 1] / 2.01*0.9*1*0.95 = 3
z ≥ 3
z = 3
Cz = 0.95
Определяем полную, передаваемую окружную силу
Ft = 2000*Tэ / d3
Ft = 2000*21 / 140 = 300 Н
Определяем силу предварительного натяжения
Fo = 0.78*Ft / z*Cα*Cp + qm*V², где
qm – масса единицы ремня, определяется по табл. П5 с.66 [1].
Т.к. V < 10, то qm*V² не учитывается.
Fo = 0.78*300 / 3*095*0.75 = 106 Н
Сила давления на валы
Fв = 2 Fo z sin (α3/2)
Fв = 2*106*3*sin (75) = 614 H
3. Расчет зубчатой передачи
3.1 Выбор материалов и допускаемых напряжений
Тб = 160 - улучшение
По табл. П 13 с.72 [1], выбираем для изготовления зубчатых колес сталь.
Сталь 40Х
Назначаем твердость по табл. П 13 с.72 [1]
HB=340
Допускаемые контактные напряжения шестерни и колеса.
σн1 = (σнlimb1*kнσ1) / Sн
σн2 = (σнlimb2*kнσ1) / Sн, где
Sн – коэффициент запаса, определяется по табл. П 13 с.72 [1]
Sн = 1.1
σнlimb – базовый предел контактной выносливости, определяется по табл. П13 с.72 [1]
σнlimb1(2) = 750мпа
σн1(2) = 612мпа
kнσ1(2) = 6√Nно1(2) / Nнe1(2), где
Nно – базовое число циклов, определяется по рис. 4.1а с.13 [1] в зависимости от твердости.
Nнe – практическое число циклов
Nнe1(2) = 60*n1(2)*10³*L(k³max*lmax + k³1*l1 + k³2*l2 + k³3*l3), где
L – срок службы редуктора
lmax = 0,005
k1 = 1; k2 = 0.6; k3 = 0.4
l1 = 0.4; l2 = 0.2; l3 = 0.3
Nнe1 = 60*569*10³*20*(2³0.005 + 1³*0.4 + 0.6³*0.2 + 0.4³*0.3) = 340000000
ki = Ti / Tн
Т.к. Nнe1(2) > Nно1(2) , то kнσ1(2) = 1
Определяем допускаемое расчетное контактное напряжение.
[σ]н = (σн1 + σн2)*0,45
[σ]н = (682+682)*0,45 = 584
Определяем допускаемые напряжения изгиба
[σ]f1 = σf*limb1*kfl1 / Sf [σ]f1 = 682*1 / 1.55 = 350
[σ]f2 = σf*limb2*kfl2 / Sf [σ]f2 = 682*1 / 1.55 = 359
3.2 Проектный расчет зубчатых передач
Определяем межцентровое расстояние из условия контактной прочности рабочей поверхности зубъев.
aw ≥ 430*(Uз + 1) 3√ T2*kнβ / [σ]²н*ψва*U²з,где
kнβ – коэффициент неравномерного распределения нагрузки по ширине зубьев;
kнβ = 1,05÷1,15;
ψва – коэффициент ширины зубчатого колеса;
ψва = 0,1÷0,6
aw ≥ 430*(3,5 + 1) 3√ 160*1,15 / (682)²*0,5*3,5² = 112
Значение aw выбираем из ряда:
90; 100; 112; 125; 140; 160; 180.
аw = 112мм
Определяем модуль зацепления
m = 2мм так как улучшение по ряду на с.16
Определяем суммарное число зубьев шестерни и колеса.
zΣ = 2*aw*cosβ’ / m, где
cosβ’ = 0,96÷0,98
cosβ’ = 0,98
zΣ = 2*112*0,98 / 2 = 110
Уточняем угол наклона зубьев.
