База знаний студента. Реферат, курсовая, контрольная, диплом на заказ

курсовые,контрольные,дипломы,рефераты

Разработка и создание страхового фонда документации — Страховое право

Содержание

 TOC o "1-2" ............................................................................................................................................................................... GOTOBUTTON _Toc418331048   PAGEREF _Toc418331048 2

Предлагаемое решение по реализации компьютерной сети в НИИ Репрографии......... GOTOBUTTON _Toc418331049   PAGEREF _Toc418331049 3

Состав оборудования................................................................................................................................................ GOTOBUTTON _Toc418331050   PAGEREF _Toc418331050 4

Аппаратная конфигурация серверов и их оснащение общесистемным ПО....... GOTOBUTTON _Toc418331051   PAGEREF _Toc418331051 4

Архитектуры построения компьютерных сетей, выбор архитектуры.................................. GOTOBUTTON _Toc418331052   PAGEREF _Toc418331052 7

Обзор протоколов и выбор основного протокола.............................................................................. GOTOBUTTON _Toc418331053   PAGEREF _Toc418331053 10

TCP/IP.................................................................................................................................. GOTOBUTTON _Toc418331054   PAGEREF _Toc418331054 10

NetBEUI............................................................................................................................. GOTOBUTTON _Toc418331055   PAGEREF _Toc418331055 10

Х.25...................................................................................................................................... GOTOBUTTON _Toc418331056   PAGEREF _Toc418331056 10

IPX/SPX и NWLink............................................................................................................ GOTOBUTTON _Toc418331057   PAGEREF _Toc418331057 10

Кабельные системы в компьютерных сетях........................................................................................ GOTOBUTTON _Toc418331058   PAGEREF _Toc418331058 12

Компоненты кабельной системы................................................................................ GOTOBUTTON _Toc418331059   PAGEREF _Toc418331059 12

Сетевое оборудование............................................................................................................................................ GOTOBUTTON _Toc418331060   PAGEREF _Toc418331060 13

Типовые требования предъявляемые к оснащению и модернизации типовых локальных узлов — объектов............................................................................................................................................................................. GOTOBUTTON _Toc418331061   PAGEREF _Toc418331061 15

Общие положения........................................................................................................... GOTOBUTTON _Toc418331062   PAGEREF _Toc418331062 15

Требования к средствам вычислительной техники................................................ GOTOBUTTON _Toc418331063   PAGEREF _Toc418331063 15

Требования к коммуникационному (сетевому) оборудованию......................... GOTOBUTTON _Toc418331064   PAGEREF _Toc418331064 15

Требования к системе электропитания..................................................................... GOTOBUTTON _Toc418331065   PAGEREF _Toc418331065 16

Требования к общесистемному программному обеспечению............................ GOTOBUTTON _Toc418331066   PAGEREF _Toc418331066 17

Аппаратное обеспечение, составные части.......................................................................................... GOTOBUTTON _Toc418331067   PAGEREF _Toc418331067 18

Процессоры....................................................................................................................... GOTOBUTTON _Toc418331068   PAGEREF _Toc418331068 18

Материнские платы, наборы микросхем................................................................... GOTOBUTTON _Toc418331069   PAGEREF _Toc418331069 30

Оперативная память...................................................................................................... GOTOBUTTON _Toc418331070   PAGEREF _Toc418331070 35

Интерфейсы IDE, SCSI, архитектура RAID................................................................. GOTOBUTTON _Toc418331071   PAGEREF _Toc418331071 38

Видеоподсистема........................................................................................................... GOTOBUTTON _Toc418331072   PAGEREF _Toc418331072 54

Программное обеспечение.................................................................................................................................. GOTOBUTTON _Toc418331073   PAGEREF _Toc418331073 72

Microsoft Windows 95.................................................................................................... GOTOBUTTON _Toc418331074   PAGEREF _Toc418331074 72

Microsoft Windows NT Workstation 4.0.................................................................... GOTOBUTTON _Toc418331075   PAGEREF _Toc418331075 73

Приложения...................................................................................................................................................................... GOTOBUTTON _Toc418331076   PAGEREF _Toc418331076 75

Сравнение производительности процессоров Intel Pentium и AMD K6............ GOTOBUTTON _Toc418331077   PAGEREF _Toc418331077 75

Другие процессорные тесты.......................................................................................... GOTOBUTTON _Toc418331078   PAGEREF _Toc418331078 78

Производительность материнских плат на чипсете i430TX с памятью более 64 Мбайт     GOTOBUTTON _Toc418331079   PAGEREF _Toc418331079 80

Тестирование чипсетов Intel 440BX и Intel 440LX................................................. GOTOBUTTON _Toc418331080   PAGEREF _Toc418331080 81

Сравнение скорости работы систем с EDO RAM и SDRAM................................... GOTOBUTTON _Toc418331081   PAGEREF _Toc418331081 83

Соответствие внешних частот, временных задержек и времени доступа для различных типов памяти................................................................................................................................ GOTOBUTTON _Toc418331082   PAGEREF _Toc418331082 83

Контроллеры UltraWideSCSI....................................................................................... GOTOBUTTON _Toc418331083   PAGEREF _Toc418331083 85

Тестирование современных жестких дисков.......................................................... GOTOBUTTON _Toc418331084   PAGEREF _Toc418331084 87

Лучшие жёсткие диски IDE........................................................................................... GOTOBUTTON _Toc418331085   PAGEREF _Toc418331085 91

Лучшие жёсткие диски SCSI......................................................................................... GOTOBUTTON _Toc418331086   PAGEREF _Toc418331086 92

Спецификации жестких дисков................................................................................... GOTOBUTTON _Toc418331087   PAGEREF _Toc418331087 93

Сводная таблица параметров мониторов............................................................... GOTOBUTTON _Toc418331088   PAGEREF _Toc418331088 106

Результаты тестирования наиболее популярных видеоакселераторов.......... GOTOBUTTON _Toc418331089   PAGEREF _Toc418331089 111

Тестирование AGP–видеокарт................................................................................... GOTOBUTTON _Toc418331090   PAGEREF _Toc418331090 118

Введение

По постановлению правительства РФ №1253-68 от 26.12.1995г. и №860-44 от 14.07.1997г. принято решение о возобновлении работ по разработке и созданию страхового фонда документации (СФД). В соответствии с этим постановлением начаты работы по созданию и ведению СФД.

Современные условия развития информационных технологий диктуют необходимость их ускоренного применения, как наиболее оперативного способа ведения СФД. В рамках этого направления требуется внедрение новых перспективных информационных технологий.

Возрастающая важность проблем информатизации напрямую связана с переменами, как технологическими, так и социальными. Без информационных технологий нельзя представить ни одно современное предприятие или организацию.

Современные информационные технологии внедряются в России с небывалым размахом, опровергая все, даже очень смелые прогнозы. К сожалению государственные предприятия и организации часто ограничиваются решением локальных проблем не заглядывая в перспективу, это вызвано как отсутствием специалистов необходимой квалификации, так и не проработанностью государственной политики в области информатизации. Данные материалы предназначены для руководства при проведении технической политики в области информатизации и содержат большое количество справочных материалов по всем основным направления компьютерных технологий.

Все предложения даются на основании и во исполнение, рекомендаций изложенных в руководящем документе «Специальные требования и рекомендации по защите информации, составляющей государственную тайну, от утечки по техническим каналам (СТР)», Москва, 1997г.

Предлагаемое решение по реализации компьютерной сети в НИИ Репрографии.

Исходя из предъявляемых требований с созданию компьютерной сети в НИИ репрографии. Предлагается следующая реализация.

Центральная высокоскоростная часть сети реализуется на коммутаторе Ethernet производства фирмы 3Com серии SuperStack II Switch 3000 10/100. Это 12 портовый коммутатор, в котором реализована функция автоматического определения среды передачи, обеспечивающая подключение сетевого оборудования как на скорости 10 Мбит/с, так и на скорости 100 Мбит/с в режимах полного дуплекса и полудуплекса. Повышенная пропускная способность внутренней шины коммутатора позволяет использовать преимущества высокоскоростных магистральных соединений. Модель SuperStack II Switch 3000 10/100 полностью управляемая и обладает полным спектром интеллектуальных функций. Периферийные рабочие станции подключаются к сегменту сети организованному на концентраторе фирмы 3Com SuperStack II PS Hub40, что позволит разгрузить основную магистраль от широко вещательного трафика и оптимизировать трафик протокола TCP/IP. SuperStack II PS Hub40 - это 12 портовый концентратор, полностью управляется по SNMP и RMON и предлагает удобный графический интерфейс для конфигурации виртуальных сетей. Также имеются возможности обеспечения повышенной надежности и защиты от несанкционированного доступа к данным.

Рисунок  SEQ Рисунок * ARABIC 1

Схема компьютерной сети НИИ репрографии

1- Сервер домена, 2- Сервер BackUp домена, 3 - Графическая станция, 4 - Коммутатор 3Com, 5 - Концентратор 3Com 40Hub, 6 - Рабочие места операторов (пользователи), 7 - Источник бесперебойного питания APC 1000 RM, 8 - Источник бесперебойного питания APC 700 RM, 9 - Сетевой принтер или другое периферийное устройство, Кабельная система STP Level 5, Кабельная система, высокоскоростная STP Level 5, Выделенная система электропитания жизненно важных элементов сети.

Состав оборудования.

В качестве базовых технических средств по оснащению НИИ репрографии и центров СФД.

Предлагаются следующие средства вычислительной техники (СВТ).

В качестве сервера предлагается использование двухпроцессорной системы на основе процессора Pentium II. Обладающей следующими характеристиками:

Процессор

 Pentium II 266 х 2 или лучше;

Оперативная память

 64 Мб или больше;

Дисковая память

 4,5 Гб х 3 или больше, SCSI - RAID массив;

Резервное копирование

 использование МО дисков;

Видео подсистема

 не хуже SVGA 2 Мб.

Рабочие станции по обработке графической информации предлагаются на основе двухпроцессорной системы Pentium II.

Процессор

 Pentium II 266 или лучше;

Оперативная память

 64 Мб и больше;

Дисковая память

 4гб х2 Ultra DMA или больше;

Резервное копирование

 использование МО дисков;

Видео подсистема

 SVGA 8Мб использование шины AGP.

Рабочие станции операторов СФД и разработчиков прикладного программного обеспечения предлагаются на основе процессора AMD K6.

Процессор

 AMD K6 200 или лучше;

Оперативная память

 32 Мб или больше;

Дисковая память

 2Гб или больше;

Резервное копирование

 нет, «используются ресурсы сервера»;

Видео подсистема

 SVGA 2Мб.

В качестве периферийного оборудования (принтеры, сканеры, плоттеры и пр.) предлагается отдавать предпочтение средствам позволяющим подключать оборудование непосредственно в компьютерную сеть с использованием IP или MAC адресации.

В качестве общесистемного программного обеспечения предлагается использовать операционную систему Microsoft Windows NT Server и Windows NT Workstation версии 4.0 с пакетом обновления № 3. Для установки на сервер и рабочие станции соответственно.

Аппаратная конфигурация серверов и их оснащение общесистемным ПО.

При выборе стратегии оснащения центров СФД можно придерживаться одного из двух возможных вариантов:

а)  исходя из предположения, что основная база данных будет иметь небольшие размеры, она не будет ориентироваться на клиент–серверную технологию, будет разработана с применением СУБД класса MS Visual FoxPro 5.0, Borland Delhi и от неё не будут требоваться развитые сетевые возможности;

б)  для случая выбора клиент–серверных технологий.

Здесь следует отметить, что даже вариант реализации баз данных без использования технологии клиент–сервер может быть при необходимости доработан до её требований. Причём сделать это будет легче и дешевле, если уже на этапе проектирования такой системы учитывалась возможность перехода на более современные технологии обработки данных.

Для обоих вариантов необходима установка локальной сети. В качестве сетевой операционной системы следует использовать MS Windows NT 4.0 как для серверов, так и для рабочих станций (в настоящее время существует локализованный для России вариант Windows NT Workstation). Рекомендуется использовать доменную архитектуру, реализованную в указанных системах. При этом понадобится как минимум один сервер NT в качестве контроллера домена на каждые 20¸30 рабочих станций. Если количество компьютеров в сети невелико, то контроллер домена можно использовать как файловый сервер, сервер печати. Правда, в данном случае, мощность устанавливаемой машины должна быть больше, а в случае интенсивного использования — значительно больше.

Варианты оснащения контроллера домена

На компьютер, являющийся контроллером домена NT могут быть возложены некоторые дополнительные функции. Условно их можно разделить на следующие:

Выполняемые функции

только функции контроллера домена.

Процессор

Pentium, 166MHz.

Оперативная память

32MB

Дисковая подсистема

IDE, 1¸1,6GB

Сетевая подсистема

16bit ISA, UTP, 10Mbit

Ориентировочная стоимость

1000¸1500 USD

Выполняемые функции

контроллер домена, хранение файлов пользователей (документов), обращение к которым происходит эпизодически, сервер печати с небольшой интенсивностью.

Процессор

Pentium, 200MHz.

Оперативная память

32¸64 MB

Дисковая подсистема

SCSI, не менее 3GB

Сетевая подсистема

32bit PCI, UTP, 10Mbit

Ориентировочная стоимость

2500 USD

Выполняемые функции

контроллер домена, хранение большого количества файлов пользователей (документов) обращение к которым происходит постоянно, хранение больших объёмов информации, запуск пользователями приложений прямо с сервера, сервер печати.

Процессор

Pentium II, 266¸333MHz; в зависимость от нагрузки можно предусмотреть двухпроцессорный вариант.

Оперативная память

не менее 64 MB

Дисковая подсистема

SCSI, аппаратный RAID 3, 5; 3¸4 жёстких диска по 2¸5GB

Сетевая подсистема

32bit PCI, STP, 100Mbit либо FDDI

Ориентировочная стоимость

от 5000 USD

Надёжность

При отказе контроллера домена, ресурсы сети становятся недоступны, даже если рабочие станции продолжают функционировать и «видят» друг друга. Чтобы избежать такой ситуации может быть целесообразным установить резервный контроллер, автоматически берущий на себя функции первичного в случае его отказа. Конфигурация резервного контроллера может отличаться от первичного и зависит от возложенных на него функций.

Если будет выбрана стратегия оснащения локальных узлов, основанная на клиент–серверных технологиях, то понадобится ещё как минимум один компьютер в качестве сервера приложений, конкретно — для установки на него MS SQL Server. Использовать его в качестве файлового сервера или для других целей, отличных от сугубо специальных, не рекомендуется. Мощность компьютера опять же определяется объёмом выполняемых задач. Если обрабатываемая база данных имеет средний объём (не более 150MB) и среднюю интенсивность обращений к ней, то рекомендуемая конфигурация компьютера имеет следующий вид:

Процессор

один или два PentiumPro 200MHz или Pentium II 233¸266MHz

Оперативная память

не менее 64 MB

Дисковая подсистема

SCSI, не менее двух дисков по 3GB

Сетевая подсистема

32bit PCI, UTP, 100Mbit

Ориентировочная стоимость

3500 USD

Оснащение общесистемным ПО

Для наиболее полного использования возможностей операционной системы Windows NT, рекомендуется приобрести не только собственно NT Server 4.0 и SQL Server 6.5, а комбинированным пакет Microsoft BackOffice Small Business Server, в который входит ряд продуктов семейства BackOffice. Пакет рассчитан на малые организации (до 25 компьютеров), работающие в условиях отсутствия постоянного квалифицированного системного администратора.

В состав BackOffice Small Business Server входят следующие компоненты:

–      FrontPage 98 и Index Server 1.1

–     

–      Outlook 97 (8.01)

–     

–     

–     

–     

–     

–     

–     

BackOffice Small Business Server является основой для построения полного интегрированного решения для малого предприятия на основе современных серверных компонентов и Internet-стандартов. Пакет также содержит Fax Server для централизованной отправки и приема факсов через факс–модемы, подключенные к серверу.

В процессе роста организации возможно обновление как любого компонента, так и всего пакета в целом.

Архитектуры построения компьютерных сетей, выбор архитектуры.

Сетевая архитектура - это совокупность стандартов, топологий и протоколов, необходимых для создания работоспособной сети.

В конце 70х годов, когда ЛВС стали восприниматься в качестве потенциального инструмента для работы и были сформулированы основные стандарты (Project 802).

Project 802 установил основные стандарты для физических компонентов сети - сетевых карт и кабельных систем.

Стандарты ЛВС, определенные Project 802, делятся на 12 категорий, каждая из которых имеет свой номер.

802.1 - объединение сетей

802.2 - управление логической связью

802.3 - ЛВС с множественным доступом, контролем несущей и обнаружением коллизий (Ethernet)

802.4 - ЛВС топологии “шина” с передачей маркера

802.5 - ЛВС топологии “кольцо” с передачей маркера

802.6 - сеть масштаба города

802.7 - Консультативный совет по широковещательной технологии

802.8 - Консультативный совет по оптоволоконной технологии

802.9 - интегрированные сети с передачей речи и данных

802.10 - безопасность сетей

802.11 - беспроводные сети (радио сети)

802.12 - ЛВС с доступом по приоритету запроса

Наибольшую популярность получил стандарт 802.3 Ethernet именно на этой архитектуре построения компьютерных сетей остановимся более подробно.

Ethernet - самая популярная в настоящее время сетевая архитектура, Она использует узкополосную передачу со скоростью 10 Мбит/сек и топологию “шина”, а для регулирования трафика в основном кабеле - CSMA/CD.

Сеть Ethernet имеет следующие характеристики:

традиционная топология - линейная шина;

другие топологии - звезда - шина;

тип передачи - узкополосная;

метод доступа - CSMA/CD;

спецификации -802.3;

скорость передачи данных - 10, 100 и 1000 Мбит/сек;

кабельная система - Толстый и тонкий коаксиальный кабель, витая пара (UTP, STP), оптоволокно.

В основе построения любой сети стоит эталонная модель OSI (Open System Interconnection, Взаимодействие открытых систем), Эта модель разделяет работающее оборудование и процессы, происходящие при объединение компьютерных сетей согласно логике их работы. Каждый из уровней выполняет свою специфическую, функцию тем самым облегчая проектирование всей системы в целом. При сетевом обмене сообщаются соответствующие уровни двух компьютеров делаемся это не напрямую, а путем запроса на обслуживание у ниже лежащего. Уровни могут иметь одинаковую реализацию, а могут и разную. Самое главное то, что они идентично работаю демонстрируя полное взаимопонимание. Самому нижнему уровню не некого “свалить” работу, поэтому физическая реализация должна совпадать (по крайней мере на уровне одного сегмента сети).

