курсовые,контрольные,дипломы,рефераты
ФГОУ ВПО
Костромская Государственная Сельскохозяйственная Академия
Кафедра: "Безопасность жизнедеятельности и теплоэнергетики"
Расчетно-графическая работа
"Расчёт цикла паротурбинной установки"
Выполнил: студент 2 курса 5
группы факультета электрификации и
автоматизации сельского хозяйства
Принял: Шабалина Л. Н.
Кострома 2004
Введение
В современной теплоэнергетике широко используются паросиловые установки. Наибольшее распространение получили стационарные паротурбинные установки (ПТУ) тепловых электрических станций (ТЭС), на долю которых приходится более 80% вырабатываемой в стране электроэнергии.
Эти установки работают по циклу, предложенному шотландским инженером и физиком Ренкиным. В качестве рабочего тела в цикле используют водяной пар, который в различных элементах схемы ПТУ изменяет своё состояние вплоть до полной конденсации. В области близкой к сжижению свойства паров сильно отличаются от идеального газа, что исключает возможность применения уравнений и законов идеальных газов для паров. В этом случае процессы и циклы рассчитывают при помощи таблиц и диаграмм водяного пара.
Целью данной работы является более глубокое самостоятельное изучение студентами раздела "Цикла паровых установок".
Студенты должны овладеть навыком работы с hs – диаграммой и таблицей свойств водяного пара, научится определять по ним параметры пара различного состояния, уметь исследовать и анализировать циклы с помощью диаграмм.
Задание
Для паротурбинной установки (ПТУ), работающей по обратимому (теоретическому) циклу Ренкина, расчетом определить:
- параметры воды и пара в характерных точках цикла,
- количества тепла, подведенного в цикле,
- количество отведенного тепла в цикле
- работу, произведенную паром в турбине
- работу, затраченную на привод питательного насоса,
- работу, совершенную в цикле
- термический КПД цикла,
- теоретические удельные расходы пара и тепла на выработку электроэнергии.
Расчет выполнить при заданных параметрах острого пара в перед турбиной и одинаковом значении давления пара в конденсаторе Р2 для четырех случаев:
1) ПТУ работает на сухом насыщенном паре с начальным давление Р1;
2) ПТУ работает на перегретом паре с начальными параметрами Р1, t1
3) ПТУ работает на перегретом паре начальным давлением Р1 и t1, но при этом используется вторичный перегрев пара до температуры tn при давлении Рn.
4) ПТУ работает на перегретом паре с давлением P1 и t1, но при этом используется регенерация с одним отбором пара при давлении отбора Pотб.
Таблица 1 Исходные данные
Начальные параметры пара |
Параметры пара после вторичного перегрева |
Давление отбора Pотб, МПа |
Конечное давление пара Р2, кПа |
||
Давление Р1, МПа |
Температура t1, ºC |
Давление Pn, МПа |
Температура tn, ºC |
||
13 | 490 | 3.3 | 510 | 0.38 | 4.5 |
I. ПТУ работает на сухом насыщенном паре
Структурная схема ПТУ:
где
ПГ - парогенераторПТ - паровая турбинаЭГ - электрогенераторК - конденсаторПН - питательный насос
Процесс парообразование в PV, hS и TS диаграммах, выглядит следующим образом:
а) в Pv-диаграмме, б) в Ts-диаграмме, в) в hs-диаграмме;
1-2 — адиабатное расширение пара в турбине;
2-3 — изобарно-изотермическая конденсация влажного пара в конденсаторе (Р2 - const, t2 = const);
3 – 3’— адиабатное сжатие воды в насосе, т.к. вода практически не сжимается, этот процесс можно считать и изохорным (данный процесс показан только на Pv - диаграмме);
3(3’) -4 — изобарный процесс подогрева воды в экономайзере парогенератора (P1 = const);
4-1 — изобарно-изотермический процесс парообразования в парогенераторе (P1= const, t1 = const).
