курсовые,контрольные,дипломы,рефераты
Министерство образования Российской Федерации
Сибирская государственная автомобильно-дорожная академия
(СибАДИ)
Курсовая работа
Расчет объемного гидропривода бульдозера
Вариант № 1.1
Выполнил: студент
гр. АП-03Т1 Вдовин
Проверил: Мурсеев И. М.
Омск-2007
Содержание
Введение
1. Исходные данные для расчета гидропривода возвратно-поступательного движения
2. Описание принципиальной гидравлической схемы
3. Расчет объемного гидропривода
3.1 Определение мощности гидропривода и насоса
3.2 Выбор насоса
3.3 Определение внутреннего диаметра гидролиний, скоростей движения жидкости
3.4 Выбор гидроаппаратуры, кондиционеров рабочей жидкости
3.5 Расчет потерь давления в гидролиниях
3.6 Расчет гидроцилиндров
3.7 Тепловой расчет гидропривода
Заключение
Список литературы
Введение
Под объемным гидроприводом понимают совокупность устройств, в число которых входит один или несколько объемных гидродвигателей, предназначенных для приведения в движение механизмов и машин с помощью рабочей жидкости под давлением.
Современный уровень развития строительного и дорожного машиностроения характеризуется широким применением объемного гидравлического привода. Широкое применение гидравлического привода объясняется целым рядом его преимуществ по сравнению с другими типами привода:
1. Высокая компактность при небольших массе и габаритных размерах гидрооборудования по сравнению с массой и габаритными размерами механических приводных устройств той же мощности, что объясняется отсутствием или применением в меньшем количестве таких элементов, как валы, шестеренные и цепные редукторы, муфты, тормоза, канаты и др.
2. Возможность реализации больших передаточных чисел. В объемном гидроприводе с использованием высокомоментных гидромоторов передаточное число может достигать 2000.
3. Небольшая инерционность, обеспечивающая хорошие динамические свойства привода. Это позволяет уменьшить продолжительность рабочего цикла и повысить производительность машины, так как включение и реверсирование рабочих органов осуществляются за доли секунды.
4. Бесступенчатое регулирование скорости движения, позволяющее повысить коэффициент использования приводного двигателя, упростить автоматизацию привода и улучшить условия работы машиниста.
5. Удобство и простота управления, которые обусловливают небольшую затрату энергии машинистом и создают условия для автоматизации не только отдельных операций, но и всего технологического процесса, выполняемого машиной.
6. Независимое расположение сборочных единиц привода, позволяющее наиболее целесообразно разместить их на машине. Насос обычно устанавливают у приводного двигателя, гидродвигатели – непосредственно у исполнительных механизмов, элементы управления – у пульта машиниста, исполнительные гидроаппараты – в наиболее удобном по условиям компоновки месте.
7. Надежное предохранение от перегрузок приводного двигателя, системы привода, металлоконструкций и рабочих органов благодаря установке предохранительных и переливных гидроклапанов.
8. Простота взаимного преобразования вращательного и поступательного движений в системах насос – гидромотор и насос – гидроцилиндр.
9. Применение унифицированных сборочных единиц (насосов, гидромоторов, гидроцилиндров, гидроклапанов, гидрораспределителей, фильтров, соединений трубопроводов и др.), позволяющее снизить себестоимость привода, облегчить его эксплуатацию и ремонт, а также упростить и сократить процесс конструирования машин.
Большинство СДМ – бульдозеры и рыхлители, фронтальные погрузчики и лесопогрузчики, скреперы, автогрейдеры и грейдер-элеваторы, одноковшовые универсальные и многоковшовые траншейные экскаваторы, самоходные краны, дорожные катки, бетоноукладчики, асфальтоукладчики – имеют гидравлический привод рабочих органов.
1. Исходные данные для расчета гидропривода возвратно-поступательного движения
Номинальное давление в гидросистеме рном, МПа |
6,3 |
Усилие на штоке толкающем F, кН | 100 |
Скорость перемещения штока V, м/с | 0,3 |
Длина гидролинии от бака к насосу (всасывающей) lвс, м |
0,1 |
Длина гидролинии от насоса к распределителю (напорной) lнап, м |
3 |
Длина гидролинии от распределителя к ГЦ (исполнительной) lисп, м |
3 |
Длина гидролинии от распределителя к баку (сливной) lсл, м |
2 |
Угольник сверленый, шт | 2 |
Угольник с поворотом 900, шт |
5 |
Штуцер присоединительный, шт | 4 |
Муфта разъемная, шт | 2 |
Колено плавное с поворотом 900, шт |
- |
Максимальная температура рабочей жидкости tж, 0С |
+70 |
Температура окружающей среды tв, 0С |
–30…+30 |
2. Описание принципиальной гидравлической схемы
На рисунке 1 изображена принципиальная гидравлическая схема подъема (опускания) отвала бульдозера.