На каждом из уровней единицы информации называются по разному. На физическом уровне мельчайшая единица - бит. На канальном уровне информация объединена во фреймы, На сетевом уровне мы говорим о дейтаграммах. На транспортном уровне единицей измерения является сегмент. Прикладные уровни обмениваются сообщениями. Прямая параллель с файловой системой на диске - локальные изменения намагниченности (биты) объединены в сектора, имеющие заголовки, сектора объединяются в блоки, а те, в свою очередь, в файлы, тоже имеющие заголовки, содержащие служебную информацию.

Важно понимать, что эталонная модель не является чем то реальным, таким что обеспечивает связь. Сама по себе она не заставляет коммуникации функционировать и служит лишь для классификации. Она классифицирует то, что непосредственно вместе работает, а именно- протоколы. Протоколы считаются набором спецификаций, определяющих реализацию одного или нескольких уровней OSI. Спецификация протоколов разрабатываются стандартизирующими организациями, так и производителями оборудования. Многие разработанные производителями протоколы оказываются настолько успешными, что применяются  не только разработчиками но и другими фирмами становясь стандартом де-факто.

Физический уровень определяет механические и электрические параметры среды передачи, сетевых плат, соединителей, способы помещения информации в среду передачи и извлечения ее оттуда. Спецификации физического уровня определяют тип разъема и назначение ножек, уровень сигнала, скорость передачи и т.д.

Канальный уровень формирует из битов, получаемых от физического уровня, последовательности пакетов или фреймов. Здесь также осуществляется управление доступом к разделяемой всеми сетевыми устройствами передающей среде и обнаруживается и корректируется часть ошибок. Как и большинство других уровней канальный добавляет заголовок передаваемой информации. В заголовке обычно содержится физический адрес приемника, адрес источника и другая информация.

Сетевой уровень заведует движением информации по сетям, состоящим из нескольких или многих сегментов. Для успешного решения этой задачи в протокол данного уровня вносится информация о логическом адресе источника и адреса пакета. При прохождении пакетов через узлы, соединяющие различные сети, эта информация анализируется и пакет пересылается к следующему узлу, принадлежащему уже другому сегменту. Информация о том , куда пересылать пакет, может содержаться в таблицах устройства выполняющего роль маршрутизатора, или вычисляться в реальном времени. Таким образом, пакеты путешествуют по сети переходя от узла к узлу. В функции сетевого уровня входит также идентификация и удаление “заблудившихся” пакетов, то есть таких которые прошли через некоторое число узлов, ноток и не попали к адресату.

Транспортный уровень находится в самом центре эталонной модели. Он отвечает за гарантированную доставку данных, компенсируя ошибки которые могут возникать при работе нижележащих уровней. “Гарантированная” доставка не означает, что данные попадут к адресату в любом случае: оборванный кабель, отстыкованный разъем, вышедшая из строя сетевая карта - все это “гарантирует именно недоставку”. Однако надежные реализации протоколов транспортного уровня обеспечивают подтверждение успеха или не успеха доставки, информируя вышележащие уровни которые предают сообщения по требовавшему обслуживания программному приложению. Гарантированная доставка осуществляется при помощи различных механизмов, среди которых - установление и разрыв соединения, механизм подтверждения и контроль скорости потока.

Сеансовый уровень отвечает за вызовы удаленных процедур. Это специальный поддерживаемый соответствующими протоколами интерфейс, при котором вызов программной процедуры производится на одном компьютере а выполнение - на другом, после чего результат возвращается к вызвавшей программе так, словно процедура была выполнена локально. Сеансовый уровень также контролирует установление, течение и завершение сеанса связи между взаимодействующими программами, что и отражается в его названии.

Представительский уровень занимается преобразованиями формата, упаковкой , распаковкой, шифрованием и дешифрованием здесь осуществляется преобразование исключительно формата, а не логической структуры данных. То есть представляет данные в том виде и формате, какой необходим для последнего из выше лежащих уровней.

Последний прикладной уровень он отвечает за интерфейс с пользователем и взаимодействие прикладных программ выполняемых на взаимодействующих компьютерах. Предоставляемые услуги - электронная почта идентификаци пользователей, передача файлов и т.п.

Рисунок  SEQ Рисунок * ARABIC 2

Семиуровневая модель OSI для протоколов связи локальных сетей

Исходя из выше приведенного и анализа основных тенденций развития сетевых технологий считается наиболее перспективным использование архитектуры Ethernet. Эта технология на обозримое будущее останется самой распространенной и наиболее подходящей для реализации по соотношению цена/производительность.

Обзор протоколов и выбор основного протокола.

Основными протоколами используемыми в локальных сетях являются:

протокол TCP/IP;

протокол NetBEUI;

протокол IPX/SPX и NWLink;

протокол X.25;

TCP/IP

Transmission Control Protocol / Internet Protocol (TCP/IP) - Промышленный стандартный набор протоколов, которые обеспечивают связь в гетерогенной среде, то есть обеспечивают совместимость между компьютерами разных типов. Совместимость - одно из основных преимуществ ТСР/IP, поэтому большинство  ЛВС поддерживает его. Кроме того, ТСР/IP предоставляет доступ к ресурсам Interneta, а также маршрутизируемый протокол для сетей масштаба предприятия. Поскольку ТСР/IP поддерживает маршрутизацию, он обычно используется в качестве межсетевого протокола. Благодаря своей популярности ТСР/IP стал стандартом де - факто для межсетевого взаимодействия.

ТСР/IP имеет два главных недостатка: размер и недостаточная скорость работы. ТСР/IP - относительно большой стек протоколов, который может вызвать проблемы у MS-DOS  клиентов. Однако для таких ОС, как Windows NT или Windows 95 размер не является проблемой, а скорость работы сравнима со скоростью протокола IPX/SPX.

NetBEUI

NetBEUI - расширенный интерфейс NetBIOS первоначально NetBIOS и NetBEUI были тесно связаны и рассматривались как один протокол. Затем некоторые производители ЛВС так обособили NetBIOS, протокол сеансового уровня, что он уже не мог использоваться на ряду с другими маршрутизируемыми транспортными протоколами. NetBIOS - это интерфейс сеансового уровня с ЛВС, который выступает в качестве прикладного интерфейса с сетью, Этот протокол предоставляет программ средство для осуществления сеансов связи с другими сетевыми программами. Он очень популярен, так как поддерживается многими приложениями. NetBEUI небольшой быстрый и эффективный протокол Транспортного уровня, который поставляется со всеми сетевыми продуктами фирмы Microsoft. Преимуществам NetBEUI относится небольшой размер стека, высокая скорость передачи данных по сети и совместимость со всеми сетями Microsoft. Основной недостаток NetBEUI он не поддерживает маршрутизацию. Это ограничение относится ко всем сетям Microsoft.

Х.25

Х.25 - набор протоколов для сетей с коммутацией пакетов его использовали службы коммутации, которые должны были соединять удаленные терминалы с мэйн фреймами.

IPX/SPX и NWLink

IPX/SPX и NWLink - стек протоколов используемый в сетях NET WARE фирмы NOVELL. Как и NetBEUI, относительно небольшой и быстрый протокол, но, в отличии от NetBEUI он поддерживает маршрутизацию.

NWLink - реализация IPX/SPX  фирмы Microsoft. Это транспортный маршрутизируемый протокол.

Исходя из выше приведенного и анализа основных тенденций развития сетевых протоколов считается наиболее перспективным использование протокола TCP/IP как наиболее полно удовлетворяющего предъявляемым требованиям.

Кабельные системы в компьютерных сетях.

Сегодня подавляющее большинство компьютерных сетей в качестве среды передачи использует провода или кабели. Существуют различные типы кабелей, которые удовлетворяют потребностям всевозможных сете от больших до малых.

В большинстве сетей применяется только три основные группы кабелей:

–      coaxial cable);

–      (twisted pair):

–      unshielded);

–      shielded);

–      fiber optic).

На сегодня самый распространенный тип кабеля и наиболее подходящий по своим характеристикам - это витая пара в частности экранированная. Остановимся на ней более подробно.

Кабель экранированная витая пара (STP) имеет медную оплетку, которая обеспечивает большую защиту чем неэкранированная витая пара. Кроме того пары проводов STP обмотаны фольгой. В результате экранированная витая пара обладает прекрасной изоляцией, защищающей предаваемые данные от внешних помех. Все это говорит о том, что STP меньше подвержена воздействию электрических помех и может передавать сигналы на большее расстояние, а также меньше излучает и собственных побочных электромагнитных полей. И состоит из четырех витых пар медного провода. С целью снижения взаимных наводок шаг скрутки у всех пар различен. Провода пар различаются цветом изоляции, причем один из них окрашен целиком, а другой белого цвета с нанесенной полосой цвета пары. Цвет, шаг скрутки и диаметр строго нормированы. Экранированная витая пара способна передавать данные со скоростью до 100 Мбит/сек.

Компоненты кабельной системы.

К компонентам кабельной системы относятся пассивные соединители. Для подключения витой пары к компьютеру используется коннекторы RJ-45 имеющие восемь контактов (для работ требуются RJ-45 в экране). Для построения развитой кабельной системы и в тоже время для упрощения работы с ней требуются следующие компоненты.

Распределительные стойки и полки, предназначены для монтажа кабеля. Они позволяют централизованно организовать множество соединений и при этом занимают достаточно мало места.

Коммутационные панели, существуют различные типы панелей в том числе и в экране. Количество портов может меняться от 8 до 96.

Розетки, соединители, с помощью кабеля соединяются с коммутационными панелями. Они обеспечивают скорость передачи до 100 Мбит/сек.

Сетевое оборудование.

К сетевому оборудованию относятся:

–     

–     

–     

–     

–     

Сетевые карты, являются одной из важнейших компонент любой компьютерной сети. Сетевые карты выступают в качестве физического интерфейса для соединения, между компьютером и сетевым кабелем. Сетевая карта вставляется в свободный слот расширения на материнской плате компьютера и различаются по типу используемого разъема: ISA, EISA, PCI.

Основное назначение сетевой карты:

–     

–     

–     

Кроме того, сетевая плата, принимает данные из кабеля и переводит их в форму, понятую центральному процессору компьютера. Также каждая сетевая карта имеет уникальный адрес (MAC). Сетевые адреса определены комитетом IEEE, этот комитет закрепляет за каждым производителем некий интервал адресов. Производители «зашивают» эти адреса в микросхемы сетевой карты.

Концентратор, является центральной частью компьютерной сети в случае реализации топологии «звезда». И является самым простым устройством при создании компьютерных сетей. У него отсутствует возможность управления и применяется, как правило в сетях малых офисов или подразделений. 

Коммутатор, выступает в качестве ведущего элемента компьютерной сети. Обеспечение связи с базовой магистралью или группой серверов по высокоскоростным каналам, может соединять сегменты сети, служит также для изоляции трафика в сети, что способствует более высоким скоростям передачи информации. Коммутаторы решают следующие проблемы:

–     

–     

–     

Коммутатор при работе выполняет следующие действия:

–     

–      Ethernet;

–      MAС адресов;

–      Ethernet.

Можно сказать, что коммутаторы обладают некоторым «интеллектом», поскольку изучают, куда следует направлять данные. В начале работы таблица маршрутизации пуста, но затем она наполняется и концентратор изучая эти данные знает расположение компьютеров в сети. На сегодняшний день использование коммутаторов самый перспективный способ построения компьютерных сетей.

Маршрутизатор - это элемент компьютерной сети объединяющей несколько сетевых сегментов с различными протоколами и архитектурами. Маршрутизаторы могут выполнять следующие функции:

–     

–     

Таблица данных которая находится в маршрутизаторе содержит сетевые адреса. Она включает следующую информацию:

–     

–     

–     

–     

На основании этих данных маршрутизатор выбирает наилучший маршрут для данных, сравнивая стоимость и доступность различных вариантов. Маршрутизаторы требуют специальной адресации: им понятны только номера сетей и адреса локальных сетевых карт. К удаленным компьютерам маршрутизаторы обращаться не могут.

Маршрутизаторы могут работать не со всеми протоколами, а только с маршрутизируемыми, к ним относятся:

–      DECnet;

–      TCP/IP;

–      IPX/SPX;

–      OSI;

–      XNS.

К не маршрутизируемым протоколам относятся:

–      LAT;

–      NetBEUI.

Маршрутизаторы объединяют сети и обеспечивают фильтрацию пакетов. Они также определяют наилучший маршрут для передачи данных. Перед применением маршрутизаторов необходимо убедится, что в сети отсутствуют не маршрутизируемые протоколы.

Использование маршрутизаторов оправдано, если сеть имеет выход в глобальные сети или при использовании в качестве узлового элемента сети, уровня корпорации.

Спец оборудованием, называются специальное терминальное оборудование для доступа к глобальным сетям. Более подробный обзор этого оборудования будет приведен в следующих материалах.

Типовые требования предъявляемые к оснащению и модернизации типовых локальных узлов — объектов.

Общие положения

Размещение и монтаж оборудования в центрах СФД должны быть выполнены в соответствии с:

–     

–     

–     

–     

–     

–     

–     

–     

–     

–     

–     

Требования к средствам вычислительной техники

Стандартными средствами при оснащении объектов СФД являются ПЭВМ типа РС/АТ. ПЭВМ монтируется в стандартном системном блоке “защищенном” с дисководами для гибких магнитных дисков и лазерных компакт дисков “СD-ROM”. Оснащается манипуляторами типа “мышь” и клавиатурой. На все средства вычислительной техники обязательно должно быть заключения по СП и СИ.

Вычислительные ресурсы ПЭВМ должны обеспечивать надежное функционирование аппаратно - программных средств и гарантийный срок эксплуатации не мнение 3 (трех) лет. После чего подвергать модернизации или капитальному ремонту с прохождением СП и СИ.

Емкость оперативной памяти должна быть не менее 32Мб, емкость жесткого диска должна быть не менее 2Гб, оснащаться сетевой картой Ethernet, иметь порты расширения для подключения внешних периферийных устройств. Видео подсистема должна обеспечивать разрешение 800х600 точек для рабочих станций операторов и 1024х786 точек для графических рабочих станций. Частота кадровой развертки для монитора должна составлять не менее 75 Гц.

Требования к коммуникационному (сетевому) оборудованию

Аппаратный комплекс средств коммуникационного оборудования должен обеспечивать обмен информацией, как закрытого так и открытого характера. Базироваться на современных технологиях передачи информации. На все средства коммуникационного оборудования обязательно должно быть заключения по СП и СИ.

Для локальных сетей объектов СФД локальная вычислительная сеть (ЛВС) создается с применением технологии Ethernet 10/100. Аппаратные средства ЛВС должны обеспечивать возможность создания виртуальных сетей на одном устройстве (коммутаторе), обеспечивать возможность управления маршрутизацией IP. Иметь встроенные средства защиты от несанкционированного доступа.

Для выхода в федеральные сети передачи данных должны использовать специализированные терминальные устройства поддерживающие протокол связи Х.25, как по выделенным так и по коммутируемым каналам связи.

С целью защиты от несанкционированного доступа из глобальных сетей федерального масштаба должны использоваться межсетевые экраны (FIREWALL) соответствующего класса.

Требования к системе электропитания

Система электропитания объекта СФД должна быть выполнена в соответствии с требованиями Правил устройства электроустановок (ПУЭ), предъявляемых к электроустановкам до 1 кВ.

Электрические установки и кабели, предназначенные для электропитания объектов СФД должны размещаться в пределах контролируемой зоны. Способы и средства заземления электроустановок оговариваются отдельно.

На объектах СФД электропитание должно осуществляться через сертифицированные по требованиям безопасности информации сетевые помехоподавляющие фильтры с фильтрацией сигналов в нулевом проводе, либо с использованием активного зашумления.

Рекомендуется применить на объектах СФД двух проводные или четырех проводные сетевые помехоподавляющие фильтры, рассчитанные на номинальные напряжения и токи в электроцепях, с полосой подавления помех в диапазоне частот 0,02 - 1000МГц и с вносимым затуханием в указанной полосе частот не менее 60 дБ.

Двухпроводные сетевые фильтры должны устанавливаться и монтироваться таким образом, чтобы исключить появление наведенного сигнала в отходящих от фильтра проводах электропитания.

Для особо важных частей объекта рекомендуемся использование агрегатов бесперебойного питания, рассчитанных на соответствующую потребляемую мощность.

Система заземления должна отвечать следующим требованиям:

–     

–     

–     

–     

Рисунок  SEQ Рисунок * ARABIC 3

Схема разделения заземлений при электропитании объекта от трансформаторной подстанции расположенной за пределами КЗ

Требования к общесистемному программному обеспечению

Используемые программное обеспечение должно быть лицензионно чистым, содержать встроенные возможности обеспечения безопасности и надежности хранения данных. Вход в систему пользователя должен проходить через регистрацию и ввод пароля. Операционная система должна соответствовать современным требованиям с программным продуктам и поддерживать наиболее популярные программные продукты. Иметь лицензированное средство защиты от вирусов.

Аппаратное обеспечение, составные части

Процессоры

AMD K6

2 апреля 1997 г. был официально представлен новый процессор AMD-K6. Процессор выпускается по технологии 0.35мкр, затем предполагается перейти к 0.25мкр, но уже с более высокими частотами. Первые три типа процессора К6 имеют соответственно частоты 166, 200 и 233MHz. (сейчас есть модификации на 266MHz и 300MHz, производимые по 0.25мкр технологии). Процессоры полностью поддерживаю технологию MMX, имеют кэш первого уровня 64Кб (32Кб на данные и 32Кб на команды), для установки в системную плату требуется наличие Socket 7, двойного питания 2.9V/3.2V, и поддержка биосом хотя бы процессора AMD-K5PR133. Процессор К6 предлагается в качестве альтернативы Pentium II, по имеющимся результатам тестирования под Windows95 K6-233MHz — вполне достойная альтернатива младшим моделям нового интеловского процессора. Под Windows NT K6/233 находится примерно на одном уровне с PentiumPro/200. По тесту на MMX производительность процессор показал сравнимые результаты с Pentium II, при этом, прокрутку видео он делает лучше. Огромным преимуществом К6 является его привлекательная цена, так например К6/166 — $245.00 при партии в 1000 штук.

Немаловажным является тот факт, что у К6 устранена досадная неприятность, связанная с К5, когда некоторые программы типа NDiags, 3DStudioMax, Clipper не запускались, либо выдавали ошибку деления на 0. Поддержка производителями биосов процессора К6 уже реализована. К6 прекрасно разгоняется и умеет умножать на 3.5, это реализуется при установке на системной плате умножения на 1.5. Кроме того, AMD анонсировал собственный чипсета, который они собираются выпускать совместно с VIA, под наименованием Am640, ожидается что в итоге этот чипсет предоставит такие возможности, как 100 MHz по шине, AGP (Accelerated Graphics Port), кэшируемую память до 256Мб (или больше), ECC (четность), т.е. то что Intel не реализовала в своем последнем (в прямом смысле этого слова, т.к. для систем на базе Pentium поддержки больше не будет) чипсете i430TX.