cosβ = m* zΣ / 2aw
cosβ = 2*110 / 2*112= 0,982
β° = arcos(cosβ)
β° = 10.9°
Находим число зубьев шестерни:
z1 = zΣ / (Uз + 1)
z1 = 110/ (3,5 + 1) = 24.45
Полученное число округляем до ближайшего целого z1≈25
z2 = zΣ - z1
z2 = 110 – 25 = 85
Уточняем передаточное число:
U’з = z2 / z1
U’з = 85 / 25 = 3,4
Погрешность составляет:
δ = (Uз - U’з) / Uз * 100%
δ = (3.5 – 3.5) / 3.5 *100% = 2.86%
Определяем начальные диаметры зубчатых колес:
dw1 = m*z1 / cosβ
dw1 = 2*25/0.98 = 50
dw2 = m* z2 / cosβ
dw2 = 2*85/0.98 =174
Проверка:
аw = (dw1 + dw2) / 2
аw = (50 + 174) / 2 = 112 (верно)
Определяем диаметры окружностей выступов колес:
da1 = dw1 + 2m(1 + x1)
da1 = 50 + 2*2*(1) = 54
da2 = dw2 + 2m(1 + x2)
da2 = 174 + 2*2*(1) = 178
Определяем диаметры окружностей впадин колес:
df1 = dw1 - m(2.5 - 2x1)
df1 = 50 – 2*(2.5) = 45
df2 = dw2 - m(2.5 - 2x2)
df1 = 178 – 2*(2.5) = 173
Определяем ширину зубчатых колес:
B1 ≥ ψbа*аw
B1 ≥ 0.5*112 = 56
B2=B1+(4-6)=56+4=60
Определим линейную скорость колес:
V = (π* dw1*n1) / (60*1000)
V = (3.14*50*569 / 60000 = 1.5 [м/с]
По табл. П 14 с. 73 [1], назначаем степень точности изготовления колес – 8
Определяем силы в зацеплении
окружные силы
Ft = - Ft = (2000*T1) / dw1
Ft = - Ft = (2000*50) / 50 = 2000 [H]
радиальные силы
Fr = - Fr1 = Ft*tgα / cosβ
Fr = - Fr1 = 2000*0.363 / 0.98 = 739 [H]
Fr1 = 6330.8 [H]
осевые силы
Fa1 = - Fa2 = Ft*tgβ
Fa1 = - Fa2 = 2000*tg11° = 383 [H]
3.3 Проверочные расчеты зубчатой передачи
3.3.1 Определяем фактических контактных напряжений
σн = zм*zн*zε*√[(2000*T1*kнβ*kнv) / d²w2*b] * [(U’з + 1) / U’з] ≤ [σ]н
где zм – коэффициент, учитывающий механические свойства материала колес. Для стали zм = 275;
zн – коэффициент, учитывающий форму сопрягаемых эвольвент
zн = 1,76*√cosβ = 1.76
zε – коэффициент, учитывающий перекрытие
zε = √ 1 / εα, где εα – коэффициент торцевого перекрытия
εα = [1.88 – 3.2(1-x1/z1 + 1+x2/z2]*cosβ
εα = [1.88 – 3.2 (1/25 + 1/110]*0.98 = 1.73
zε = √1/1.73 = √0.76
kнβ – коэффициент неравномерного распределения нагрузки по ширине зуба, определяется по рис. 4.2а с.21 [1], в зависимости от коэффициента ширины колеса.
kнβ = 1,2
kнv – динамический коэффициент, определяется по табл. П16 с. 74 [1]
kнv = 1,01
σн = 275*1,76*0,76*√[(2000*50*1.09*1.01) / 50²*60] * [(3.4 + 1) / 3.4] = 371.3 < [σ]н
3.3.2 Определяем фактических напряжений изгиба
Определяем коэффициент формы зубьев шестерни и колес.