Рисунок 1 Принципиальная гидравлическая схема подъема (опускания) отвала бульдозера
В схему входят: Б – гидробак, Т –термометр, Н – насос, Ф – фильтр, КП1 и КП2 – гидроклапаны предохранительные, КО1 и КО2 – гидроклапан обратный, МН1 и МН2 - манометры , Ц1 и Ц2 – гидроцилиндр, Р – гидрораспределитель, ДР – гидродроссель .
Принцип действия гидропривода заключается в следующем.
Из гидробака Б рабочая жидкость подается насосом Н в напорную секцию распределителя Р. Четырехпозиционный золотник направляет поток жидкости в гидроцилиндры Ц1 и Ц2 подъема и опускания отвала бульдозера.
В штоковой гидролинии гидроцилиндров подъема и опускания отвала бульдозера установлен дроссель ДР с обратным клапаном КО1, который обеспечивает сплошность потока жидкости и замедление скорости опускания отвала.
При перемещении золотника распределителя вниз по схеме начинают заполняться штоковые полости гидроцилиндров Ц1и Ц2 .
При перемещении золотника распределителя вверх по схеме начинают заполняться поршневые полости гидроцилиндров Ц1и Ц2 .
Таким образом осуществляется подъем и опускание отвала бульдозера.
Температура рабочей жидкости измеряется датчиком температуры Т, а давления в сливной и напорной магистралях - манометрами МН1 и МН2. Очистка рабочей жидкости от механических примесей производится фильтром Ф с переливным клапаном КП2.
3. Расчет объемного гидропривода
3.1 Определение мощности гидропривода и насоса
Полезную мощность гидродвигателя возвратно-поступательного действия (гидроцилиндра) Nгдв , кВт, определяют по формуле:
Nгдв=F ·V, (1)
где F – усилие на штоке, кН;
V – скорость движения штока, м/с.
Nгдв =100·0,3=30 кВт
Полезную мощность насоса Nнп , кВт, определяют по формуле:
Nнп= kзу ·kзс ·Nгдв , (2)
где kзу – коэффициент запаса по усилию, учитывающий гидравлические потери давления в местных сопротивлениях и по длине гидролиний, а также потери мощности на преодоление инерционных сил, сил механического трения в подвижных сопротивлениях (1,1…1,2);
kзс – коэффициент запаса по скорости, учитывающий утечки рабочей жидкости, уменьшение подачи насоса с увеличением давления в гидросистеме (1,1…1,3).
Nнп=1,1·1,1·30=36,3 кВт
3.2 Выбор насоса
Подача насоса Qн , дм3/с, определяют по формуле:
Qн = Nнп/ рном , (3)
где рном – номинальное давление, МПа.
Qн = 36,3/6,3=5,76 дм3/с
Рабочий объем насоса qн , дм3/об, определяют по формуле:
qн = Nнп/( рном·nн) , (4)
где nн – частота вращения вала насоса, с-1 (nн = 1500 об/мин = 25 с-1).
qн =36,3/(6,3·25)=0,23 дм3/об
Выбираем насос НШ-250-3 по подходящим параметрам рном и qн .
По технической характеристике выбранного насоса (Таблица 1) производим уточнение действительной подачи насоса Qнд , дм3/с, по формуле:
Qнд = qнд ·nнд ·ŋоб, (5)
где qнд – действительный рабочий объем насоса, дм3/об;
nнд – действительная частота вращения насоса, с-1;
ŋоб – объемный КПД насоса.
Qнд = 0,25·25·0,94 = 5,88 дм3/c
Таблица 1
Параметр | Значение |
Рабочий объем, см3/об |
250 |
Давление на выходе, МПа: номинальное максимальное |
16 20 |
Давление на входе в насос, МПа: минимальное максимальное |
0,08 0,15 |
Частота вращения вала, об/мин: минимальная номинальная максимальная |
960 1500 1920 |
Номинальная потребляемая мощность, кВт | 106,2 |
КПД насоса | 0,85 |
Объемный КПД | 0,94 |
Масса, кг | 45,6 |
3.3 Определение внутреннего диаметра гидролиний, скоростей движения жидкости
Зададимся скоростями движения жидкости /4/.