Alpha процессор

В конце 1995 года на рынке высокопроизводительных процессоров произошло значительное событие. Выпущенный компанией Intel процессор Pentium Pro, работающий на частоте 200 MHz, обогнал (на операциях с фиксированной точкой) все существовавшие на тот момент RISC-процессоры (Alpha, PowerPC, SPARC, MIPS, PA-RISC).

Лидерство Intel, однако, было недолгим: спустя всего несколько месяцев фирма Digital вернула себе пальму первенства, которая принадлежала ей с 1992 года. Это стало возможным благодаря выпуску процессора Alpha AXP 21164A с тактовой частотой 333 MHz. Сейчас ещё трудно делать какие-либо серьёзные прогнозы, но похоже, что Intel вряд ли снова сможет вырваться вперёд в ближайшее время.

В марте прошлого года тактовая частота процессора 21164A достигла 600MHz; примерно в это же время был анонсирован процессор 21264 с частотой 600MHz и более, по производительности превосходящий своего предшественника почти в два раза (при равной тактовой частоте).

Процессор

Alpha AXP — 64-разрядный RISC-процессор (Digital постоянно подчёркивает, что это не просто 32–разрядная архитектура, расширенная до шестидесяти четырёх бит, а именно «истинная» 64-разрядность), на кристалле которого размещаются более девяти миллионов транзисторов (из которых почти 2 миллиона приходятся на ядро, остальные — на кэш–память). Среди особенностей стоит отметить девятиступенчатый конвейер для операций с плавающей точкой, семиступенчатый конвейер для операций с фиксированной точкой; 16-килобайтный кэш первого уровня с прямым отображением (по 8 килобайт для команд и данных); 96-килобайтный трёхканальный частично ассоциативный кэш второго уровня (также размещён на кристалле); поддержка кэш-памяти третьего уровня (от одного до шестидесяти четырёх мегабайт); 128-битная шина доступа к памяти; 32 целочисленных регистра и 32 регистра с плавающей точкой. Все операции над данными производятся в регистрах; команды процессора — 32–битные, достаточно простые и имеют унифицированный формат.

Время доступа к кэш–памяти первого уровня составляет всего один такт; второго уровня — как минимум два такта. За один такт, кстати, процессор может выполнять до четырёх команд. Кроме того, некоторые оригинальные решения позволили очень эффективно использовать конвейеры, практически убрав простои из-за отсутствия операндов.

Процессор Alpha имеет ряд отличий от других RISC–процессоров. У него достаточно «сильный» блок операций с фиксированной точкой, что не слишком характерно для архитектуры RISC (это связано с обработкой исключительных состояний при арифметических операциях; фирме Digital удалось обойти это ограничение). На самом деле, целочисленных блоков два — один отвечает за операции сдвига и умножения, другой обрабатывает команды ветвления. Устройство для работы с плавающей точкой тоже состоит из двух блоков: один занимается умножениями, другой выполняет команды сложения, деления и ветвления. Есть и другие интересные особенности: например, наличие удобных инструкций работы со строками; за одну команду может обрабатываться сразу 8 байт.

Первые процессоры серии 21164 производились по 0.5–микронной технологии (сейчас — 0.35 микрон) и работали на частотах 266 и 300MHz (сейчас — до 600MHz). Кстати, такие высокие частоты неизбежно вызывают проблемы с отводом тепла: рассеиваемая мощность у процессора с частотой 366MHz достигает 28 Ватт (для больших частот — дополнительные 5 Ватт на 66MHz, т.е. 38 Ватт для 500MHz и т.д.). Однако Digital не останавливается на достигнутом, и в настоящее время разрабатывает новые системы охлаждения, которые позволят поднять тактовую частоту процессора до 700–800MHz даже при существующей технологии производства БИС. Для сравнения: PentiumPro с кэш–памятью 1Mb рассеивает до 47 Ватт (и это при тактовой частоте всего 200MHz); Pentium II при частоте 300MHz — 43 Ватта.

Спустя некоторое время после выпуска 21164, фирма Digital (совместно с Mitsubishi) разработала процессор 21164PC. С целью снижения себестоимости из него убрали кэш второго уровня (96 килобайт), компенсировав это увеличением кэша команд с восьми до шестнадцати килобайт; при этом имеется возможность подключения внешнего кэша второго уровня: от 512Kb до 4Mb. Количество транзисторов на кристалле уменьшилось до трёх с половиной миллионов. За меньшую цену, естественно, вы получаете и меньшую производительность: до 14.3 SPECint95 и 17.0 SPECfp95; тем не менее, это всё равно значительно больше, чем может дать PentiumPro…

21164PC предназначен для «массового» рынка недорогих рабочих станций ($2000 – $5000). Спектр возможных применений достаточно обширен: мультимедиа в реальном времени, web–серверы, организация видеоконференций, CAD/CAM, 3D-графика, нелинейный видеомонтаж. При разработке этого процессора Digital последовала «по стопам» Intel и ввела дополнительные инструкции для работы с видеоданными, что позволяет достичь прекрасную производительность на декомпрессии видео (MPEG-2): частота 30 кадров в секунду достигается без дополнительного сопроцессора или специализированной видеоплаты.

Больше года назад Digital подписала соглашение с фирмой Samsung, согласно которому последняя получила права на производство процессора Alpha 21164A на собственных заводах и под собственной торговой маркой. Хотя компания Samsung пока только разворачивает производство (в 1997 году планировалось выпустить всего четыре тысячи, а в 1998 — около ста тысяч процессоров), она тем не менее уже начала проводить массированную рекламу в прессе, рассылку образцов микросхем своим партнерам и даже образовала подразделение, которое будет заниматься выпуском дешевых компьютеров на базе процессоров Alpha собственного производства. Samsung установила на свои процессоры цены существенно более низкие, чем Digital и начала выпуск собственных материнских плат PC 164LX, копий плат от Digital.

Имеется аналогичное соглашение и с фирмой Mitsubishi, которая, однако, массовое производство процессоров пока не начала, ожидая окончательного формирования рынка.

Материнские платы

В отличие от Intel, Digital придерживается более «закрытой» политики в распространении своей платформы. Информация о комплектах микросхем, поддерживающих процессор Alpha, хотя и размещена на сайте Digital, но, по данным из независимых источников, содержит ряд неточностей и (возможно, внесенных специально) ошибок, что делает достаточно проблематичным разработку материнских плат третьими фирмами. Полную информацию получить достаточно сложно даже для партнеров Digital. OEM–партнеры также весьма ограничены в своем выборе — мощные платы для рабочих станций и серверов им не поставляются.

Итак, какие платы сможет использовать, скажем, российская фирма, если она захочет заняться «отверточной» сборкой компьютеров на базе процессора Alpha?

Плата AlphaPC164 фирмы Digital. Выпускается в ставшем в последнее время популярным формате ATX, но не полностью соответствует этому стандарту. Во–первых, на разъеме питания отсутствует сигнал «Power Good»; из-за этого на источнике питания срабатывает защита, и он автоматически выключается немедленно после включения. Вдобавок, на плате отсутствует разъем для подсоединения выключателя питания, что также не слишком хорошо, так как на многих ATX–корпусах отсутствует общий выключатель питания. И последний — совсем мелкий по сравнению с предыдущими — недостаток: разъёмы портов, мыши и клавиатуры расположены не так, как у стандартных ATX–плат.

В остальном же плата на редкость стандартна и совместима с «миром персоналок». Два разъема IDE, разъем для подключения флоппи-дисковода, два последовательных и один параллельный порт, PS/2–совместимые клавиатура и мышь — что, в общем–то, не удивительно, так как используется микросхемы производства Intel и SMC. Четыре разъема стандарта PCI, два из них 64–разрядных (фирма Intel о поддержке PCI64 пока не заявила, и пока единственная персоналка с такой шиной — Micron Powerdigm XSU на базе набора микросхем Samurai). Кэш-память 1 или 2 мегабайта для PC — редкость, а для RISC–платформ совсем немного. Кстати, «для себя» Digital производит платы с восемью и даже с шестнадцатью мегабайтами кэш–памяти (а может и больше — поддерживается–то до 64MB) — но их не продает. И, самое главное — 8 разъемов для 72–контактных SIMM–модулей. Для увеличения скорости обмена между оперативной и кэш–памятью используется 256-разрядная шина, так что для получения максимальной производительности придется установить в плату все восемь модулей памяти. Можно ограничиться «всего лишь» 128–разрядной шиной и установить 4 модуля, но скупиться тут не стоит — память поддерживается только «обычная», со страничным доступом (так называемая fast page, FPM), в отличие от стандартной для Pentium-компьютеров памяти с «расширенным выводом данных» (EDO) или синхронной (SDRAM).

С видеоадаптерами, SCSI–платами и прочими устройствами, скорее всего, серьёзных проблем не возникнет: в состав Windows NT 4.0 входит большинство необходимых драйверов. Проблемы могут возникнуть разве что с совсем новыми платами — пока лишь немногие производители плат выпускают драйверы для версии NT/Alpha.

Плата AlphaPC 164LX, появившаяся в сентябре 1997 года, использует новый набор микросхем, который поддерживает синхронную динамическую память (SDRAM) и процессор с частотой до 600MHz, но главное — она гораздо больше соответствует стандарту ATX, так что описанных выше проблем не возникает. Производительность при тестировании на однопоточных приложениях и «счетных» задачах существенно возросла. Правда «старая» плата быстрее на серверных приложениях благодаря описанной выше 256–разрядной памяти (на LX–плате она 128–разрядная).

Планируется также выпуск платы AlphaPC164UX — больше разъемов для расширения памяти, выше поддерживаемые тактовые частоты (до 800 МГц), и интегрированные на плате Ethernet 10/100 и UltraWideSCSI адаптеры.

Есть еще несколько небольших фирм, выпускающих платы для процессора Alpha — Alta Technology, Aspen, Polywell — но при ближайшем рассмотрении они все оказались «копиями» плат Digital. Судя по тому, что расположение компонент на плате совпадает, изготовлены они все по документации, полученной от Digital, а то и просто — фирмы закупают саму плату, микросхемы, «распаивают» их и дают «свое» название. Несмотря на то, что многие фирмы анонсировали «оригинальные» платы еще полгода назад, ни одна так и не приступила к их коммерческому выпуску — сказываются, по-видимому, сложность технологии, высокие тактовые частоты и высокие требования Digital к сертифицируемой продукции.

Производительность

Оценка производительности — дело достаточно сложное. Собственно, вывести некую «абсолютную» величину скорости работы процессора вообще практически невозможно; слишком многое зависит от операционной системы, специфики приложений и т.д. Для сравнения систем, работающих под Windows 95 и Windows NT, обычно используют тесты от Ziff-Davis: ZD WinBench и ZD WinStone. Они позволяют протестировать весь комплекс в целом, создавая условия, максимально приближенные к «реальным», т.е. тем, в которых работает «средний пользователь».

Однако, такие тесты совершенно непригодны для сравнения разных процессоров, работающих в разных операционных системах. Здесь больше подходит набор неких «усреднённых» тестов, легко переносимых на любую платформу; таковыми являются SPECint95 (для операций с фиксированной точкой) и SPECfp95 (для операций с плавающей точкой).

Цифры впечатляют: 18 SPECint95 и 27 SPECfp95 для 21164–600; 40 SPECint95 и 60 SPECfp95 для 21264–600. Для сравнения: процессор Pentium II с частотой 333MHz и кэш-памятью 512Kb показывает около 13 на тесте SPECint и 9 на SPECfp.

Фирма Aspen Systems, Inc., поставляющая рабочие станции на базе Alpha, приводит следующие данные:

SPECint95

SPECfp95

Aspen Systems

Alpha 21064, 275 MHz

4.24

6.29

Alpha 21164PC, 400MHz

10.4

14.2

Alpha 21164PC, 466 MHz

11.0

15.0

Alpha 21164PC, 500MHz

12.6

16.1

Alpha 21164, 266MHz

7.7

9.9

Alpha 21164, 300MHz

8.7

11.2

Alpha 21164, 333MHz

9.2

13.2

Alpha 21164, 366MHz

11.3

14.5

Alpha 21164, 400MHz

10.4

14.2

Alpha 21164, 433MHz

11.25*

18.3

Alpha 21164, 500MHz

15.6

22.5

Alpha 21164, 533MHz

16.6*

24.0*

Alpha 21164, 566MHz

17.6*

25.5*

Alpha 21164, 600MHz

18.0

27.0

Alpha 21164, 633MHz

19.0* **

28.5* **

Alpha 21164, 667MHz

20.1* **

30.0* **

Alpha 21264, 500MHz

33.3* **

50.00* **

Alpha 21264, 600MHz

40.0* **

60.00* **

Intel

Pentium II 233 MHz 512K cache

9.47

7.31

Pentium II 266 MHz 512K cache

10.8

7.98

Pentium II 300 MHz 512K cache

11.7

8.49

Pentium II 333 MHz 512K cache

12.8

9.25

SUN

UltraSPARC II 167 MHz

6.39

11.8

UltraSPARC II 250 MHz

7.88

14.7

UltraSPARC II 300 MHz

12.1

15.5

Silicon Graphics

R5000 180 MHz (O2)

4.8

5.4

R5000 200 MHz (O2)

5.4

5.7

R10000 175 MHz (Octane)

8.4

15.5

R1000 195 MHz (Octane)

9.3

17.0

Hewlett-Packard

8000 180 MHz

11.8

20.2

8200 220 MHz

15.5*

25.0*

* Ориентировочно

** Ещё не поставляется

Кроме того, интересны результаты следующих тестов:

–     

–     

–     

Все времена даны в миллисекундах.

Pentium MMX 200

Pentium II 300

Alpha 21164A-500 (native)

Alpha 21164A-500 (FX!32)

Тест 1

177

138

86

420

Тест 2

13,8

6,1

2,8

3,9

Тест 3

0,055

0,049

0,041

0,116

Тест 4

3,116

1,115

0,673

0,990

Тестирование для Pentium MMX проходило на компьютере с материнской платой ASUS TX97E, процессор Pentium-200 MMX, 64Mb SDRAM, 512Kb cache, Windows 95 OSR2; компилятор: Intel Optimizing compiler, входящий в состав Borland C++ 5.01.

Процессор Pentium II был установлен на материнской плате Intel AL440LX с 64Mb SDRAM, 512Kb cache; компилятор: Intel C/C++ Compiler 2.4.

Alpha: материнская плата AlphaPC164, процессор 21164A-500, 1024Kb cache, 128Mb FP DRAM; компилятор: Visual C++ 5.0 (RISC Edition).

Справедливости ради надо отметить, что вариант для Intel довольно тщательно оптимизировался с помощью пакета VTune с целью максимально загрузить конвейер Pentium (инструкции MMX, правда, не использовались). Вариант для процессора Alpha был получен простой перекомпиляцией (не считая небольших изменений, связанных с замерами времени), так что резервы для оптимизации имеются (применение даже довольно старых математических библиотек от Digital, разработанных в 1993 году ещё для Windows NT 3.1, даёт дополнительный выигрыш до 15%).

Последний столбец в таблице показывает время выполнения на Alpha тестов, скомпилированных для процессора Intel, т.е. в режиме эмуляции. Результаты достаточно приличные; несколько портит картину только первый тест — дело в том, что используемые в нём массивы данных не умещаются во внутреннюю кэш–память).

В лаборатории журнала BYTE (см. «Low-Cost Alpha Offers Cheap Power», February 1998) был проведён сравнительный анализ последних моделей от Micron (Powerdigm XSU) и Hewlett-Packard (Kayak XU), построенных на базе двух процессоров Pentium II, и рабочей станции «начального уровня» от Microway (Scream'n Demon-SX 533) на базе Alpha 21164PC. При том, что последняя дешевле своих конкурентов более чем в два раза, она с легкостью оставила их позади, выполнив тест Lightwave 3D за 683 секунды, в то время как Micron и HP потратили на него 833 и 842 секунды, соответственно. И для сравнения — результаты, полученные на процессоре Alpha 21164A: 511 секунд при частоте 600MHz и 594 секунды при частоте 533MHz.

С выпуском компанией Intel процессора Merced ситуация вряд ли изменится. Этот процессор и так уже опаздывает на два года; ожидается, что он будет иметь производительность порядка 40 SPECint. Alpha пересекут этот барьер уже летом нынешнего года; а к моменту выхода Merced (примерно через год) Digital и Samsung будут иметь процессор Alpha 21364, с производительностью порядка 130–160 SPECint.

Кстати, почти все кадры последнего голливудского блокбастера «Титаник» обрабатывались на Alpha–станциях — 200 компьютеров от Digital работали 24 часа в сутки в течение двух месяцев под управлением ОС Linux64. Великолепные спецэффекты в последних эпизодах широко известного сериала «Вавилон-5» тоже стали возможными только благодаря мощности процессора Alpha.

Программное обеспечение

На сегодняшний день существует более трёх тысяч «родных» приложений для компьютеров на базе процессоров Alpha, работающих под операционной системой Windows NT (Softimage, AutoCad, Lotus Notes, LightWave 3D), и их число постоянно увеличивается. На web–сервере Digital можно с лёгкостью проверить, перенесена ли та или иная программа на платформу Alpha; полный список приложений можно получить от DIGITAL Partner Applications Catalog

Некоторой неожиданностью стал недавний отказ фирмы Autodesk от выпуска новых версий AutoCad (начиная с версии 14) для этой платформы; по словам представителей фирмы, 240000 Alpha–систем (а именно столько было продано Digital за последний год) — это слишком мало.

Однако расстраиваться не стоит. Digital выпустила продукт FX!32 (распространяется бесплатно), позволяющий запускать на Alpha–станциях (работающих под Windows NT) приложения для DOS, Win16 и Win32 (Intel).

FX!32 — это не просто эмулятор. Будучи проинсталлированным, он отслеживает запуск «чужих» приложений и эмулирует процессор Intel только при первом их запуске, одновременно переводя команды для Intel в «родной» код Alpha. После того, как программа заканчивает выполнение, код довольно тщательно оптимизируется. При дальнейших запусках выполняется уже «родной» Alpha–код. Digital утверждает, что такой подход позволяет на 21164 достичь производительности, сравнимой с PentiumPro–200, что совсем неплохо. С совместимостью, кстати, проблем почти нет: скажем, Microsoft Office 97, работает под Windows NT (Alpha) даже надёжнее, чем под Windows 95 (в скором времени, кстати, Microsoft планирует выпустить если не полный Office, то как минимум Word 97 и Excel 97 для платформы Alpha). Даже такие «монстры», как 3D Studio Max и Adobe Photoshop 4.0, работают под FX!32 исключительно хорошо. Проблемы, конечно же есть, но их немного и они в принципе решаемы. Ожидается, что эта технология будет встроена в финальную версию Windows NT 5.0.