YF1 YF2 из рис.4.3 с.21 [1], в зависимости от эквивалентного числа зубьев колес.
zv1 = z1 / cos³β = 25
zv2 = z2 / cos³β = 85; => YF1 = 3.98 YF2 = 3.72
Фактическое напряжение изгиба для более слабого колеса
σF2 = Ft*YF2*kFβ*kFV*Yβ / b*m ≤ [σ]F2 = 483.9, где
kFβ – коэффициент неравномерности распределения нагрузки по ширине зуба, определяется по рис. 4а с.20 [1]
kFβ = 1,15
kFV – определяется по табл. П 16 с. 74 [1]
kFV = 1, 1
Yβ – коэффициент наклона контактной линии
Yβ = 1 – (βº / 140) = 1 – (11 / 140) = 0.92
[σ]F1 = (2000*3,98*1,15*1, 1*0,92) / 56*2 = 100
[σ]F2 = 88
4. Конструирование основных деталей редуктора
4.1 Конструирование валов
4.1.1 Ведущий вал
Определяем диаметр хвостового вала из условия кручения.
db1 ≥ 10 3√ T1 / 0.2*[τ], где
τ – допускаемое напряжение кручения
[τ] = 18÷28
db1 = 22мм
Назначаем диаметр уплотнения
dy1 > db1
dy1 = 25
По табл. П 41 с. 94 [1], выбираем манжету резиновую армированную
D = 42; h = 10
Назначаем диаметр под подшипник
dп1 > dy1
По табл. П 20 с. 79 [1] выбираем шариковый радиально упорный подшипник легкой серии (по внутреннему диаметру)
dп1 = 30; D = 62; B = 16;
Назначаем диаметры буртов
dб1 = dп1 + 2r
dб1 = 40
4.1.2 Ведомый вал
По табл. П 17 с. 75 [1], выбираем соединительную муфту МУВП, в зависимости от крутящего момента на ведомом валу.
Т2 = 160
Тм ≥ Т2
Тм = 240
Назначаем диаметр хвостовика вала, db2 равен внутреннему диаметру муфты
db2 = 32мм
По табл. П 41 с. 91 [1], выбираем уплотнения, таким образом, чтобы:
d > db2
d = 52; D = 72; h = 12
Назначаем манжету резиновую армированную
d=35 D = 58 h = 10
Назначаем диаметр под подшипник
dп2 > dy2
dy2 = 35 D = 58 h = 10
dп2 = 40;
По табл. П 20 с. 79 [1], выбираем радиально упорный шарикоподшипник:
D = 80; B = 18
Определяем диаметр вала под зубчатым колесом
dk = dп2 + 2*r
dk = 40 + 2*3 = 46
dб2 = dk + 2÷4
dб2 = 50
4.2 Расчет шпоночных соединений
4.2.1 Шпонка ведущего вала
По табл. П 18 с. 77 [1], выбираем габариты шпонки, в зависимости от диаметра хвостовика вала db1
Т.к. db1 = 22 => b = 8; h = 7; t1 = 4; t2 = 3.3
Определяем рабочую длину шпонки из условия прочности на смятие:
lp1 ≥ (2000*T1) / db1*[σ]см*(h – t1), где
[σ]см – допускаемое напряжение смятия
[σ]см = 80÷160 [Н/мм²]
lp1 ≥ 2000*50 / 22*130*(7 – 4) = 11.65
Требуемая длина шпонки
l'ш1 ≥ lp1 + b
l'ш1 ≥ 11.65+8
l'ш1 =19.65
По табл. П 18 с. 77 [1], выбираем:
lш ≥ l'ш1
lш = 20
4.2.2 Расчет шпонки ведомого вал
По табл. П 18 с. 77 [1], выбираем габариты шпонки, в зависимости от диаметра вала под ведущим колесом dk
dk = 46 => b = 14; h = 9; t1 = 5.5; t2 = 3.8
Определяем рабочую длину шпонки:
lp2 ≥ (2000*T2) / dк*[σ]см*(h – t1)
lp2 ≥ 2000*160 / 46*130*(9 – 5.5)
lp2 ≥ 17.64
Требуемая длина шпонки
l'ш2 ≥ lp2 + b
l'ш2 ≥ 17.64+14
l'ш2 ≥ 31.64
По табл. П 18 с. 77 [1], выбираем:
lш2 ≥ l'ш2
lш2 = 32
Шпонка под муфту
db2 = 32мм
b = 10; h = 8; t1 = 5; t2 = 3.3
lp2 = 25.65
lш2 =25.65 +10 =35.65
lш2 = 36
Выбор муфты
Т2 = 160 выбираем размеры муфты по табл. П17 СТР 75:
d = 32; D = 140; D1 = 130; D0 = 100; D3 = 27; d1 = 70; L = 165; L1 = 80; L2 =66; l1 = 32; l2 = 35; l3 = 20; l = 16; b = 5; dп =14; dp = М10;
4.3 Конструирование зубчатого колеса
Высота головки зуба ha = m hf = 1.25 m ; m = 2;
Диаметры вершин зубьев
da1(2) = d1(2) +2m(1+x); da1 = 54; da2= 178;