Для всасывающей гидролинии примем Vвс = 1,2 м/с.
Для сливной гидролинии примем Vсл = 2 м/с.
Для напорной гидролинии примем Vнап = 6,2 м/с.
Расчетное значение диаметра гидролинии dp , м, определяется по формуле:
(6)
Для всасывающей гидролинии:
По расчетному значению внутреннего диаметра гидролинии dp вс = 79мм производим выбор трубопровода по ГОСТ 8734-75, при этом действительное значение диаметра всасывающего трубопровода dвс= 80 мм.
Значение толщины стенки трубопровода примем 4 мм.
Для сливной гидролинии:
По расчетному значению внутреннего диаметра гидролинии dp сл = 61 мм производим выбор трубопровода по ГОСТ 8734-75, при этом действительное значение диаметра сливного трубопровода dсл=64 мм.
Значение толщины стенки трубопровода примем 4 мм.
Для напорной гидролинии:
По расчетному значению внутреннего диаметра гидролинии dp нап = 35 мм производим выбор трубопровода по ГОСТ 8734-75, при этом действительное значение диаметра напорного трубопровода dнап=40 мм.
Значение толщины стенки трубопровода примем 4 мм.
Действительная скорость движения жидкости Vжд , м/с, определяется по формуле:
(7)
Для всасывающей гидролинии:
Для сливной гидролинии:
Для напорной гидролинии:
3.4 Выбор гидроаппаратуры, кондиционеров рабочей жидкости
Техническая характеристика секционного гидрораспределителя Р-40.160-20-02-30.1, /6/:
Таблица 2
Параметр | Значение |
Номинальное давление, МПа | 16 |
Расход рабочей жидкости, дм3/мин |
360 |
Максимальное усилие для перемещения золотника из нейтральной позиции в рабочие при номинальном давлении и расходе, Н | 500 |
Количество всех секций, собираемых в одном блоке, не более | 6 |
Давление в сливной гидролинии, МПа, не более | 0,8 |
Потери давления при рабочей позиции золотника, МПа, не более | 0,65 |
Утечки рабочей жидкости через обратный клапан напорной секции при номинальном давлении, см3/мин, не более |
10 |
Основные параметры обратного клапана типа 61500, /6/:
Таблица 3
Параметр | Значение |
Условный проход, мм | 40 |
Номинальный расход, л/мин | 360 |
Масса, кг | 3,47 |
Основные параметры предохранительного клапана прямого действия типа К31602, /6/:
Таблица 4
Параметр | Значение |
Условный проход, мм | 40 |
Максимальный расход, дм3/мин | 420 |
Диапазон регулирования давления, МПа | 8-20 |
Масса, кг | 4,2 |
Основные параметры дросселей с обратными клапанами типа 63100, /6/:
Таблица 5
Параметр | Значение |
Условный проход, мм | 40 |
Номинальный расход, дм3/мин | 360 |
Максимальное давление, МПа | 35 |
Масса, кг | 4,0 |
Техническая характеристика фильтра типа 1.1.64-25, /6/:
Таблица 6
Параметр | Значение |
Условный проход, мм | 64 |
Номинальный расход через фильтр, дм3/мин | 360 |
Номинальная тонкость фильтрации, мкм | 25 |
Номинальное давление, МПа | 0,63 |
Номинальный перепад давления при номинальном расходе, МПа, не более | 0,11 |
Перепад давления на фильтроэлементе при открывании перепускного клапана, МПа | 0,3 |
Ресурс работы фильтра, ч | 300 |
Масса сухого фильтра, кг | 20 |
В качестве рабочей жидкости примем ВМГЗ (ТУ 101479-74), /5/:
Таблица 7
Параметр | Значение |
Плотность при 20°С, кг/м3 | 855 |
Вязкость при 50°С, сСт | 10 |
Температура застывания, °С | -60 |
Температура вспышки, °С | 135 |
3.5 Расчет потерь давления в гидролиниях
Для всасывающей гидролинии:
Определяем число Рейнольдса Re по формуле:
(8)
где Vжд – действительная скорость движения жидкости в гидролинии, м/с;
d – внутренний диаметр гидролинии, м;
ν – кинематический коэффициент вязкости рабочей жидкости, м2/с.