Разработчики приложений для Windows NT тоже не испытывают трудностей при переносе своих программ на Alpha: Microsoft недавно выпустила Visual C++ v.5.0 и даже Visual Basic v.5.0 (RISC edition). Вышел также и Digital Visual Fortran, ранее известный как Microsoft Fortran PowerStation — Microsoft полностью передала его фирме Digital (включая Intel–версию). Опыт показывает, что простой перекомпиляции исходных текстов обычно бывает достаточно (плюс некоторые «мелочи» — например, разные размеры страниц памяти у процессоров Intel и Alpha); определённые сложности вызывает только перенос kernel–mode драйверов, но и эта проблема решаема (можно, например, воспользоваться услугами Microsoft Porting Lab или DEC Migration Lab).

Тем не менее «родной» операционной системой для процессора Alpha является всё–таки UNIX. В отличие от NT, UNIX — полностью 64-разрядная система, а это немаловажно для некоторых приложений (32–разрядная адресация в Windows NT позволяет держать в памяти «всего» 4Gb данных, и это достаточно серьёзное ограничение для систем управления базами данных и ряда других приложений). Следующая версия NT будет поддерживать 64–разрядные адреса (VLM — Very Large Memory), но истинно 64–разрядной будет только NT 6.0. Впрочем, большинство пользователей могут об этом не беспокоиться; нижеприведённые данные показывают, что существенной разницы в скорости работы под Digital UNIX и Windows NT не наблюдается (тестировались рабочие станции Digital Personal Workstation; модели 433a, 433au, 500a, 500au, 600a, и 600au — первые три цифры означают тактовую частоту процессора, "а" - Alpha, "u" - Unix):

SPECint_base95

CPU

MHz

NT

Unix

Ratio

Alpha 21164

433

12.2

12.1

101%

Alpha 21164

500

13.9

13.7

101%

Alpha 21164

600

16.3

16.0

102%

SPECfp_base95

CPU

MHz

NT

Unix

Ratio

Alpha 21164

433

15.3

16.9

91%

Alpha 21164

500

16.5

18.0

92%

Alpha 21164

600

18.4

19.9

92%

Будущее

Во втором квартале текущего года должно начаться производство процессора 21264 (EV6) — по той же 0.35–микронной технологии, что и 21164; количество транзисторов на площади 302 мм2 — более пятнадцати миллионов; внутренняя кэш–память будет расширена до 128 килобайт (2x64), а частота обращения к ней достигнет 333MHz (пропускная способность — до 5.2GBps). Анонсирован и новый набор микросхем 21272 «Tsunami», который поддерживает один или два процессора 21264, одну или две шины памяти (256-бит, 83MHz, SDRAM) и две параллельных 64–разрядных шины PCI (пропускная способность — до 2.6 GBps).

Сфера применения систем на базе Alpha процессоров

Учитывая отношение цена/качество систем на базе Альфы, можно предположить, что они смогут потеснить продукцию Intel, особенно на рынке настольных рабочих станций (в сервере вычислительная мощность процессора не является определяющей, гораздо больше зависит от пропускной способности дисковой и сетевой подсистемы).

Учитывая дороговизну DigitalUNIX и слабую поддержку Windows наиболее разумным выбором будут, получившие широкое распространение в Internet, свободно распространяемые варианты Unix–подобных систем — Linux, NetBSD.

Делая такой выбор мы перестаем зависеть от прихоти одного производителя и сводим затраты на программное обеспечение к нулю.

Linux для Альф имеет едва ли не такую же широкую поддержку как и для i386, делая такой выбор можно получить доступ к огромному количеству качественного бесплатного программного обеспечения и главное, к опыту накопленному «сетевой общественностью».

В последнее время все больше производителей коммерческого программного обеспечения портируют свои приложения на платформу Linux, так что любители «коробочных» программ также найдут для себя много интересного.

Люди, желающие получить надежную систему и обеспокоенные проблемами безопасности информации, сочтут более подходящим вариантом NetBSD — на­след­ницу знаменитой 4.4 BSD Lite 2. Это проект, появившийся несколько позднее широко известной в кругах российских провайдеров операционной системы FreeBSD, призванный расширить круг поддерживаемого во FreeBSD железа (в частности архитектуру Альфа). NetBSD сохранила совместимость с FreeBSD и унаследовала высокое качество кода ядра и его устойчивость. Корме того NetBSD в отличие от Linux поддерживается централизованно и нет множества «чуть-чуть» отличающихся редакций, которые зачастую нуждаются в отдельном документировании. Так как NetBSD относится к семейству BSD, то и множество книг по 4.4 LIte2, BSDI, FreeBSD вполне подходят на роль сопроводительных документов.

Использование операционных систем Linux или NetBSD в качестве решений для систем на основе Альфы наиболее предпочтительны именно в России. Эти операционные системы бесплатные и пользуются широкой поддержкой в Интернете. Таким образом затраты на программное обеспечение при построении (например) Веб–сервера сведутся только к затратам на железо.

Архитектура IA64

В конце 1999 года Intel (в сотрудничестве с Hewlett–Packard) планирует представить Merced — первый процессор, построенный с использованием архитектуры нового поколения, совместно разработанной двумя компаниями. Хотя эта 64–разрядная архитектура основана на многолетних исследованиях Intel, HP, других компаний и университетов, она радикально отличается от всего, что было до сих пор представлено на рынке.

Эта архитектура, известная под названием Intel Architecture–64 (IA–64), пол­ностью «порывает с прошлым». IA–64 не является как 64–разрядным расширением 32–разрядной архитектуры х86 компании Intel, так и переработкой 64–разрядной архитектуры PA–RISC компании HP. IA–64 представляет собой нечто абсолютно новое — передовую архитектуру, использующую длинные слова команд (long instruction words (LIW)), предикаты команд (instruction predication), устранение ветвлений (branch elimination), предварительную загрузку данных (speculative loading) и другие ухищрения для того, чтобы «извлечь больше параллелизма» из кода программ. Несмотря на то, что Intel и HP обещали добиться обратной совместимости с существующим программным обеспечением, работающим на процессорах архитектур х86 и PA–RISC, они до сих пор не разглашают, каким образом это будет сделано. На самом деле обеспечить такую совместимость совсем не просто; достаточно вспомнить гораздо менее кардинальный переход с 16–разрядной на 32–разрядную архитектуру х86, продолжавшийся 12 лет и до сих пор не завершённый.

Правда, переход к архитектуре IA–64 в ближайшее время вряд ли затронет большинство пользователей, поскольку Intel заявила, что Merced разрабатывается для серверов и рабочих станций класса high–end, а не для компьютеров среднего уровня. Фактически, компания заявила, что IA–64 не заменит х86 в ближайшем будущем. Похоже на то, что Intel и другие поставщики продолжат разрабатывать чипы х86.

Перед тем, как углубиться в технические детали, попробуем понять, почему Intel и HP рискнули пойти на столь кардинальные перемены. Причина сводится к следующему: они считают, что как CISC, так и RISC–архитектуры исчерпали себя.

Небольшой экскурс в прошлое. Архитектура х86 компании Intel — CISC архитектура, появившаяся в 1978 году. В те времена процессоры представляли собой скалярные устройства (то есть могли в каждый момент времени выполнять только одну команду), при этом конвейеров практически не было. Процессоры содержали десятки тысяч транзисторов. PA–RISC компании HP была разработана в 1986 году, когда технология суперскалярных (с возможностью выполнения нескольких команд одновременно) конвейеров только начала развиваться. Процессоры содержали сотни тысяч транзисторов. В конце 90–х наиболее совершенные процессоры содержат миллионы транзисторов. К моменту начала выпуска Merced компания Intel планирует перейти на 0.18–микронную технологию вместо нынешней 0.25–микронной. Уже первые чипы архитектуры IA–64 будут содержать десятки миллионов транзисторов. В дальнейших модификациях их число увеличится до сотен миллионов.

Разработчики процессоров стремятся создавать чипы, содержащие как можно больше функциональных узлов — что позволяет обрабатывать больше команд параллельно — но одновременно приходится существенно усложнять управляющие цепи для распределения потока команд по обрабатывающим узлам. На данный момент лучшие процессоры не могут выполнять более четырёх команд одновременно, при этом управляющая логика занимает слишком много места на кристалле.

В то же время, последовательная структура кода программ и большая частота ветвлений делают задачу распределения потока команд крайне сложной. Современные процессоры содержат огромное количество управляющих элементов для того, чтобы минимизировать потери производительности, связанные с ветвлениями, и извлечь как можно больше «скрытого параллелизма» из кода программ. Они изменяют порядок команд во время исполнения программы, пытаются предсказать, куда необходимо будет перейти в результате очередного ветвления, и выполняют команды до вычисления условий ветвления. Если путь ветвления предсказан неверно, процессор должен сбросить полученные результаты, очистить конвейеры и загрузить нужные команды, что требует достаточно большого числа тактов. Таким образом, процессор, теоретически выполняющий четыре команды за такт, на деле выполняет менее двух.

Проблему ещё осложняет тот факт, что микросхемы памяти не успевают за тактовой частотой процессоров. Когда Intel разработала архитектуру х86, процессор мог извлекать данные из памяти с такой же скоростью, с какой он их обрабатывал. Сегодня процессор тратит сотни тактов на ожидание загрузки данных из памяти, даже несмотря на наличие большой и быстрой кэш–памяти.

Говоря о том, что CISC– и RISC–архитектуры исчерпали себя, Intel и HP имеют в виду обе эти проблемы. В двух пространных интервью журналу BYTE они раскрыли некоторые детали архитектуры IA-64:

–      encoding» (русский аналог подобрать сложно, наиболее адекватно перевести как «кодирование в длинные слова команд»). Однако компания Intel избегает такого названия, заявляя, что с ним связаны «негативные ассоциации» (negative connotation). По той же причине Intel не любит называть сами команды RISC–подобными (RISC–like), даже несмотря на то, что они имеют фиксированную длину и предположительно оптимизированы для исполнения за один такт в ядре, не нуждающемся в микрокоде. Intel предпочитает называть свою новую LIW–технологию Explicitly Parallel Instruction Computing или EPIC (Полностью Параллельного Выполнения Команд). В любом случае формат команд IA–64 не имеет ничего общего с х86. Команды х86 могут иметь длину от 8 до 108 бит, и процессор должен последовательно декодировать каждую команду после определения её границ.

–      template) длиной в несколько бит, помещаемый в него компилятором, который указывает процессору, какие из команд могут выполняться параллельно. Теперь процессору не нужно будет анализировать поток команд в процессе выполнения для выявления «скрытого параллелизма». Вместо этого наличие параллелизма определяет компилятор и помещает информацию в код программы. Каждая команда (как для целочисленных вычислений, так и для вычислений с плавающей точкой) содержит три 7–битных поля регистра общего назначения (РОН). Из этого следует, что процессоры архитектуры IA–64 содержат 128 целочисленных РОН и 128 регистров для вычислений с плавающей точкой. Все они доступны программисту и являются регистрами с произвольным доступом (programmer-visible random–access registers). По сравнению с процессорами х86, у которых всего восемь целочисленных РОН и стек глубины 8 для вычислений с плавающей точкой, IA–64 намного «шире» и, соответственно, будет намного реже простаивать из-за «нехватки регистров».

–      predication) для устранения потерь производительности из–за неправильно предсказанных переходов и необходимости пропуска участков кода после ветвлений. Когда процессор встречает «отмеченное» ветвление в процессе выполнения программы, он начинает одновременно выполнять все ветви. После того, как будет определена «истинная» ветвь, процессор сохраняет необходимые результаты и сбрасывает остальные.

–      (speculative loading) и проверки загрузки (speculative check). Во время выполнения программы первая из команд загружает данные в память до того, как они понадобятся программе. Вторая команда проверяет, успешно ли произошла загрузка, перед тем, как разрешить программе использовать эти данные. Предварительная загрузка позволяет уменьшить потери производительности из-за задержек при доступе к памяти, а также повысить параллелизм.

Из всего вышесказанного следует, что компиляторы для процессоров архитектуры IA-64 должны быть намного «умнее» и лучше знать микроархитектуру процессора, код для которого они вырабатывают. Существующие чипы, в том числе и RISC–процессоры, производят гораздо больше оптимизации на этапе выполнения программ, даже при использовании оптимизирующих компиляторов. IA–64 перекладывает практически всю работу по оптимизации потока команд на компилятор. Таким образом, программы, скомпилированные для одного поколения процессоров архитектуры IA–64, на процессорах следующего поколения без перекомпиляции могут выполняться неэффективно. Это ставит перед поставщиками нелёгкую задачу по выпуску нескольких версий исполняемых файлов для достижения максимальной производительности.

Другим не очень приятным следствием будет увеличение размеров кода, так как команды IA–64 длиннее, чем 32–битные RISC–команды (порядка 40 бит). Компиляция при этом будет занимать больше времени, поскольку IA–64, как уже было сказано, требует от компилятора гораздо больше действий. Intel и HP заявили, что уже работают совместно с поставщиками средств разработки над переработкой этих программных продуктов.

Технология «отмеченных команд» является наиболее характерным примером «дополнительной ноши», перекладываемой на компиляторы. Эта технология является центральной для устранения ветвлений и управления параллельным выполнением команд.

Обычно компилятор транслирует оператор ветвления (например, IF–THEN–ELSE) в блоки машинного кода, расположенные последовательно в потоке. В зависимости от условий ветвления процессор выполняет один из этих блоков и перескакивает через остальные. Современные процессоры стараются предсказать результат вычисления условий ветвления и предварительно выполняют предсказанный блок. При этом в случае ошибки много тактов тратится впустую. Сами блоки зачастую весьма малы — две или три команды — а ветвления встречаются в коде в среднем каждые шесть команд. Такая структура кода делает крайне сложным его параллельное выполнение.

Когда компилятор для IA–64 находит оператор ветвления в исходном коде, он исследует ветвление, определяя, стоит ли его «отмечать». Если такое решение принято, компилятор помечает все команды, относящиеся к одному пути ветвления, уникальным идентификатором, называемым предикатом (predicate). Например, путь, соответствующий значению условия ветвления TRUE, помечается предикатом Р1, а каждая команда пути, соответствующего значению условия ветвления FALSE — предикатом Р2. Система команд IA–64 определяет для каждой команды 6–битное поле для хранения этого предиката. Таким образом, одновременно могут быть использованы 64 различных предиката. После того, как команды «отмечены», компилятор определяет, какие из них могут выполняться параллельно. Это опять требует от компилятора знания архитектуры конкретного процессора, поскольку различные чипы архитектуры IA–64 могут иметь различное число и тип функциональных узлов. Кроме того, компилятор, естественно, должен учитывать зависимости в данных (две команды, одна из которых использует результат другой, не могут выполняться параллельно). Поскольку каждый путь ветвления заведомо не зависит от других, какое–то «ко­ли­чест­во параллелизма» почти всегда будет найдено.

Заметим, что не все ветвления могут быть отмечены: так, использование ди­на­ми­ческих методов вызова приводит к тому, что до этапа выполнения невозможно определить, возникнет ли исключение. В других случаях применение этой технологии может привести к тому, что будет затрачено больше тактов, чем сэкономлено.

После этого компилятор транслирует исходный код в машинный и упаковывает команды в 128–битные пакеты. Шаблон пакета (bundle's template field) указывает не только на то, какие команды в пакете могут выполняться независимо, но и какие команды из следующего пакета могут выполняться параллельно. Команды в пакетах не обязательно должны быть расположены в том же порядке, что и в машинном коде, и могут принадлежать к различным путям ветвления. Компилятор может также помещать в один пакет зависимые и независимые команды, поскольку возможность па­рал­лельного выполнения определяется шаблоном пакета. В отличие от некоторых ранее существовавших архитектур со сверхдлинными словами команд (VLIW), IA–64 не добавляет команд «нет операции» (NOPS) для дополнения пакетов.

Во время выполнения программы IA–64 просматривает шаблоны, выбирает взаимно независимые команды и распределяет их по функциональным узлам. После этого производится распределение зависимых команд. Когда процессор обнаруживает «отмеченное» ветвление, вместо попытки предсказать значение условия ветвления и перехода к блоку, соответствующему предсказанному пути, процессор начинает параллельно выполнять блоки, соответствующие всем возможным путям ветвления. Таким образом, на машинном уровне ветвления нет.

Разумеется, в какой-то момент процессор наконец вычислит значение условия ветвления в операторе IF–THEN–ELSE. Предположим, оно равно TRUE, сле­до­ва­тельно, правильный путь отмечен предикатом Р1. 6–битному полю предиката соответствует набор из 64 предикатных регистров (predicate registers) Р0–Р63 длиной 1 бит. Процессор записывает 1 в регистр Р1 и 0 во все остальные.

К этому времени процессор, возможно, уже выполнил некоторое количество ко­манд, соответствующих обоим возможным путям, но до сих пор не сохранил результат. Перед тем, как сделать это, процессор проверяет соответствующий предикатный ре­гистр. Если в нём 1 — команда верна и процессор завершает её выполнение и со­храняет результат. Если 0 — результат сбрасывается.

Технология «отмеченных команд» существенно снижает негативное влияние ветвлений на машинном уровне. В то же время, если компилятор не «отметил» ветвление, IA–64 действует практически так же, как и современные процессоры: пытается предсказать путь ветвления и т.д. Испытания показали, что описанная технология позволяет устранить более половины ветвлений в типичной программе, и, следовательно, уменьшить более чем в два раза число возможных ошибок в пред­ска­за­ниях.

Другой ключевой особенностью IA–64 является предварительная загрузка дан­ных. Она позволяет не только загружать данные из памяти до того, как они по­на­до­бятся программе, но и генерировать исключение только в случае, если загрузка прошла неудачно. Цель предварительной загрузки — разделить собственно загрузку и ис­пользование данных, что позволяет избежать простоя процессора. Как и в технологии «отмеченных команд» здесь также сочетается оптимизация на этапе компиляции и на этапе выполнения.

Сначала компилятор просматривает код программы, определяя команды, ис­пользующие данные из памяти. Везде, где это возможно, добавляется команда пред­ва­ри­тельной загрузки на достаточно большом расстоянии перед командой, ис­пользу­ющей данные и команда проверки загрузки непосредственно перед командой, ис­пользу­ющей данные.