df = d1(2) – 2m(1.25-x); df1 = 45; df2 = 170;
lст1(2) = (1:1.5) dk1(2); lст1 = 69; lст2 = 54;
4.4 материалы и выбор типа смазывания
В среднескоростных передачах, не имеющих герметичных картеров, можно применять пластичное внутришарнирное или капельное смазывание. Пластичное внутришарнирное смазывание осуществляют периодическим, через 120...180 ч, погружением цепи в масло, нагретое до температуры, обеспечивающей его разжижение. Пластичный смазочный материал применим при скорости цепи до 4 м/с, а капельное смазывание - до 6 м/с. В передачах с цепями крупных шагов предельные скорости для каждого способа смазывания несколько ниже. При периодической работе и низких скоростях движения цепи допустимо периодическое смазывание с помощью ручной масленки (через каждые 6...8 ч). Масло подается на нижнюю ветвь у входа в зацепление со звездочкой. При капельном ручном, а также струйном смазывании от насоса необходимо обеспечивать распределение смазочного материала по всей ширине цепи и попадание его между пластинами для смазывания шарниров. Подводить смазку предпочтительно на внутреннюю поверхность цепи, Откуда под действием центробежной силы она лучше подается к шарнирам. В зависимости от нагрузки для смазывания цепных передач применяют масла индустриальные И-Г-А-46...И-Г-А-68, а при малых нагрузках Н-Г-А-32.
Для ответственных силовых передач следует по возможности применять непрерывное картерноё смазывание видов:
а) окунанием цепи в масляную ванну, причем погружение цепи в масло в самой глубокой точке не должно превышать ширины пластины; применяют до скорости цепи 10 м/с во избежание недопустимого взбалтывания масла;
б) разбрызгивание с помощью специальных разбрызгивающих выступов или колец и отражающих щитков, по которым масло стекает на цепь, применяют при скорости 6...12 м/с в случаях, когда уровень масла в ванне не может быть поднят до расположения цепи;
в) циркуляционное струйное смазывание от насоса, наиболее совершенный способ, применяют для мощных быстроходных передач;
г) циркуляционное центробежное с подачей масла через каналы в валах и звездочках непосредственно на цепь; применяют при стесненных габаритах передачи, например, в транспортных машинах;
д) циркуляционное смазывание распылением капель масла в струе воздуха под давлением; применяют при скорости более 12 м/с.
В данном случае мы выбрали непрерывное картерное смазывание с непосредственным окунанием в масляную ванну
МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ (МИИТ) ИНСТИТУТ ТРАНСПОРТНОЙ ТЕХНИКИ И ОРГАНИЗАЦИИ ПРОИЗВОДСТВА Кафедра деталей машин Курсовая работа по дисциплине Прикладная механ
Проектирование привода коробки скоростей металлорежущего станка
Проектирование привода ленточного конвейера
Проектирование привода ленточного конвейера
Проектирование привода ленточного конвейера
Проектирование приводной станции к кормораздатчику
Проектирование приспособления для сверления отверстий в детали с конструкторским кодом 406542
Проектирование птичника на 122000 голов
Проектирование работ по техническому обслуживанию и ремонту подъемно–транспортного оборудования предприятия
Проектирование рабочего места
Проектирование редуктора
Copyright (c) 2024 Stud-Baza.ru Рефераты, контрольные, курсовые, дипломные работы.