Так как полученное число Рейнольдса Re = 9360>2320, то движение жидкости во всасывающей гидролинии турбулентное.
Определяем коэффициент путевых потерь λ (коэффициент Дарси) для турбулентного режима по формуле:
, (10)
Потери давления по длине гидролинии ∆pl , МПа, (путевые) определяются по формуле:
(11)
где l – длина гидролинии, м (для всасывающей l=lвс , для напорной l=lнап+lисп , для сливной l=lсл+lисп );
ρ – плотность рабочей жидкости, кг/м3.
Потери давления в местном сопротивлении ∆pм , МПа, определяются по формуле:
(12)
где ξ – коэффициент местного сопротивления (для разъемной муфты ξ=1).
Потери давления в гидролинии ∆p, МПа, определяются по формуле:
∆p=∆pl + ∆pм , (13)
∆pвс =0,000023+0,0012=0,001223 МПа
Для напорной гидролинии:
Определяем число Рейнольдса в напорной гидролинии по формуле (8):
Так как полученное число Рейнольдса Re = 18720>2320, то движение жидкости в напорной гидролинии турбулентное.
Определяем коэффициент путевых потерь для турбулентного режима по формуле (10):
Определяем потери давления по длине гидролинии ∆pl , МПа, (путевые) по формуле (11):
Определяем потери давления в местном сопротивлении ∆pм , МПа, по формуле (12), для угольника сверленного коэффициент местного сопротивления ξ=2:
Определяем потери давления в напорной гидролинии ∆p , МПа, по формуле (13):
∆pнап=0,15+0,037=0,187 МПа
Для сливной гидролинии:
Определяем число Рейнольдса в сливной гидролинии по формуле (8):
Так как полученное число Рейнольдса Re = 11712>2320, то движение жидкости в сливной гидролинии турбулентное.
Определяем коэффициент путевых потерь для турбулентного режима по формуле (10):
Определяем потери давления по длине гидролинии ∆pl , МПа, (путевые) по формуле (11):
Определяем потери давления в местном сопротивлении ∆pм , МПа, по формуле (12), для штуцера присоединительного коэффициент местного сопротивления ξ=0,1:
Определяем потери давления в сливной гидролинии ∆p, МПа, по формуле (13):
∆pсл=0,0034+0,00057=0,00397 МПа
3.6 Расчет гидроцилиндров
Для расчета гидроцилиндра воспользуемся расчетной схемой
Примем коэффициент
Определяем диаметр поршня D1, м, из условия обеспечения заданного усилия F по формуле:
(14)
где F – усилие на штоке, Н.
Определяем диаметр штока d1, м, по формуле:
(15)
Определяем диаметр поршня D2, м, из условия обеспечения заданной скорости движения штока V по формуле:
(16)
где V – скорость движения штока, м/с.
Определяем диаметр штока d2, м, по формуле:
(17)
Находим среднее значение диаметра поршня D, м, по формуле:
(18)
Находим среднее значение диаметра штока d, м, по формуле:
(19)
Примем гидроцилиндр 1.10.0.У1-160×70×400 со следующими характеристиками:
Таблица 8
Параметр | Значение |
Диаметр поршня D, мм | 160 |
Диаметр штока d, мм | 70 |
Ход штока L, мм | 400 |
По выбранным стандартным значениям диаметров поршня D и штока d определяем действительное усилие Fд , Н, развиваемое гидроцилиндром, по формуле:
(20)
где р2 – давление в штоковой полости, Па (р2 = ∆ рсл );
р1 – давление в поршневой полости, Па, определяется по формуле:
р1= рном - ∆рнап, (21)
р1= 6,3·106 – 0,187·106 = 6,113·106 Па,
По выбранным стандартным значениям диаметров поршня D и штока d определяем действительную скорость Vд , м/с, по формуле:
(22)
где Sэф – эффективная площадь поршня, м2, определяется по формуле:
(23)
Сравниваем действительные и заданные параметры по относительным величинам:
(24)
где V – заданная скорость штока, м/с.
Отклонение действительного значения скорости от заданного превышает ±10%.
(25)
Отклонение действительного значения усилия от заданного превышает ±10%.
3.7 Тепловой расчет гидропривода
Определяем гидравлический КПД ηг гидропривода по формуле:
(26)
Определяем гидромеханический КПД ηгмн насоса по формуле:
(27)
где ŋн – полный КПД насоса;
ŋобн – объемный КПД насоса.