На этапе выполнения процессор сначала обнаруживает команду предварительной за­грузки и, соответственно, пытается загрузить данные из памяти. Иногда попытка ока­зывается неудачной — например, команда, требующая данные, находится после ветвления, условия которого ещё не вычислены. «Обычный» процессор тут же генерирует исключение. IA–64 откладывает генерацию исключения до того момента, когда встретит соответствующую команду проверки загрузки. Но к этому времени условия ветвления, вызывавшего исключение, уже будут вычислены. Если команда, инициировавшая предварительную загрузку, относится к неверному пути, загрузка признается неудачной и генерируется исключение. Если же путь верен, то исключение вообще не генерируется. Таким образом, предварительная загрузка в архитектуре IA–64 работает аналогично структуре типа TRY–CATCH.

Возможность располагать команду предварительной загрузки до ветвления очень существенна, так как позволяет загружать данные задолго до момента использования (напомним, что в среднем каждая шестая команда является командой ветвления).

В 80–е годы некоторые разработчики RISC–процессоров высмеивали CISC–ар­хи­тек­туру и предрекали скорую погибель семейству х86. Но технологии и бизнес — раз­ные вещи. Несмотря на технологические преимущества RISC–архитектуры, огромные ре­сурсы корпорации Intel и господство операционных систем DОS и Windows привели к тому, что процессоры архитектуры х86 остаются конкурентоспособными до сих пор. Теперь уже Intel заявляет, что RISC–архитектура устарела. В любом случае, до выхода в свет первого процессора архитектуры IA–64 остаётся ещё два года, и у конкурентов есть время принять ответные меры.

Материнские платы, наборы микросхем

Intel 430TX PCIset

18 марта 1997 г. официально появились пробные образцы нового чипсета пятого поколения от Intel — 430TX. Этот чипсет рассчитан для применения в настольных и мобильных системах. Для изготовления применена передовая двухчиповая технология — TDP:82439TX, PIIX4:82371AB.

Этот чипсет приходит на смену i430VX, но к сожалению не на смену i430HX. Новый чипсет не поддерживает (официально) более 66MHz по шине, и не кэширует более 64Mb оперативной памяти. Однако уменьшено, как и ожидалось, количество тактов на синхронной памяти.

Характеристика i430TX:

Поддержка:

–      DRAM support: SDRAM, EDO, FPM

–      Ultra DMA / ATA–33 (DMA Bus master support)

–      USB support

–      Concurrent PCI (PCI 2.1)

–      Dynamic Power Management Architecture (DPMA) с поддержкой Advanced Configuration and Power Interface (ACPI), снижает потребление энергии микросхемами на 75%

–      System Management Bus)

Встроенные функции:

–      PCI–ISA Bridge

–      Standart AT functions

–      real–time clock (RTC)

–      IDE è GPIO ports (Master/Slave independent drive timing)

Положительные качества:

–      Max L2 Cache size — 512Kb Pipelined Burst SRAM

–      Max DRAM size — 256Mb (6 RAS lines)

–      Max Cacheable DRAM — 64Mb

–      DRAM Timing at 66MHz Bus speed

FPM RAM

5-3-3-3

EDO RAM

5-2-2-2

BEDO RAM

n/a

SDRAM

5-1-1-1

–      DRAM refresh — CAS before RAS

–     

–     

–      Prefetch – 18DW=72Byte

Отрицательные качества:

–      Dual/Multi процессорной конфигурации — НЕТ

–     

–      Accelerated Graphics Port) — НЕТ

Intel 440LX AGPset

В сочетании с архитектурой двойной независимой шины (DIB) процессора Pentium II набор микросхем 440LX AGPset призван стать фундаментальной аппаратной основой нового класса ПК на базе Slot 1 (вместо чипсета i440FX), ориентированных на визуальную обработку.

Новый набор микросхем разработан с целью оптимизации и балансировки системной производительности, вклад в которую дает как сам процессор Pentium II, так и другие компоненты вычислительной платформы, включая графическую подсистему и оперативную память. Он представляет собой уникальный вариант оптимизированной архитектуры, получившей название «порта с учетверенным быстродействием» (QPA). К числу основных компонентов QPA относятся: AGP с прямым подсоединением (Direct Connect AGP), система динамического распределенного арбитража (Dynamic Distributed Arbitration) и средства многопоточного доступа к памяти (Multistream Memory Access). QPA в сочетании с процессором Pentium II и AGP поддерживает масштабирование производительности ПО трехмерной графики, в том числе компьютерных игр и иных развлекательных приложений, обучающих программ, систем обработки оцифрованных изображений.

Процессор Pentium II и набор микросхем 440LX AGPset можно рассматривать как «строительные блоки», ориентированные на разработку сбалансированных вычислительных платформ с высокой производительностью и средствами сетевого управления для универсальных ПК и Net PC, применяемых в деловой сфере. Помимо QPA, микросхемы 440LX AGPset обладают рядом функций и характеристик, позволяющих удовлетворить требования к ПК со стороны как существующих, так и будущих приложений. Новые микросхемы дадут возможность оснастить персональные компьютеры усовершенствованным интерфейсом для контроля за энергопотреблением (ACPI), средствами поддержки технологии plug-and-play, компонентами Ultra DMA (на базе контроллера PIIX4, используемом также в чипсете i430TX) в целях ускорения прямого доступа к памяти и модулями SDRAM, позволяющими повысить системную производительность. Поддержка интерфейса ACPI позволит изготовителям ПК дополнить свою продукцию сетевыми функциями управления энергопотреблением, вывода компьютера из неактивного состояния либо его дистанционного поддержания в постоянно включенном (AlwaysOn) режиме.

Запущенный в массовое производство набор микросхем Intel 440LX AGPset состоит из двух чипов: контроллера PCI AGP Controller (PAC) в корпусе типа 492 BGA и акселератора PCI, ISA, IDE Accelerator (PIIX4) в корпусе типа 324 BGA.

Характеристика i440LX:

Поддержка:

–      Pentium–II

–     

–     

–     

–     

–     

–     

Контроллер системной памяти:

–     

–     

–     

–     

–     

–     

–     

Контроллер ввода/вывода PIIX4:

–     

–     

–     

–     

–     

–      System Management Bus)

–     

Сравнение i440LX и i440FX:

440FX

440LX

AGP

No

Yes

SDRAM

No

Yes

EDO

Yes

Yes

66Mhz Bus

Yes

Yes

ECC

Yes

Yes

DRAM Bank No.(max)

8

8

Max. memory per bank

128MB

128MB

Ultra DMA-33

No

Yes

ACPI

No

Yes

I2C(SMBus)

No

Yes

Чипсет Intel 440BX

Спустя полгода с появления революционного чипсета Intel 440LX, в котором был впервые применен ускоренный графический порт AGP и поддерживалась память SDRAM, 15 апреля Intel выбросила на рынок свой новый продукт — набор логики Intel 440BX. Выпуск этого набора микросхем ознаменует начало нового этапа в развитии Slot 1 систем. Это будет эра наращивания частоты системной шины, которая уже на протяжении нескольких лет задержалась на отметке 66 МГц. Новый чипсет Intel 440BX предназначен для материнских плат для процессора Pentium II и поддерживает внешнюю частоту (системной шины) 100 МГц. На этой частоте работает, в частности, системная память.

Собственно, в официальной поддержке 100–мегагерцовой шины и заключается основное отличие интеловских чипсетов 440LX и 440BX.

Характеристика Intel 82440BX AGPSet

Процессор

–      Slot–1 процессоров Pentium II

–     

Поддержка памяти типа EDO RAM и SDRAM

–     

–     

–     

–     

–     

PIIX4 IDE-контроллер

–     

–      Bus Mastering

–      UltraDMA

–      Mode 5/DMA Mode 3

Синхронный интерфейс PCI

–     

–     

–      Power Management

–     

Ускоренный графический порт AGP

–      mode (66/133 МГц)

–      Unified Memory Architecture отсутствует

Поддержка USB

1 x 492–pin BGA чип 82443BX

Поддерживаемые частоты системной шины 66 и 100 МГц

Благодаря разгону, и на 440LX можно было получить 75, 83 или даже 92 МГц внешней частоты, но 440ВХ поддерживает 100 МГц официально, а путем разгона частота шины повышается до 103, 112, 133 МГц: основные производители материнских плат предоставят нам такую возможность.

Здесь следует заметить, что поскольку кэш второго уровня в Pentium II работает на 1/2 от частоты самого процессора, то разгон системной шины на нем никак не сказывается. Однако же, благодаря этому факту, выпускаемые сейчас Pentium II смогут легко работать на шине 100 МГц. При этом применяемые сейчас Intel меры против разгона — наличие только одного коэффициента умножения — действия не возымеют. Правда, при этом эффект от такого разгона будет несколько ниже, чем при аналогичных действиях с Socket–7 чипами.

Раз так, то попробуем разобраться, какие преимущества может в действительности дать новый интеловский набор микросхем.

Во-первых при использовании 440LX не гарантировалось, что при частоте шины более 66 МГц система будет работоспособна. Проблема заключалась в том, что для получения несущей частоты на шине PCI использовался делитель 2 относительно шины и при установке внешних 75 МГц, на PCI получалось 37,5 МГц, что на 15% выше стандарта, при установке внешних 83 МГц — на PCI было 41,5 МГц, то есть выше нормы на 25%. При этом многие PCI–карты, в особенности SCSI–контроллеры, теряли свою работоспособность. Теперь таких проблем не будет. Хотя, при этом периферия разгоняться не будет совсем, и скорость видео и жесткого диска при разгоне не возрастет.

Чипсет Intel 440BX поддерживает кроме делителя 2 для PCI еще и делитель 3, который применяется на внешних частотах выше 100 МГц включительно. Так что если, все-таки материнская плата позволяет установить 75 и 83 МГц, то по сравнению с 440LX Вы ничего не потеряете. Однако, некоторые LX–платы имели установку 92 МГц. Такого с BX пока не будет.

Второе, на этот раз неоспоримое преимущество 440BX, заключается в том, что этот чипсет будет поддерживать все выходящие процессоры Deschutes с большими внутренними частотами.

Однако и существующие в настоящее время Pentium–II процессоры будут работать на материнских платах с набором логики Intel 440BX, что немаловажно. Это возможно, так как частотозависимый L2-кеш в Pentium II тактуется от внутренней частоты, а не от шины.

Что же станет с производительностью? Те тесты, которые мы проводили с Socket 7–процессорами, на предмет исследования эффективности 100–мегагерцовой шины, показали 15–процентный прирост производительности на одинаковых внутренних частотах, но с внешними 66 и 100 МГц. Но не надо забывать о том, что используя 100 МГц на Socket-7, мы разгоняем и внешний кэш. В 440ВХ, L2-кеш не ускоряется, поэтому прирост производительности при применении 100–мегагерцовой шины составит, по нашим оценкам, не более 7%. Возможно, некоторые материнские платы на чипсете ВХ будут иметь недокументированно–устанавливаемую частоту 150 МГц. Если так, то прирост может оказаться побольше. Но в любом случае, уже через год будет вовсю применяться системная шина 200 МГц, которая будет поддержана процессором Katmai, что вполне возможно благодаря новому типу памяти RAMBUS, которая способна работать на такой частоте.

Пока же, проблема с памятью приобретает особый вес и не может быть обойдена. Дело в том, что существующая сейчас память работает на 100 МГц с большим трудом. Intel хочет добиться внедрения спецификации PC100 на память, которая требует специально изготовленных модулей. Однако, эксперименты показали, что на 100 МГц может прекрасно работать любая память со временем доступа 7 нс или брендовая память со временем доступа 10 нс. Правда, тут есть одна тонкость. Спецификация PC100 требует наличия SPD на модуле. При его отсутствии, система может не работать вовсе, примерно как сейчас это делают интеловские платы на чипсете 440LX. Но, к счастью, SPD используется не чипсетом, а BIOS, который, в принципе, может к SPD и не обращаться. Так что в этом вопросе вся надежда на производителей материнских плат, чтобы они не начали рьяно исполнять интеловскую рекомендацию.

Так что ничего революционно нового в Intel 440BX нет. А вот что действительно интересно, это новый IDE–контроллер PIIX6, который появится через несколько месяцев. А это Firewire и UltraDMA-66.

Оперативная память

Системная память: взгляд в будущее

До 2000 года в мир персональных компьютеров войдет несколько новых архитектур высокоскоростной памяти. В настоящее время, с конца 1997 года по начало 1998 основная память PC осуществляет эволюцию от EDO RAM к SDRAM — синхронную память, которая, как ожидается будет доминировать на рынке с конца 1997 года. Графические и мультимедийные системы в которых сегодня применяется RDRAM перейдет к концу года на Concurrent (конкурентную) RDRAM. Итак, в период между 1997 и 2000 годом будут развиваться пять основных технологий:

–     

–     

–     

–      Concurrent RAMBus;

–      Direct RAMBus.

График, приведенный ниже, приближенно демонстрирует время появления и применения будущих технологий памяти.

Крайне сложно предсказать, на чем остановится прогресс. Все десять крупнейших производителей памяти, такие как Samsung, Toshiba и Hitachi, разрабатывающие Direct RDRAM, также продолжают развивать агрессивную политику, направленную на развитие альтернативных технологий памяти следующих поколений, таких как DDR и SLDRAM. В связи с этим образовалось любопытное объединение конкурентов.

Необходимость увеличения производительности системы памяти.

Быстрое развитие аппаратных средств и программного обеспечения привело к тому, что вопрос эффективности встает на первое место. Фактически, несколько лет назад, Гордон Мур, президент корпорации Intel, предсказал, что мощность центрального процессора в персональном компьютере будет удваиваться каждые 18 месяцев (Закон Мура). Мур оказался прав. С 1980 года до настоящего момента тактовая частота процессора Intel, установленного в персональном компьютере возросла в 60 раз (с 5 до 300MHz). Однако, за то же время, частота, на которой работает системная память со страничной организацией (FPM), возросла всего в пять раз. Даже применение EDO RAM и SDRAM увеличило производительность системы памяти всего в десять раз. Таким образом, между производительностью памяти и процессора образовался разрыв. В то время как процессоры совершенствовались в архитектуре, производство памяти претерпевало лишь технологические изменения. Емкость одной микросхемы DRAM увеличилась с 1Мбит до 64Мбит. Это позволило наращивать объем применяемой в компьютерах памяти, но изменения технологии в плане увеличения производительности DRAM не произошло. То есть, скорость передачи не увеличилась вслед за объёмом.

Что касается потребностей, то вследствие применения нового программного обеспечения и средств мультимедиа, потребность в быстродействующей памяти нарастала. С увеличением частоты процессора, и дополнительным использованием средств мультимедиа новым программным обеспечением, не далек тот день, когда для нормальной работы PC будут необходимы гигабайты памяти. На этот процесс также должно повлиять внедрение и развитие современных операционных систем, например Windows NT.

Чтобы преодолеть возникший разрыв, производители аппаратных средств использовали различные методы. SRAM (Static RAM) применялся в кэше для увеличения скорости выполнения некоторых программ обработки данных. Однако для мультимедиа и графики его явно недостаточно. Кроме того, расширилась шина, по которой осуществляется обмен данными между процессором и DRAM. Однако теперь эти методы не справляются с нарастающими потребностями в скорости. Теперь на первое место выходит необходимость синхронизации процессора с памятью, однако, существующая технология не позволяет осуществить этот процесс.

Следовательно, возникает необходимость в новых технологиях памяти, которые смогут преодолеть возникший разрыв. Кроме SDRAM, это DDR, SLDRAM, RDRAM, Concurrent RDRAM, è Direct RDRAM.

Шесть технологий памяти будущего. Определения

SDRAM                     Synchronous (синхронная) DRAM синхронизирована с системным таймером, управляющим центральным процессором. Часы, управляющие микропроцессором, также управляют работой SDRAM, уменьшая временные задержки в процессе циклов ожидания и ускоряя поиск данных. Эта синхронизация позволяет также контроллеру памяти точно знать время готовности данных. Таким образом, скорость доступа увеличивается благодаря тому, что данные доступны во время каждого такта таймера, в то время как у EDO RAM данные бывают доступны один раз за два такта, а у FPM — один раз за три такта. Технология SDRAM позволяет использовать множественные банки памяти, функционирующие одновременно, дополнительно к адресации целыми блоками. SDRAM уже нашла широкое применение в действующих системах.

SDRAM II (DDR)     Synchronous DRAM II, или DDR (Double Data Rate — удвоенная скорость передачи данных) — следующее поколение существующей SDRAM. DDR основана на тех же самых принципах, что и SDRAM, однако включает некоторые усовершенствования, позволяющие еще увеличить быстродействие. Основные отличия от стандартного SDRAM: во-первых используется более «продвинутая» синхронизация, отсутствующая в SDRAM; а во-вторых DDR использует DLL (delay–locked loop — цикл с фиксированной задержкой) для выдачи сигнала DataStrobe, означающего доступность данных на выходных контактах. Используя один сигнал DataStrobe на каждые 16 выводов, контроллер может осуществлять доступ к данным более точно и синхронизировать входящие данные, поступающие из разных модулей, находящихся в одном банке. DDR фактически увеличивает скорость доступа вдвое, по сравнению с SDRAM, используя при этом ту же частоту. В результате, DDR позволяет читать данные по восходящему и падающему уровню таймера, выполняя два доступа за время одного обращения стандартной SDRAM. Дополнительно, DDR может работать на большей частоте благодаря замене сигналов TTL/LVTTL на SSTL3. DDR начнет производиться в 1998 году.

SLDRAM (SyncLink)   продукт DRAM–консорциума, является ближайшим конкурентом Rambus. Этот консорциум объединяет двенадцать производителей DRAM. SLDRAM продолжает дальнейшее развитие технологии SDRAM, расширяя четырёхбанковую архитектуру модуля до шестнадцати банков. Кроме того, добавляется новый интерфейс и управляющая логика, позволяя использовать пакетный протокол для адресации ячеек памяти. SLDRAM передает данные так же как и RDRAM, по каждому такту системного таймера. SLDRAM в настоящее время находится в стадии разработки, а промышленное производство ожидается в 1999 году.

RDRAM                     многофункциональный протокол обмена данными между микросхемами, позволяющий передачу данных по упрощенной шине, работающей на высокой частоте. RDRAM представляет собой интегрированную на системном уровне технологию. Ключевыми элементами RDRAM являются: модули DRAM, базирующиеся на Rambus; ячейки Rambus ASIC (RACs); схема соединения чипов, называемая Rambus Channel.

Rambus

Rambus, впервые использованный в графических рабочих станциях в 1995 году, использует уникальную технологию RSL (Rambus Signal Logic — сигнальная логика Rambus), позволяющую использование частот передачи данных до 600MHz на обычных системах и материнских платах. Существует два вида Rambus — RDRAM и Concurrent RDRAM. Микросхемы RDRAM уже производятся, а Concurrent RDRAM будет запущена в производство в конце 1997 года. Третий вид RDRAM — Direct RDRAM, находится в стадии разработки, а начало его производства планируется в 1999 году.