Таблица 2 Параметры в характерных точках цикла ПТУ при работе на сухом насыщенном паре
Точки цикла |
Р, МПа |
t, ° C |
h, кДж/кг |
ν, |
S, кДж/кг*К |
Х |
1 | 13 | 330.86 | 2662 | 0.012 | 5.39 | 1 |
2 | 0.0045 | 31 | 1645.7 | 19.43 | 5.39 | 0.624 |
3 | 0.0045 | 31 | 130 | 0.001 | 0.45 | 0 |
4 | 13 | 330.86 | 1532 | 0.0015 | 3.56 | 0 |
Параметры определяются по hs – диаграммам и таблицам свойств водяного пара
Удельная теплота, затраченная на образование 1 кг пара в турбине:
кДж/кг
Удельный отвод теплоты в конденсаторе:
кДж/кг
Удельная полезная работа, совершаемая паром в турбине, в адиабатном процессе расширения определяется величиной располагаемого теплового перепада Hp:
кДж/кг
Если пренебречь работой, затраченной на сжатие в насосе, будем считать, что полученная в цикле работа равна работе, совершаемой паром в турбине:
кДж/кг
Термический КПД цикла Ренкина :
Теоретический удельный расход пара d0 необходимый для выработки одного кВт*ч электроэнергии:
кг/( кВт*ч)
Теоретический удельный расход тепла q0, необходимый для выработки одного кВт*ч:
кДж/( кВт*ч)
II. ПТУ работает на перегретом паре
Структурная схема ПТУ
Где
ПГ - парогенератор
ПП - пароперегреватель
ПТ - паровая турбина
ЭГ - электрогенератор
К - конденсатор
ПН - питательный насос
Процесс парообразование в PV, hS и TS диаграммах, выглядит следующим образом:
Параметры в характерных точках цикла ПТУ при работе на перегретом паре
Таблица 3
Точки цикла |
Р, МПа |
t, ° C |
h, кДж/кг |
ν, |
S, кДж/кг*К |
Х |
1 | 13 | 490 | 3309 | 0.024 | 6.4 | 1 |
2 | 0.0045 | 31 | 1940.8 | 23.2 | 6.4 | 0.746 |
3 | 0.0045 | 31 | 130 | 0.001 | 0.45 | 0 |
4 | 13 | 330.86 | 1532 | 0.0015 | 3.56 | 0 |
5 | 13 | 330.86 | 2662 | 0.012 | 5.39 | 1 |
Параметры определяются по hs – диаграммам и таблицам свойств водяного пара
Удельная теплота, затраченная на образование 1 кг пара в турбине:
кДж/кг
Удельный отвод теплоты в конденсаторе:
кДж/кг
Удельная полезная работа, совершаемая паром в турбине, в адиабатном процессе расширения:
кДж/кг
Работf, совершаемая паром в турбине:
кДж/кг
Термический КПД цикла Ренкина:
Теоретический удельный расход пара d0 необходимый для выработки одного кВт*ч электроэнергии:
кг/( кВт*ч)
Теоретический удельный расход тепла q0, необходимый для выработки одного кВт*ч:
кДж/( кВт*ч)
III. ПТУ работает на перегретом паре с вторичным перегревом
В этом цикле используется многоступенчатую турбину, состоящую из цилиндра высокого давления и нескольких низкого давления. Пар из парового котла направляется сначала в цилиндр высокого давления, где расширяясь, совершает работу. После этого пар возвращается в паровой котел (промежуточный пароперегреватель), где осушается и нагревается до более высокой температуры (но уже при более низком и постоянном далении) и поступает в цилиндр низкого давления, где, продолжая расширяться, снова совершает работу.