Определяем гидромеханический КПД ηгм привода по формуле:
ŋгм = ŋгмн· ŋгмгц· ŋг, (28)
где ŋгмгц – гидромеханический КПД гидроцилиндра.
ŋгм = 0,9·0,95·0,97 = 0,83
Определяем количество выделяемого тепла Qвыд , Вт, по формуле:
(29)
где ŋгм – гидромеханический КПД гидропривода;
kв – коэффициент продолжительности работы гидропривода (kв = 0,5);
kд – коэффициент использования номинального давления (kд = 0,7).
Определяем количество тепла Qотв, Вт, отводимого в единицу времени от поверхностей металлических трубопроводов, гидробака при установившейся температуре жидкости, по формуле:
(30)
где kтп – коэффициент теплопередачи от рабочей жидкости в окружающий воздух, Вт/м2град (kтп = 12 Вт/м2град);
tж – установившаяся температура рабочей жидкости, °С;
t0 – температура окружающего воздуха, °С;
Sб – площадь поверхности гидробака, м2;
–суммарная площадь наружной теплоотводящей поверхности трубопроводов, м2, которая определяется по формуле:
(31)
где Sнап , Sвс , Sсл – площади наружной поверхности трубопроводов напорного, всасывающего, сливного соответственно, м2, которые находятся по формуле:
(32)
где di – внутренний диаметр i-го трубопровода, м;
δi – толщина стенки i-го трубопровода, м;
li – длина i-го трубопровода, м.
Согласно уравнению теплового баланса Qвыд= Qотв, тогда:
Объем гидробака V, дм3 , определяется по формуле:
(33)
Минутная подача насоса Qнд = 352,8 дм3/мин.
Так как объем гидробака V<3Qнд (368<1058,4), то установки теплообменника не требуется.
Заключение
В курсовой работе был произведен расчет гидросистемы подъема (опускания) отвала бульдозера. Была выбрана гидроаппаратура, насос, гидроцилиндр и гидробак.
Отклонение действительного значения скорости от заданного превышает ±10% (20%). Отклонение действительного значения усилия от заданного превышает ±10% (-22,8%).
Список литературы
1. Расчет объемного гидропривода мобильных машин. Методические указания. /Сост. Н.С.Галдин.-Омск СибАДИ, 2003.-28с.
2. Задания на курсовую работу по гидроприводу дорожно-строительных машин. /Сост. Т.В.Алексеева. Н.С.Галдин.- Омск СибАДИ, 1984.-36с.
3. Приложения к заданиям на курсовую работу по гидроприводу дорожно-строительных машин. /Сост. Т.В.Алексеева. Н.С.Галдин.- Омск СибАДИ, 1984.-36с.
4. Основы машиностроительной гидравлики. /Т.В.Алексеева, Н.С.Галдин, В.С.Щербаков.- Омск: ОмПИ, 1986.-87с.
5. Элементы объемных гидроприводов строительных и дорожных машин и их выбор при курсовом и дипломном проектировании. Ч.1. Насосы и гидродвигатели: Методические указания /Сост.: Т.В.Алексеева, В.С.Башкиров, Н.С.Галдин; СибАДИ.- Омск, 1983. -30с.
6. Элементы объемных гидроприводов строительных и дорожных машин и их выбор при курсовом и дипломном проектировании. Ч.2. Гидроаппаратура: Методические указания /Сост.: Т.В.Алексеева, В.С.Башкиров, Н.С.Галдин; СибАДИ.- Омск, 1983.-26с.
Министерство образования Российской Федерации Сибирская государственная автомобильно-дорожная академия (СибАДИ) Кафедра «Подъемно-транспортные, тяговые машины и гидропривод» Курсовая работа Расчет объемного гид
Расчет однопредметной прерывно-поточной линии
Расчет одноступенчатого цилиндрического редуктора в приводе к мешалке
Расчет осветительной установки помещения коровника на 25 коров
Расчет основных параметров переменно-поточной линии для участка крупносерийного производства
Расчет основных характеристик газопровода на участке "Александровское-Раскино"
Расчет охладителя конденсата пара
Расчет параметров резания автогрейдера и определение параметров виброплиты
Расчет параметров технологической операции и конструирование инструмента
Расчет печи кипящего слоя
Расчет по комбикормам
Copyright (c) 2024 Stud-Baza.ru Рефераты, контрольные, курсовые, дипломные работы.