Rambus использует низковольтовые сигналы и обеспечивает передачу данных по обоим уровням сигнала системного таймера. RDRAM использует 8–битовый интерфейс, в то время как EDO RAM и SDRAM используют 4–, 8– и 16–битовый интерфейс. RAMBUS запатентована 11 крупнейшими производителями DRAM, обеспечивающими 85% всего рынка памяти. Samsung в настоящее время проектирует 16/18–Mбитную и 64–Mбитную RDRAM. Toshiba же уже производит 16/18–Mбитную RDRAM и разрабатывает 64–Mбитную RDRAM.

В 1996 году консорциум RDRAM получил поддержку со стороны корпорации Intel, и новые чипсеты фирмы Intel будут поддерживать технологию RDRAM с 1999 года. В настоящее время игровые видеоприставки Nintendo 64 используют технологию Rambus для 3D–графики и звука высокого качества. Стандартные PC производства Gateway и Micron поддерживают карты фирмы Creative Labs с Rambus на борту.

Concurrent Rambus использует улучшенный протокол, показывающий хорошее быстродействие даже на маленьких, случайно расположенных блоках данных. Concurrent Rambus применяется для 16/18/64/72–Mбитных модулей RDRAM. Это второе поколение RDRAM, отличается высокой эффективностью, необходимой для графических и мультимедийных приложений. По сравнению с RDRAM, применен новый синхронный параллельный протокол для чередующихся или перекрывающихся данных. Эта технология позволяет передавать данные со скоростью 600Мб/сек на канал и с частотой до 600MHz с синхронным параллельным протоколом, который еще повышает эффективность на 80%. Кроме того эта технология позволяет сохранить совместимость с RDRAM прошлого поколения. Планируется, что в 1998 году, благодаря дополнительным улучшениям, скорость передачи может достигнуть 800MHz.

Технология Direct Rambus — еще одно расширение RDRAM. Direct RDRAM имеют те же уровни сигналов (RSL: Rambus Signaling Level — уровень сигналов Rambus), но более широкую шину (16 бит), более высокие частоты (выше 800MHz) и улучшенный протокол (эффективность выше на 90%). Однобанковый модуль RDRAM будет обеспечивать скорость передачи 1.6Гбайт/сек, двухбанковый — 3.2Гбайт/сек. Direct Rambus использует два 8–битных канала для передачи 1.6Гбайт и 3 канала для получения 2.4Гбайт.

Сравнение:

SDRAM

DDR SDRAM

SLDRAM

RDRAM

Concurrent RDRAM

Direct RDRAM

Скорость передачи данных

125 MB/sec

200 MB/sec

400 MB/sec

600 MB/sec

600 MB/sec

1.6 GB/sec

MHz

125 MHz

200 MHz

400 MHz

600 MHz

600 MHz

800 MHz

Стандарт

JEDEC

JEDEC

SLDRAM Consortium

RAMBUS

RAMBUS

RAMBUS

Время появления

1997

1998

1999

1995

1997

1999

Питание

3.3V

3.3V

2.5V

3.3V

3.3V

2.5V

Интерфейсы IDE, SCSI, архитектура RAID

Интерфейсы, используемые для жёстких дисков IBM PC. Краткий обзор.

Первые винчестеры в PC XT имели интерфейс ST412/ST506; так как он ориентирован на метод записи MFM, его часто называют MFM–интерфейсом. Винчестер ST412/ST506 фактически представляет собой увеличенную копию обычного флоппи-дисковода: он содержит двигатель с автономной стабилизацией скорости вращения (обычно на индуктивном датчике или датчике Холла), усилитель записи–воспроизведения, коммутатор головок и шаговый привод позиционеpа с внешним управлением. Функции кодирования и декодирования данных, перемещения позиционеpа, форматирования поверхности и коррекции ошибок выполняет отдельный контроллер, к которому винчестер подключается двумя кабелями: 34–проводным кабелем управления и 20–проводным кабелем данных. Интерфейс поддерживает до восьми устройств; при этом кабель управления является общим, а кабели данных — отдельными для каждого винчестера. По кабелю управления передаются сигналы выбора накопителя, перемещения позиционеpа, выбора головки, включения режима записи, установки на нулевую дорожку и т.п. — так же, как и во флоппи–дисководах; по кабелям данных передаются считываемые и записываемые данные в дифференциальной форме (в точности в том виде, в каком они присутствуют на поверхности дисков), а также сигнал готовности накопителя.

Интерфейс ST412/ST506 используется также для работы с винчестерами при методе записи RLL/ARLL; в ряде случаев удается успешно подключить RLL–винчестеp к MFM–контpоллеpу и наоборот, однако покрытие поверхностей и параметры усилителей выбираются в расчете на конкретный метод записи, и максимальной надежности можно достичь только на нем.

Контроллер винчестеров с интерфейсами MFM/RLL/ESDI обычно содержит собственный BIOS, отображаемый в адрес C800 (MFM/RLL) или D000 (ESDI). По смещению 5 в сегменте MFM/RLL BIOS часто находится вход в программу обслуживания или форматирования накопителя, которую можно запустить командой "G=C800:5" отладчика DEBUG.

Интерфейс ESDI (Extended Small Device Interface — расширенный интерфейс малых устройств) также использует общий 34–пpоводной кабель управления и 20–пpоводные индивидуальные кабели данных, однако устроен принципиально иначе: часть контроллера, ответственная за управление записью/считыванием и кодирование/декодирование данных, размещена в самом накопителе, а по интерфейсным кабелям передаются только цифровые сигналы данных и управления в логике ТТЛ. переход на обмен чистыми данными позволил увеличить пропускную способность интерфейса примерно до 1.5 Мб/с и более эффективно использовать особенности накопителя (тип покрытия, плотность записи, резервные дорожки и т.п.). Из–за этих различий интерфейс ESDI несовместим с устройствами MFM/RLL.

Интерфейс SCSI (Small Computer System Interface — интерфейс малых компьютерных систем, произносится как «скази») является универсальным интерфейсом для любых классов устройств. В отличие от ST412/ST506 и ESDI, в SCSI отсутствует ориентация на какие-либо конкретные типы устройств – он лишь определяет протокол обмена командами и данными между равноправными устройствами; фактически SCSI является упрощенным вариантом системной шины компьютера, поддерживающим до восьми устройств. Такая организация требует от устройств наличия определенного интеллекта — например, в винчестерах SCSI все функции кодирования/декодирования, поиска сектора, коррекции ошибок и т.п. возлагаются на встроенную электронику, а внешний SCSI–контроллер выполняет функции обмена данными между устройством и компьютером — часто в автономном режиме, без участия центрального процессора (режимы DMA — прямого доступа к памяти, или Bus Mastering — задатчика шины). Шина базового SCSI представляет собой 50–пpоводной кабель в полном скоростном варианте, или 25–пpоводной — в упрощенном низкоскоростном.

Интерфейс IDE (Integrated Drive Electronics — электроника, встроенная в привод), или ATA (AT Attachment - подключаемый к AT) — простой и недорогой интерфейс для PC AT. Все функции по управлению накопителем обеспечивает встроенный контроллер, а 40–пpоводной соединительный кабель является фактически упрощенным сегментом 16–разрядной магистрали AT–Bus (ISA). простейший адаптер IDE содержит только адресный дешифратор — все остальные сигналы заводятся прямо на разъем ISA. адаптеры IDE обычно не содержат собственного BIOS — все функции поддержки IDE встроены в системный BIOS PC AT. Однако интеллектуальные или кэширующие контроллеры могут иметь собственный BIOS, подменяющий часть или все функции системного.

Основной режим работы устройств IDE — программный обмен (PIO) под управлением центрального процессора, однако все современные винчестеры EIDE поддерживают обмен в режиме DMA, а большинство контроллеров — режим Bus Mastering.

Модификации IDE–интеpфейса

На данный момент их насчитывается четыре: обычный IDE, или ATA; EIDE (Enhanced IDE — расширенный IDE), или ATA–2 (Fast ATA в варианте Seagate); ATA–3 и Ultra ATA.

В ATA–2 были введены дополнительные сигналы (IORDY, CSEL и т.п.), режимы PIO 3–4 и DMA, команды остановки двигателя. Был также расширен формат информационного блока, запрашиваемого из устройства по команде Identify.

В ATA–3 увеличена надежность работы в скоростных режимах (PIO 4 и DMA 2), введена технология S.M.A.R.T. (Self Monitoring Analysis And Report Technology — технология самостоятельного следящего анализа и отчета), позволяющая устройствам сообщать о своих неисправностях.

Стандарт Ultra ATA (называемый также ATA–33 и Ultra DMA–33) предложен фирмами Intel и Quantum. В нем повышена скорость передачи данных (до 33 Мб/с), предусмотрено стpобиpование передаваемых данных со стороны передатчика (в прежних ATA стpобиpование всегда выполняется контроллером) для устранения проблем с задержками сигналов, а также введена возможность контроля передаваемых данных (метод CRC).

Все четыре разновидности имеют одинаковую физическую реализацию — 40–контактный разъём, но поддерживают разные режимы работы, наборы команд и скорости обмена по шине. Все интерфейсы совместимы снизу вверх (например, винчестер ATA–2 может работать с контроллером ATA, но не все режимы контроллера ATA–2 возможны для винчестера ATA).

Отдельно стоит стандарт ATAPI (ATA Packet Interface — пакетный интерфейс ATA), представляющий собой расширение ATA для подключения устройств прочих типов (CDROM, стримеров и т.п.). ATAPI не изменяет физических характеристик ATA — он лишь вводит протоколы обмена пакетами команд и данных, наподобие SCSI.

Модификации SCSI–интерфейса

Базовый SCSI (Small Computer System Interface — интерфейс малых компьютерных систем), иногда называемый SCSI–1: универсальный интерфейс для подключения внешних устройств (до восьми, включая контроллер). Содержит развитые средства управления, в то же время не ориентирован на какой-либо конкретный тип устройств. Имеет 8–разрядную шину данных, максимальная скорость передачи — до 1.5 Мб/с в асинхронном режиме (по методу «запрос–подтверждение»), и до 5 Мб/с в синхронном режиме (метод «несколько запросов — несколько подтверждений»). Может использоваться контроль четности для обнаружения ошибок. Электрически реализован в виде 24 линий (однополярных или дифференциальных), кабель должен быть согласован терминаторами (нагрузочными резисторами) с обоих концов. Наибольшую популярность получил 50–пpоводной SCSI–кабель с 50–контактными разъёмами, однако используется и 25–пpоводной/25–контактный с одним общим проводом — для подключения низкоскоростных устройств. SCSI широко используется во многих моделях компьютеров, в студийном музыкальном оборудовании, системах управления технологическими процессами и т.п.

SCSI–2: существенное развитие базового SCSI. Сжаты временные диаграммы режима передачи (до 3 Мб/с в асинхронном и до 10 Мб/с в синхронном) – Fast SCSI, добавлены новые команды и сообщения, поддержка контроля четности сделана обязательной. Введена возможность расширения шины данных до 16 разрядов (Wide SCSI, 68–контактный разъём), что обеспечивает скорость до 20 Мб/с.

Ultra SCSI: введены еще более скоростные режимы передачи – до 20 Мб/с по 8–разрядному каналу и, соответственно, 40 Мб/с — по 16–разрядному (Ultra Wide SCSI).

Plug-and-play SCSI: добавлены средства поддержки технологии PnP — автоматическое опознание типа и функционального назначения устройств, настройка без помощи пользователя или при минимальном его участии, возможность замены устройств во время работы и т.п.

Все типы SCSI теоретически совместимы между собой (устройства самостоятельно устанавливают приемлемый протокол обмена). Однако на практике это не всегда так, и для согласования устройств может понадобиться ручная настройка при помощи перемычек или программ.

Несмотря на кажущееся засилье устройств с интерфейсом IDE/EIDE, по объемам выпуска за SCSI жесткими дисками все-таки остается около 27% рынка. Обычно это объясняют тем, что эти интерфейсы рассчитаны на разные сегменты рынка — IDE для «популярных и дешевых систем», а SCSI для «высокопроизводительных рабочих станций». Однако многие могут возразить, что в последнее время жесткие диски IDE достигли производительности SCSI и стоят значительно дешевле. И IDE контроллер, причем уже самый быстрый, обычно находится на материнской плате и не требует дополнительных материальных затрат, тогда как на хороший SCSI контроллер нужно потратить минимум $100. Однако на популярность SCSI это никак не сказывается.

SCSI или IDE

Спор «Что лучше: IDE или SCSI» входит в число самых распространенных во многих телеконференциях. Число сообщений и статей на эту тему очень велико. Однако этот вопрос, как и знаменитое «Windows NT or OS/2 or Unix», в такой постановке является неразрешимым. Наиболее частая и правильная реакция на них «А для чего?». Рассмотрев этот вопрос подробнее, Вы сможете принять для себя решение о необходимости SCSI для себя.

В таблице приведены данные о том, что может дать простой SCSI контроллер по сравнению с IDE и за что его нужно выбирать или не выбирать.

предложение SCSI

возражения EIDE/ATAPI

ответ SCSI

возможность подключения 7 устройств к одному контроллеру (к Wide — 15)

нетрудно установить 4 контроллера IDE и всего будет 8 устройств

на каждый контроллер IDE нужно по прерыванию! И только 2 будут с UDMA/33. А 4 UWSCSI это 60 устройств

широкий спектр подключаемых устройств

на IDE есть СDD, ZIP , MO, CD–R, CD–RW

Для каждого IDE–устройства (не винчестера) необходимы свои драйверы. Для SCSI можно использовать любые, в том числе входящие в состав ОС

возможность подключать как внутренние, так и внешние устройства

removable rack или LPT-IDE

общая длинна кабеля SCSI может достигать 25 метров. В обычных вариантах 3-6м*

не более метра

мало!

можно использовать кэширование и технологии RAID для кардинального повышения производительности и надежности

раньше были кэширующие Tekramы а сейчас появились и RAID для IDE

для серьёзных приложений это не годится

* Стоит заметить, что в случае использования интерфейса Ultra или Ultra Wide SCSI на качество соединительных кабелей и их длину накладываются дополнительные ограничения, в результате чего максимальная длина соединения может быть существенно снижена.

Чтобы не складывалось впечатление, что IDE это очень плохо, отметим и положительные качества IDE интерфейса, частично в свете выше приведенной таблицы:

1.   Цена. Бесспорно иногда это очень важно.

2.   Не всем нужно подключать 4 HDD и 3 CDD. Часто двух каналов IDE более чем достаточно, а многие сканеры идут со своими карточками.

3.   В корпусе minitower сложно использовать шлейф, длиннее 80см.

4.   IDE HDD установить гораздо проще, там всего один jumper, а не 4–16 как на SCSI.

5.   IDE контроллер уже есть у большинства материнских плат.

6.   У IDE устройств шина всегда 16 бит и для моделей, сравнимых по цене, IDE выигрывает по скорости.

Теперь о цене. Самый простой SCSI на шину ISA стоит около $20. Следующий вариант это контроллер на шине PCI. Простейший вариант FastSCSI стоит около $40. Однако сейчас появилось множество материнских плат, на которых всего за дополнительные $70 может быть установлен Adaptec 7880 UltraWideSCSI. Даже у знаменитых ASUS P55T2P4 и P2L97 есть варианты со SCSI. Для UWSCSI–карточки цена варьируется от $100 до $600. Также бывают двухканальные (как IDE на Intel Triton HX/VX/TX) контроллеры. Цена их естественно выше. Заметим, что в случае SCSI, в отличие от IDE, где что–то новое придумать сложно, за дополнительные деньги контроллеры могут быть расширены функциями кэш–контроллера, RAID–0¸5, hotswap и т.д., поэтому говорить о верхней границе стоимости контроллера не совсем корректно.

И наконец о скорости. Как известно, сегодня максимальная скорость передачи информации по шине IDE составляет 33Мб/с. Для UWSCSI аналогичный параметр достигает 40Мб/с. Основные преимущества SCSI проявляются при работе в мультизадачных средах (ну и в Windows95 немного). Многие тесты, приведенные под Windows NT показывают несомненное преимущество SCSI. Пожалуй это самая популярная на сегодня ОС, для которой применение SCSI более чем оправдано. Также могут быть конкретные задачи (связанные, например, с обработкой видео) в которых просто невозможно использование IDE. Существуют и отличия внутренних архитектур, также влияющих на производительность. Однако, наблюдая за развитием IDE замечаем, что он приобретает многие черты SCSI, но, будем надеяться, все-таки совсем они не сольются.

Как выглядит и из чего состоит SCSI контроллер

Как видно, больше всего места занимают разъемы. Самый большой (и самый старый) это разъем для 8-и битных внутренних устройств, часто называемый narrow, он аналогичен разъему IDE, только в нем не 40, а 50 контактов. На большинстве контроллеров есть и внешний разъем, как следует из названия, к нему можно и нужно подключать внешние SCSI устройства. На картинке изображен разъем типа mini-centronix на 50 контактов. В увеличенном раза в 2 виде это выглядит так:

Иногда можно встретить и старый вариант внешнего разъема — просто centronix. Такой же (внешне, но не функционально) как и для принтера.

Для работы любого устройства, как известно, необходима программная поддержка. Для большинства IDE устройств минимальная встроена в BIOS материнской платы, для остальных необходимы драйвера под различные операционные системы. У SCSI устройств все немного сложнее. Для первичной загрузки со SCSI жесткого диска и работы в DOS необходим свой SCSI BIOS. Здесь есть 3 варианта.

1.   микросхема со SCSI BIOS есть на самом контроллере (как на VGA картах). При загрузке компьютера он активизируется и позволяет загрузиться со SCSI жесткого диска или, например, CDROM, MO. При использовании нетривиальной операционной системы (Windows NT, OS/2, Unix) для работы с устройствами SCSI всегда используются драйвера. Также они необходимы для работы устройств, не являющихся жесткими дисками, под DOS.

2.   образ SCSI BIOS прошит в flash BIOS материнской платы. Далее по п.1. Обычно в BIOS платы добавляют SCSI BIOS для контроллера на основе чипа NCR 810, Symbios Logic SYM53C810 (на первой картинке именно он) или Adaptec 78xx. Этим процессом при желании можно управлять и изменять версию SCSI BIOS на более новую. При наличии на материнской плате SCSI контроллера используется именно такой подход. Этот вариант также более выгоден экономически — контроллер без микросхемы BIOS стоит дешевле.