Процесс парообразование в PV, hS и TS диаграммах, выглядит следующим образом:
Таблица 4 Параметры в характерных точках цикла ПТУ при работе на перегретом паре насыщенном паре с вторичным перегревом
Точки цикла |
Р, МПа |
t, ° C |
h, кДж/кг |
ν, |
S, кДж/кг*К |
Х |
1 | 13 | 490 | 3309 | 0.024 | 6.4 | 1 |
а | 3.3 | 283.14 | 2939.6 | 0.07 | 6.4 | 1 |
b | 3.3 | 510 | 3476.3 | 0.0107 | 7.2 | 1 |
2 | 0.0045 | 31 | 2188.1 | 26.4 | 7.2 | 0.85 |
3 | 0.0045 | 31 | 130 | 0.001 | 0.45 | 0 |
4 | 13 | 330.86 | 1532 | 0.0015 | 3.56 | 0 |
5 | 13 | 330.86 | 2662 | 0.012 | 5.39 | 1 |
Параметры определяются по hs – диаграммам и таблицам свойств водяного пара
Удельная теплота, затраченная на образование 1 кг пара в турбине:
кДж/кг
Удельный отвод теплоты в конденсаторе:
кДж/кг
Удельная полезная работа, совершаемая паром в турбине, в адиабатном процессе расширения:
кДж/кг
Работа, совершаемая паром в турбине:
кДж/кг
Термический КПД цикла Ренкина :
Теоретический удельный расход пара d0 необходимый для выработки одного кВт*ч электроэнергии:
кг/( кВт*ч)
Теоретический удельный расход тепла q0, необходимый для выработки одного кВт*ч:
кДж/( кВт*ч)
IV. ПТУ работает на перегретом паре, при этом используется регенерация с одним отбором пара
В данном цикле используется отработавший пар для подогрева воды, полученной после конденсации основного парового потока. При этом конденсат греющего пара смешивается с основным потоком питательной воды
Процесс парообразование в PV, hS и TS диаграммах, выглядит следующим образом:
Таблица 4 Параметры в характерных точках цикла ПТУ при работе на перегретом паре насыщенном паре с вторичным перегревом
Точки цикла |
Р, МПа |
t, ° C |
h, кДж/кг |
ν, |
S, кДж/кг*К |
Х |
1 | 13 | 490 | 3309 | 0.024 | 6.4 | 1 |
а | 0.38 | 141.77 | 2525 | 0.437 | 6.4 | 0.9 |
b | 0.38 | 141.77 | 596.8 | 0.0011 | 1.76 | 0 |
2 | 0.0045 | 31 | 1940.8 | 23.2 | 6.4 | 0.746 |
3 | 0.0045 | 31 | 130 | 0.001 | 0.45 | 0 |
4 | 13 | 330.86 | 1532 | 0.0015 | 3.56 | 0 |
5 | 13 | 330.86 | 2662 | 0.012 | 5.39 | 1 |
Параметры определяются по hs – диаграммам и таблицам свойств водяного пара
Доля отобранного пара:
кг/кг
где ha – энтальпия пара, отбираемого из турбины;
hb – энтальпия конденсата при давлении отбора.
Полезная работа в регенеративном цикле:
кДж/кг
Количество подведенной теплоты в данном цикле:
кДж/кг
Удельный отвод теплоты в конденсаторе:
кДж/кг
Работе, совершаемая паром в турбине:
кДж/кг
Термический КПД цикла Ренкина :
Теоретический удельный расход пара d0 необходимый для выработки одного кВт*ч электроэнергии:
кг/( кВт*ч)
Теоретический удельный расход тепла q0, необходимый для выработки одного кВт*ч:
кДж/( кВт*ч)
Таблица 5 Результаты расчетов
Параметры цикла | Цикл паротурбинной установки | |||
на сухом насыщенном паре |
На перегретом паре |
с вторичным перегревом пара |
с регенеративным отбором | |
Количество подведенной теплоты q1, кДж/кг |
2532 | 3179 | 3715.7 | 2712.2 |
Количество отведенной теплоты q2, кДж/кг |
1515.7 | 1810.8 | 2058.8 | 1810.8 |
Полученная работа в цикле lц , кДж/кг |
1016.3 | 1368.2 | 1368.8 | 1257.2 |
Теоретический удельный расход пара d0, кг/кВт*ч |
3.54 | 2.63 | 2.17 | 2.86 |
Теоретический удельный расход тепла q0, кДж/ кВт*ч |
8969 | 8361 | 8063.1 | 7757 |
Термический КПД цикла, ηT |
0.4 | 0.43 | 0.45 | 0.46 |
Вывод
Рассчитав паротурбинную установку, работающую по циклу Ренкина, видно, что термический кпд таких установок очень низок (около 40%). Но так как термический вид энергии очень распространен, необходимо искать методы повышения кпд ПТУ. В данной работе мы увидели три способа повышения термического кпд. Комбинируя эти методы можно повысить кпд на 10-20%, что делает данный способ получения энергии более перспективным.
ФГОУ ВПО Костромская Государственная Сельскохозяйственная Академия Кафедра: "Безопасность жизнедеятельности и теплоэнергетики" Расчетно-графическая работа "Расчёт цикла паротурбинной устан
Расчёт электронного автоматического моста
Расчёты ходкости и проектирование гребного винта
Режущий инструмент
Ресурсосберегающие технологии
Різальний інструмент
Розмірні ланцюги
Розрахунки допусків і посадок
Розрахунок авіаційного двигуна турбогвинтового типу
Розрахунок багатокорпусної випарної установки
Розрахунок гідроприводу
Copyright (c) 2024 Stud-Baza.ru Рефераты, контрольные, курсовые, дипломные работы.