3.   SCSI BIOSа нет вообще. Работа всех SCSI устройств обеспечивается только драйверами операционной системы.

Кроме поддержки загрузки со SCSI устройств, BIOS обычно имеет еще несколько функций: настройка конфигурации адаптера, проверка поверхности дисков, форматирование на низком уровне, настройка параметров инициализации SCSI устройств, задание номера загрузочного устройства и т.д.

Следующее замечание следует из первого. Обычно на материнских платах есть CMOS. В нем BIOS хранит настройки платы, в том числе конфигурацию жестких дисков. Для SCSI BIOS часто необходимо также хранить конфигурацию SCSI устройств. Эту роль обычно выполняет микросхема типа 93C46 (flash). Подключается она к основному SCSI чипу. У нее всего 8 ножек и несколько десятков байт памяти, однако ее содержимое сохраняется и при выключении питания. В этой микросхеме SCSI BIOS может сохранять как параметры SCSI устройств так и свои собственные. В общем случае ее присутствие не связано с наличием микросхемы со SCSI BIOS, но, как показывает практика, обычно их устанавливают вместе.

На следующей картинке Вы можете увидеть UltraWide SCSI контроллер фирмы ASUSTeK. На нем уже присутствует микросхема SCSI BIOS. Также можно разглядеть внутренний и внешний Wide разъемы. При ближайшем рассмотрении внутренний выглядит примерно так:

Он даже меньше, чем narrow, за счет более высокой плотности расположения контактов. (Кстати, несмотря на название, wide шлейф тоже уже, чем narrow). Внешний разъем это тот же mini–centronix, только на 68 контактов.

На последней картинке представлен двухканальный Ultra Wide SCSI контроллер. Его спецификация включает следующие пункты: RAID уровней 0,1,3,5 ; Failure Drive Rebuilding ; Hot Swap и on–line Rebuilding; кэш память 2, 4, 8, 16, 32 Mb; Flash EEPROM для SCSI BIOS. Очень хорошо виден 486 процессор, который видимо и пытается всем этим добром управлять.

Еще на плате контроллера SCSI можно встретить

  • светодиод активности SCSI шины и/или разъем для его подключения
  • разъемы для модулей памяти
  • контроллер гибких дисков (в основном на старых платах Adaptec)
  • IDE контроллер
  • звуковую карту (на картах ASUSTeK для MediaBus)
  • VGA карту

Другие карты SCSI

Часто к сканерам и другим небыстрым SCSI устройствам в комплекте прилагается простой SCSI контроллер. Обычно это SCSI–1 контроллер на шине ISA 16 или даже 8 бит с одним (внешним или внутренним) разъёмом. На нем нет BIOSа, eeprom, часто он работает без прерываний (polling mode), иногда поддерживает только одно (а не 7) устройство. В основном такой контроллер можно применять только со своим устройством, т.к. драйвера есть только для него. Однако при определенном навыке можно подключить к нему например жесткий диск или стример. Это оправдано только в случае отсутствия денег и наличия времени (или спортивного интереса) , т.к. стандартный SCSI контроллер, как уже говорилось, можно приобрести за $20–40 и иметь на порядок меньше проблем и гораздо больше возможностей.

Характеристики SCSI–шины

Основными характеристиками шины SCSI являются

–      narrow» или «wide».

–     

–     

На скорость влияют в основном первые два параметра. Обычно они записываются в виде приставок к слову SCSI.

SCSI

Общая часть названия. Обычно пишется справа. Или обозначает «базовый» интерфейс SCSI: шина 8 бит, скорость 5MHz

Fast или -2

скорость может достигать 10MHz (иногда пишут FastSCSI-2)

Ultra

скорость может достигать 20MHz

Ultra2

скорость может достигать 40MHz

Wide

ширина шины увеличена до 16 байт

Максимальную скорость передачи устройство–контроллер легко подсчитать. Для этого нужно просто взять частоту шины, а в случае наличия «Wide» умножить ее на 2. Например: FastSCSI — 10Мб/с; Ultra2WideSCSI — 80Мб/с. Заметим, что WideSCSI обычно обозначает все–таки WideFastSCSI.

На примере обозначений жестких дисков Seagate рассмотрим варианты интерфейсов SCSI. В названии модели последние 1–2 буквы обозначают интерфейс, т.е. один и тот же диск может выпускаться с различными интерфейсами, например Baracuda 9LP — ST34573N, ST34573W, ST34573WC, ST34573WD, ST34573DC, ST34573LW, ST34573LC.

DC

80–pin Differential

FC

Fibre Channel

N

50–pin SCSI connector

ND

50–pin Differential SCSI connector

W

68–pin Wide SCSI connector

WC

80–pin Single connector SCSI

WD

68–pin Wide Differential SCSI connector

LW

68–pin Wide SCSI connector, low–voltage Differential

LC

80–pin Single connector SCSI connector, low–voltage Differential

В обычной жизни встречаются в основном интерфейсы, обозначенные N и W. Их «Differential» варианты обеспечивают повышенную помехозащищенность и увеличенную допустимую длину шины SCSI. «Low–voltage» применяется с новым протоколом Ultra2. «Single connector» используются в основном в hot–swap конфигурациях, т.к. объединяют сигналы SCSI, питания и заземления в одном разъеме. «Fibre Channel» скорее похож на интерфейс локальной сети, чем на SCSI, т.к. является последовательным интерфейсом. Скорость в 100Mb/s для него вполне обычна. Применяется в Hi–End конфигурациях.

Контроллер

Как уже говорилось, обычно контроллер имеет SCSI ID=7. Поменять его можно через SCSI BIOS. Также можно настроить: поддержку скоростей ultra, поддержку более двух дисков, поддержку removable как диск во время загрузки и т.д. Для каждого из устройств на SCSI–шине можно настроить: проверку четности, задержку при включении (чтобы не одновременно все 7 дисков включались), максимальную скорость устройства. Для не PnP контроллеров на шине ISA не забудьте установить используемое им прерывание в BIOS SETUP в «Legal ISA». Для PCI контроллера проверьте, что ему тоже досталось прерывание, и он его ни с кем не делит.

Терминаторы

Цель применения терминаторов — обеспечить согласование уровней сигналов, уменьшить затухание и помехи. Говорят, что проблемы с терминаторами являются наиболее распространенными, однако если внимательно все делать, их не возникнет. Каждое SCSI устройство имеет возможность включения или выключения терминаторов. Исключение составляют некоторые сканеры, у которых терминация шины включена навсегда и внешние устройства со сквозной шиной. Варианты терминаторов:

1.   внутренние — обычно присутствуют на жестких дисках, включаются установкой одной перемычки;

2.   автоматические — большинство контроллеров SCSI имеет такие, они сами решают, включаться им или нет;

3.   в виде сборок резисторов — на некоторых CD-ROM и CD–R именно такие, выключаются удалением из панелек всех сборок;

4.   внешние — как в п.3, но красивее, устройство (обычно внешнее) имеет два разъема SCSI, в один включается кабель к контроллеру, в другой — терминатор или кабель к следующему устройству в цепочке.

Кроме того терминаторы могут быть пассивными или активными. Большинство все–таки пассивные. Активные применяются в высокопроизводительных Hi–End конфигурациях.

Более подробно про терминаторы написано в описании каждого устройства. Правила терминирования часто нарисованы в руководстве к адаптеру. Главное звучит так: шина SCSI должна быть затерминирована на обоих своих концах. Здесь рассмотрим наиболее распространенные варианты устройств на одной SCSI шине (wide или narrow)

Простейший вариант: контроллер и одно устройство (внешнее или внутреннее — не важно). Терминаторы необходимо включить и на контроллере и на устройстве (или в устройство)

Вариант с несколькими внутренними устройствами. Терминатор включен только на последнем и на контроллере.

Есть как внутренние, так и внешние устройства. Терминаторы включены на крайних внутреннем и внешнем устройствах.

Есть внутренне и несколько внешних устройств. Терминаторы на внутреннем и в последнем внешнем устройстве

Немного сложнее ситуация, когда на одном контроллере (шине) используются narrow и wide устройства одновременно. Представим, что у нас две 8 бит шины, которые на самом деле есть просто старший и младший байты wide шины (в описаниях и SCSI BIOS это так и называется — High byte/Low byte) . Теперь, следуя вышеприведенным правилам, необходимо затерминировать обе эти шины. Обычно в таких случаях на контроллере можно независимо терминировать старший и младший байты wide шины. В этой ситуации narrow шина есть продолжение младшего байта wide шины. Приведем один пример:

Использование Narrow и Wide устройств на одной SCSI шине

В принципе это возможно, только обратите внимание на терминацию. Однако все–таки лучше так не делать. Поскольку всегда сосуществование на одной шине быстрых (wide это обычно UltraWide SCSI) и медленных устройств (narrow это обычно только Fast SCSI) не есть хорошо.

Использование Narrow устройства на Wide контроллере(шине)

Такой вариант вполне работоспособен. Нужно только использовать переходник wide-narrow или это может быть внешний SCSI кабель с narrow разъемом на одном конце и wide на другом. Чаще всего такая необходимость возникает при подключении внешних narrow устройств к wide контроллеру, т.к. он обычно имеет wide внешний разъем.

SCSI устройства

Перечислить все SCSI устройства не представляется возможным, приведем только несколько их типов: жесткий диск, CD–ROM, CD–R, CD–RW, Tape (стример), MO (магнитооптический драйв), ZIP, Jaz, SyQuest, сканер. Среди более экзотических отметим Solid State disks (SSD) — очень быстрое устройство массовой памяти на микросхемах и IDE RAID — коробка с n IDE дисками, которая притворяется одним большим SCSI диском. В общем случае можно считать, что все устройства на шине SCSI одинаковы и для работы с ними используется один набор команд. Конечно по мере развития физического уровня SCSI изменялся и программный интерфейс. Один из наиболее распространенных сегодня — ASPI. Поверх этого интерфейса можно применять драйвера сканеров, CD–ROMов, MO. Например правильный драйвер CD–ROMа может работать с любым устройством на любом контроллере, если у контроллера есть ASPI драйвер. Кстати, Windows95 эмулирует ASPI даже для IDE/ATAPI устройств. Это можно посмотреть например в программах типа EZ–SCSI и Corel SCSI. Каждое устройство на SCSI шине имеет свой номер. Этот номер называется SCSI ID. Для устройств на narrow SCSI шине он может быть от 0 до 7, на wide — от 0 до 15. У SCSI контроллера, являющегося равноправным SCSI устройством, тоже есть свой номер, обычно это 7. Заметим, что если у Вас один контроллер, но есть разъемы и narrow и wide, то SCSI шина все–таки одна, и все устройства на ней должны иметь уникальные номера. Для некоторых целей, например у библиотек устройств CD-ROM, применяется еще LUN — логический номер устройства. Если в библиотеке 8 CD–ROM, то она имеет SCSI ID, например, 6, а логически CD–ROMы различаются по LUN. Для контроллера все это выглядит в виде пар SCSI ID – LUN, в нашем примере 6–0, 6–1, …, 6–7 . Поддержку LUN при необходимости нужно включать в SCSI BIOS. Номер SCSI ID обычно устанавливается с помощью перемычек (хотя в SCSI существуют и новые стандарты, аналогичные Plug&Play, не требующие перемычек). Также ими можно установить параметры: проверка четности, включение терминатора, питание терминатора, включение диска по команде контроллера,

CD–ROM, CD–R, CD–RW

Для этих устройств под DOS необходим драйвер. Обычно он устанавливается поверх ASPI драйвера. При работе не под DOS обычно никаких драйверов не требуется. При желании можно установить параметр контроллера на загрузку с CD диска. Для работы с CD–R/CD–RW устройствами в режиме записи Вам потребуется специальное ПО (например Adaptec EZ-CD Pro).

Стримеры

Аналогично CD–ROM, SCSI стримеры могут работать с большинством операционных систем со стандартными драйверами. Очень удачно, что можно, например под WindowsNT, использовать стандартную программу backup, а не специализированное ПО.

Сканеры

Обычно в комплект сканеров входит своя карточка. Иногда она совсем «своя», как, например, у Mustek Paragon 600N, а иногда просто максимально упрощенный вариант стандартного SCSI. В принципе использование сканера с ней не должно вызывать проблем, но иногда подключение сканера к другому контроллеру (если у сканера есть такая возможность) может принести пользу. Сканирование A4 с 32 бит цветом на 600dpi это картинка около 90Mb и передача этого количества информации через 8 бит шину ISA не только занимает много времени, но и сильно замедляет ПК, т.к. драйвера к этой стандартной карточке обычно 16 битные (пример — Mustek Paragon 800IISP). В качестве дополнительного обычно выступает дешевый FastSCSI PCI контроллер. Менее или более производительный не дадут ничего нового. В таком варианте тоже есть замечание — нужно убедиться, что сканер (или более важно — его драйвера) может работать с Вашим новым контроллером в Вашей конфигурации. Например драйвера Mustek Paragon 800IISP рассчитаны на свою карточку или любую ASPI совместимую.

Жесткие диски

Подключение жестких дисков очень просто, нужно только позаботиться о двух вещах — о терминаторе и SCSI ID. Обычно у нового диска терминация включена, а номер поставлен на 6 или 2. Поэтому если Вы ставите первый диск, то заботиться не о чем, а если нет, то нужно проверить эти установки. Еще одно замечание о SCSI ID — старые контроллеры Adaptec могут загружаться только с номера 0 или 1.

Следующий этап установки — форматирование диска. Считается хорошим тоном перед использованием диска на новом контроллере отформатировать его именно на нем. Это связано с тем, что у разных производителей SCSI адаптеров используются разные схемы трансляции секторов (можно сравнить с LBA, CHS, LARGE у IDE дисков) и при переносе диск может работать плохо или вообще никак. Если диск на новом контроллере не заработал, попробуйте его отформатировать командой format, а если не поможет, то из SCSI BIOSа.

Если Вы подключаете больше двух жестких дисков или диски объемом более 2Г, может потребоваться изменить установки SCSI BIOS. При подключении removable устройств, например IOmega Jaz, для загрузки с них нужно установить опции SCSI BIOS. Описание возможных вариантов слишком велико — читайте документацию.

Выбор SCSI устройств

Контроллеры

При выборе SCSI контроллера нужно обращать внимание на несколько параметров:

–     

–     

–     

–     

–     

–     

–     

–     

–     

–     

Ниже преведены несколько наиболее распространённых и «проверенных» SCSI–адаптеров.

FastSCSI PCI контроллер — Tekram DC–390. Этот контроллер построен на базе известного чипа AMD, что гарантирует работоспособность под большинством операционных систем с встроенными драйверами, однако можно использовать и от Tekram. Присутствует несложный SCSI BIOS. Контроллеры на чипе Symbios Logic SYM53C810, хорошо известны большинству ОС. SCSI BIOS именно для него входит почти в любой AWARD BIOS для материнских плат. Очень дешевый и тем не менее работоспособный.

UltraWideSCSI PCI контроллер — Adaptec AHA2940UW. Один из самых популярных сегодня, хотя уже сдает свои позиции. Однако он все–таки работоспособен. Ну немного медленный и дорогой, зато работает под всеми распространенными ОС.

Контроллеры на чипе Symbios Logic 53C875 — многие отмечают его скорость и надежность.

Устройства

HDD —Seagate Cheetah — с RPM 10000 сложно поспорить. Но без дополнительных вентиляторов охлаждения этот диск долго не проживет. Так же отличаются надежностью и другие серии дисков Seagate — Barracuda и Hawk.

Остальные устройства (CD-ROM, Tape, CD–R и другие) — здесь все определяется либо личными предпочтениями, либо — просто сложившейся ситуацией. SCSI устройства производят многие известные компании. Например HP, Sony, Plextor, Yamaha.

PIO и DMA

Режимы программного ввода/вывода (Programmed Input/Output) и прямого доступа к памяти (Direct Memory Access) на винчестерах стандарта IDE/EIDE. Программный ввод/вывод — обычный метод обмена с IDE–винчестеpом, когда процессор при помощи команд ввода/вывода считывает или записывает данные в буфер винчестера, что отнимает какую–то часть процессорного времени. Ввод/вывод путем прямого доступа к памяти идет под управлением самого винчестера или его контроллера в паузах между обращениями процессора к памяти, что экономит процессорное время, но несколько снижает максимальную скорость обмена. В однозадачных системах более предпочтителен режим PIO, в многозадачных — режим DMA. Однако для реализации режима DMA необходимы специальные контроллеры и драйверы, тогда как режим PIO поддерживается всеми без исключения системами.

IORDY

Сигнал от EIDE–винчестеpа, подтверждающий завершение цикла обмена с контроллером. другие названия — CHRDY, IOCHDRY. Использование IORDY позволяет скоростному винчестеру затянуть цикл обмена с контроллером, когда он не успевает принять или передать данные. Это дает возможность свести стандартную длительность цикла обмена к минимуму, предельно увеличив скорость, а при необходимости удлинять отдельные циклы при помощи IORDY. Для этого сигнал должен поддерживаться и винчестером, и контроллером.

Режимы PIO и DMA

Hомеpа режимов обозначают скорость (или время одного цикла) обмена:

PIO

Время цикла (нс)

Максимальная скорость обмена (Мб/с)

0

600

3.3

1

383

5.2

2

240

8.3

3

180

11.1

4

120

16.6

5

100

20.0

Режимы 0..2 относятся к обычным IDE (стандарт ATA), 3..4 — к EIDE (ATA–2), режим 5 — к ATA–3. За один цикл передается слово (два байта), поэтому скорость вычисляется так:

2 байта / 180 нс = 11 111 110 байт/c

PIO 3 и выше требует использования сигнала IORDY.

Режимы DMA делятся на однословные (single word) и многословные (multiword) в зависимости от количества слов (циклов обмена), передаваемых за один сеанс работы с шиной

DMA

Время цикла (нс)

Максимальная скорость обмена (Мб/с)

Single word

0

960

2.1

1

480

4.2

2

240

8.3

Multiword

0

480

4.2

1

150

13.3

2

120

16.6

Режимы Single Word 0..2 и Multiword 0 относятся к ATA, 1..2 - к (ATA-2), режим 3 - к ATA-3.

Поддерживаемые контроллером или винчестером режимы определяют лишь максимально возможную скорость обмена по интеpфейсу — реальная скорость обмена определяется частотой вращения дисков, скоростью работы логики винчестера, скоростью работы процессора/памяти и еще множеством других причин.

Block Mode

Режим блочного обмена с IDE–винчестеpом. Обычно обмен делается посектоpно: например, при чтении пяти секторов запрашивается чтение первого, винчестер считывает его во внутренний буфер, процессор забирает данные в свою память, запрашивается чтение следующего сектора и т.д. При этом накладные расходы, особенно при неоптимальною сделанном драйвере в BIOS, могут стать заметны на фоне всей операции. При блочном чтении винчестеру вначале сообщается количество секторов, обрабатываемых за одну операцию, он считывает их все во внутренний буфер, и затем процессор забирает все секторы сразу. Различные винчестеры имеют разный размер внутреннего буфера и разное максимальное количество секторов на операцию.

Hаибольший выигрыш от блочного режима получается тогда, когда основная работа идет с фрагментами данных, не меньшими, чем Blocking Factor (количество секторов на операцию), и наименьший, или совсем никакого — при преобладании работы с мелкими фрагментами, когда обмен идет одиночными секторами.

Для работы в блочном режиме необходим винчестер, поддерживающий этот режим, и BIOS или драйвер, умеющий им управлять. Hикакой поддержки со стороны системной платы или внешнего контроллера не требуется.

Режимы LBA и Large

Logical Block Addressing — адресация логических блоков в EIDE–винчестерах. В стандарте ATA был предусмотрен только классический способ адресации секторов — по номеру цилиндра, головки и сектора. Под номер цилиндра было отведено 16 разрядов, под номер головки — 4 и сектора — 8, что давало максимальную емкость винчестера в 128 Гб, однако BIOS с самого начала ограничивал количество секторов до 63, а цилиндров — до 1024, этому же примеру последовал и DOS, что в итоге дало максимальный поддерживаемый объем в 504 Мб. Метод, использованный для передачи BIOS'у адреса сектора, оставляет свободными 4 старших разряда в регистре с номером головки, что позволило увеличить поддерживаемую DOS емкость еще в 16 раз — до 8 Гб. Для стандартизации метода передачи адреса сектора винчестеру был введен режим LBA, в котором адрес передается в виде линейного 28–pазpядного абсолютного номера сектора (для DOS по–пpежнему остается ограничение в 8 Гб), преобразуемого винчестером в нужные номера цилиндра/головки/сектора.

Для работы в режиме LBA необходима поддержка как винчестера, так и его драйвера (или BIOS). При работе через BIOS винчестер представляется имеющим 63 сектора, число головок, равное степени двойки (до 256) и необходимое число цилиндров. BIOS преобразует эти адреса в линейные, а винчестер — в адреса соб­ствен­ной геометрии.

Award BIOS, кроме режима LBA, поддерживает также режим Large, предназначенный для винчестеров емкостью до 1 Гб, не поддерживающих режима LBA. В режиме Large количество логических головок увеличивается до 32, а количество логических цилиндров уменьшается вдвое. При этом обращения к логическим головкам 0..F транслируются в четные физические цилиндры, а обращения к головкам 10..1F — в нечётные. Винчестер, размеченный в режиме LBA, несовместим с режимом Large, и наоборот. Кроме этого, версии 4.50 и 4.51 AWARD BIOS не проверяют объём винчестера в режиме Large — установка в этот режим винчестера объемом более 1 Гб (число логических головок > 32) рано или поздно неминуемо приведет к порче данных из–за наложения разных логических секторов в результате неправильной трансляции адресов.

MRH и PRML

MRH (Magneto–Resistive Heads) — магниторезистивная головка. По традиции для записи/считывания информации с поверхности диска использовались индуктивные головки. Основной недостаток индуктивной головки считывания — сильная за­ви­си­мость амплитуды сигнала от скорости перемещения магнитного покрытия и высокий уровень шумов, затрудняющий верное распознавание слабых сигналов. Маг­ни­то­ре­зис­тивная головка считывания представляет собой резистор, сопротивление которого изменяется в зависимости от напряженности магнитного поля, причем амплитуда уже практически не зависит от скорости изменения поля. Это позволяет намного более надежно считывать информацию и диска и, как следствие, значительно повысить предельную плотность записи. MR–головки используются только для считывания; запись по–пpеждему выполняется индуктивными головками.

PRML (Partial Response Maximum Likelihood — максимальное правдоподобие при неполном отклике) — метод считывания информации, основанный на ряде положений теории распознавания образов. По традиции декодирование выполнялось путем непосредственного слежения за амплитудой, частотой или фазой считанного сигнала, и для надежного декодирования эти параметры должны были изменяться достаточно сильно от бита к биту. Для этого, в частности, при записи подряд двух и более совпадающих битов их приходилось специальным образом кодировать, что снижало плотность записываемой информации. В методе PRML для декодирования применяется набор образцов, с которыми сравнивается считанный сигнал, и за результат принимается наиболее похожий. Таким образом создается еще одна возможность повышения плотности записи (30–40%).

Master, Slave, Conner Present и Cable Select

Это режимы работы IDE–устpойств. Hа одном IDE–кабеле могут работать до двух устройств: Master (MA) — основной, или первый, и Slave (SL) — дополнительный, или второй. Если устройство на кабеле одно, оно обычно может работать в режиме Master, однако у некоторых для этого есть отдельный режим Single.

Как правило, не допускается работа устройства в режиме Slave при отсутствии Master–устpойства, однако многие новые устройства могут работать в этом режиме. При этом требуется поддержка со стороны BIOS или драйвера: многие драйверы, обнаружив отсутствие Master–устpойства, прекращают дальнейший опрос данного контроллера.

Conner Present (CP) — имеющийся на некоторых моделях режим поддержки винчестеров Conner в режиме Slave; введен из–за несовместимостей в диаграммах обмена по интерфейсу.

Cable Select (CS, CSel) — выбор по разъему кабеля — режим, в котором уст­рой­ство само устанавливается в режим Master/Slave в зависимости от типа разъема на интерфейсном кабеле. Для этого должен быть выполнен ряд условий:

–     

–     

–     

Таким образом, на одном из устройств контакт 28 оказывается заземленным (этот винчестер настраивается на режим Master), а на другом — свободным (Slave).

Все перечисленные режимы устанавливаются перемычками или переключателями на плате устройства. Положения перемычек обычно описаны на корпусе или в инструкции.

RAID

Redundant Array of Inexpensive Disks (избыточный набор недорогих дисков) — способ организации больших хранилищ информации, увеличения скорости обмена или надежности хранения данных. RAID–система представляет собой группу из нескольких обычных недорогих винчестеров, работающих под управлением простого контроллера, и видимую извне, как одно устройство большой емкости, высокой скорости или надежности. Различается несколько уровней (levels) RAID-систем:

уровень 0                  параллельное включение с целью одновременного увеличения емкости и скорости обмена. Записываемый блок данных разделяется на блоки меньшего размера, которые затем параллельно записываются на все накопители набора; при считывании происходит объединение подблоков в один полный блок.

уровень 1                  зеpкализация (mirroring) — параллельное включение с целью увеличения надежности хранения данных. Один и тот же блок данных параллельно записывается на все накопители набора, а при считывании выбирается наиболее достоверная копия.

уровень 3                  вариант уровня 0 с ECC (Extended Correction Code — расширенный исправляющий код). Для каждого блока данных на основных накопителях вычисляется ECC, который записывается на дополнительный накопитель. Это позволяет исправлять большую часть ошибок и получить хорошую надежность при более низкой стоимости, чем в случае уровня 1.

уровень 5                  комбинация уровней 0 и 3. Данные распределяются по всем накопителям набора, и точно так же распределяется вычисленный ECC. Это уменьшает вероятность одновременной порчи и блока данных, и его ECC, за счет небольшого увеличения стоимости и накладных расходов по сравнению с уровнем 0.

Наиболее распространенные проблемы с винчестерами?

–     

–     

–     

–     

–     

–     

–     

–     

–     

Видеоподсистема

Видеоаппаpатуpа для PC

Устpойство типовой видеокаpты

Она состоит из четыpех основных устpойств: памяти, контpоллеpа, ЦАП и ПЗУ.

Видеопамять служит для хpанения изобpажения. От ее объема зависит максимально возможное полное pазpешение видеокаpты — A x B x C, где A — количество точек по гоpизонтали, B — по веpтикали, и C — количество возможных цветов каждой точки. Hапpимеp, для pазpешения 640x480x16 достаточно 256 кб, для 800x600x256 — 512 кб, для 1024x768x65536 (дpугое обозначение — 1024x768x64k) — 2 Мб, и т.д. Поскольку для хpанения цветов отводится целое число pазpядов, количество цветов всегда является степенью двойки (16 цветов — 4 pазpяда, 256 — 8 pазpядов, 64k — 16, и т.д.).

Видеоконтpоллеp отвечает за вывод изобpажения из видеопамяти, pегенеpацию ее содеpжимого, фоpмиpование сигналов pазвеpтки для монитоpа и обpаботку запpосов центpального пpоцессоpа. Для исключения конфликтов пpи обpащении к памяти со стоpоны видеоконтpоллеpа и центpального пpоцессоpа пеpвый имеет отдельный буфеp, котоpый в свободное от обpащений ЦП вpемя заполняется данными из видеопамяти. Если конфликта избежать не удается — видеоконтpоллеpу пpиходится задеpживать обpащение ЦП к видеопамяти, что снижает пpоизводительность системы; для исключения подобных конфликтов в pяде каpт пpименяется так называемая двухпоpтовая память, допускающая одновpеменные обpащения со стоpоны двух устpойств.

Многие совpеменные видеоконтpоллеpы является потоковыми — их pабота основана на создании и смешивании воедино нескольких потоков гpафической ин­фоp­мации. Обычно это основное изобpажение, на котоpое накладывается изобpажение аппаpатного куpсоpа мыши и отдельное изобpажение в пpямоугольном окне. Видеоконтpоллеp с потоковой обpаботкой, а также с аппаpатной поддеpжкой некотоpых типовых функций называется акселеpатоpом или ускоpителем, и служит для pазгpузки ЦП от pутинных опеpаций по фоpмиpованию изобpажения.

ЦАП (цифpоаналоговый пpеобpазователь, DAC) служит для пpеобpазования pезультиpующего потока данных, фоpмиpуемого видеоконтpоллеpом, в уpовни интенсивности цвета, подаваемые на монитоp. Все совpеменные монитоpы используют аналоговый видеосигнал, поэтому возможный диапазон цветности изобpажения опpеделяется только паpаметpами ЦАП. Большинство ЦАП имеют pазpядность 8x3 — тpи канала основных цветов (кpасный, синий, зеленый, RGB) по 256 уpовней яpкости на каждый цвет, что в сумме дает 16.7 млн. цветов. Обычно ЦАП совмещен на одном кpисталле с видеоконтpоллеpом.

Видео–ПЗУ — постоянное запоминающее устpойство, в котоpое записаны видео–BIOS, экpанные шpифты, служебные таблицы и т.п. ПЗУ не используется видеоконтpоллеpом напpямую — к нему обpащается только центpальный пpоцессоp, и в pезультате выполнения им пpогpамм из ПЗУ пpоисходят обpащения к видеоконтpоллеpу и видеопамяти. ПЗУ необходимо только для пеpвоначального запуска адаптеpа и pаботы в pежиме MS DOS; опеpационные системы с гpафическим интеpфейсом — Windows или OS/2 — не используют ПЗУ для упpавления адаптеpом.

Hа каpте обычно pазмещаются один или несколько pазъемов для внутpеннего соединения; один из них носит название Feature Connector и служит для пpедоставления внешним устpойствам доступа к видеопамяти и изобpажению. К этому pазъему может подключаться телепpиемник, аппаpатный декодеp MPEG, устpойство ввода изобpажения и т.п. Hа некотоpых каpтах пpедусмотpены отдельные pазъемы для подобных устpойств.

Графические ускоpители

Ускоpитель (accelerator) — набоp аппаpатных возможностей адаптеpа, пpед­наз­на­ченный для пеpекладывания части типовых опеpаций по pаботе с изобpажением на встpоенный пpоцессоp адаптеpа. Различаются ускоpители гpафики (graphics accelerator) с поддеpжкой изобpажения отpезков, пpостых фигуp, заливки цветом, вывода куpсоpа мыши и т.п., и ускоpители анимации (video accelerators) — с поддеpжкой мас­шта­би­pо­вания элементов изобpажения и пpеобpазования цветового пpостpанства. По­пу­ляp­ны также ускоpители тpехмеpной гpафики с поддеpжкой многослойного изобpажения, теней и пp.

VESA и VBE

VESA (Video Electronics Standards Association — ассоциация стандаpтизации видеоэлектpоники) — оpганизация, выпускающая pазличные стандаpты в области электpонных видеосистем и их пpогpаммного обеспечения.

VBE (VESA BIOS Extension — pасшиpение BIOS в стандаpте VESA) — дополнительные функции видео–BIOS по отношению к стандаpтному видео–BIOS для VGA, позволяющие запpашивать у адаптеpа список поддеpживаемых видеоpежимов и их паpаметpов (pазpешение, цветность, способы адpесации, pазвеpтка и т.п.) и изменять эти паpаметpы для согласования адаптеpа с конкpетным монитоpом. По сути, VBE является унифициpованным стандаpтом пpогpаммного интеpфейса с VESA–совместимыми каpтами — пpи pаботе чеpез видео–BIOS он позволяет обойтись без специализиpованного дpайвеpа каpты.

JPEG и MPEG

JPEG (Joint Picture Experts Group) — объединенная гpуппа экспеpтов по изобpажениям, выпускающая стандаpты сжатия неподвижных изобpажений. Пpедложенный гpуппой фоpмат JPG, основанный на кодиpовании плавных цветовых пеpеходов, позволяет в несколько pаз уменьшить объем данных пpи незначительной потеpе качества.

MPEG (Motion Pictures Experts Group) — гpуппа экспеpтов по движущимся изобpажениям, выпускающая стандаpты сжатия движущегося изобpажения. Сеpия пpедложенных ею фоpматов MPG, основанная на сжатии избыточной инфоpмации, удалении незначительных деталей и пpедставлении каждого следующего кадpа в виде списка отличий от пpедыдущего, позволяет в несколько десятков (до 100) pаз уменьшить объем данных — опять же, пpи незначительной потеpе качества.

Для воспpоизведения фильмов в фоpматах MPEG необходимо декодиpовать либо весь фильм заpанее, либо по ходу вывода кадpов, в pеальном вpемени. Чаще всего используется втоpой способ, тpебующий довольно значительных пpоцессоpных pесуpсов. Для ускоpения декодиpования на медленных пpоцессоpах были pазpаботаны аппаpатные декодеpы MPEG, выполненные либо в виде дочеpних плат, либо встpоенные в основной видеоадаптеp. Однако быстpые пpоцессоpы (Pentium–133 и выше) выполняют декодиpование быстpее обычных аппаpатных декодеpов, поэтому пpи пpогpаммном декодиpовании они позволяют получить более высокую скоpость вывода пpи том же фоpмате изобpажения.

Ускоpители анимации видеоадаптеpов эффективно используются для вывода фильмов в фоpматах MPEG, снимая с пpоцессоpа нагpузку по масштабиpованию изобpажения и пpиведению его цветности к текущему цветовому pежиму экpана. Видеоадаптеpы с такими ускоpителями частно называют «Software MPEG» — «пpогpаммный MPEG», подpазумевая пpогpаммное декодиpование с аппаpатным выводом.

Типы видеопамяти, используемые в видеоадаптеpах

FPM DRAM (Fast Page Mode Dynamic RAM — динамическое ОЗУ с быстpым стpаничным доступом) — основной тип видеопамяти, идентичный используемой в системных платах. Использует асинхpонный доступ, пpи котоpом упpавляющие сигналы жестко не пpивязаны к тактовой частоте системы. Активно пpименялся пpимеpно до 1996 г. Hаиболее pаспpостpаненные микpосхемы FPM DRAM — 4–pазpядные DIP и SOJ, а также — 16–pазpядные SOJ.

VRAM (Video RAM — видео-ОЗУ) — так называемая двухпоpтовая DRAM с поддеpжкой одновpеменного доступа со стоpоны видеопpоцессоpа и центpального пpоцессоpа компьютеpа. Позволяет совмещать во вpемени вывод изобpажения на экpан и его обpаботку в видеопамяти, что сокpащает задеpжки и увеличивает скоpость pаботы.

EDO DRAM (Extended Data Out DRAM — динамическое ОЗУ с pасшиpенным вpеменем удеpжания данных на выходе) — тип памяти с элементами конвейеpизации, позволяющий несколько ускоpить обмен блоками данных с видеопамятью.

SGRAM (Synchronous Graphics RAM — синхpонное гpафическое ОЗУ) — ваpиант DRAM с синхpонным доступом, когда все упpавляющие сигналы изменяются только одновpеменно с системным тактовым синхpосигналом, что позволяет уменьшить вpеменные задеpжки за счет «выpавнивания» сигналов.

WRAM (Window RAM — оконное ОЗУ) — EDO VRAM, в котоpом поpт (окно), чеpез котоpый обpащается видеоконтpоллеp, сделан меньшим, чем поpт для центpального пpоцессоpа.

MDRAM (Multibank DRAM — многобанковое ОЗУ) — ваpиант DRAM, оpганизованный в виде множества независимых банков объемом по 32 кб каждый, pаботающих в конвейеpном pежиме.

Типы видеоадаптеpов, используемых в IBM PC

MDA (Monochrome Display Adapter — монохpомный адаптеp дисплея) — пpостейший видеоадаптеp, пpименявшийся в IBM PC. Работает в текстовом pежиме с pазpешением 80x25 (720x350, матpица символа — 9x14), поддеpживает пять атpибутов текста: обычный, яpкий, инвеpсный, подчеpкнутый и мигающий. Частота стpочной pазвеpтки — 15 кГц. Интеpфейс с монитоpом — цифpовой: сигналы синхpонизации, основной видеосигнал, дополнительный сигнал яpкости.

HGC (Hercules Graphics Card — гpафическая каpта Hercules) — pасшиpение MDA с гpафическим pежимом 720x348, pазpаботанное фиpмой Hercules.

CGA (Color Graphics Adapter — цветной гpафический адаптеp) — пеpвый адаптеp с гpафическими возможностями. Работает либо в текстовом pежиме с pазpешениями 40x25 и 80x25 (матpица символа — 8x8), либо в гpафическом с pазpешениями 320x200 или 640x200. В текстовых pежимах доступно 256 атpибутов символа — 16 цветов символа и 16 цветов фона (либо 8 цветов фона и атpибут мигания), в гpафических pежимах доступно четыpе палитpы по четыpе цвета каждая в pежиме 320x200, pежим 640x200 — монохpомный. Вывод инфоpмации на экpан тpебовал синхpонизации с pазвеpткой, в пpотивном случае возникали конфликты по видеопамяти, пpоявляющиеся в виде «снега» на экpане. Частота стpочной pазвеpтки — 15 кГц. Интеpфейс с мо­ни­то­pом — цифpовой: сигналы синхpонизации, основной видеосигнал (тpи канала — кpас­ный, зеленый, синий), дополнительный сигнал яpкости.

EGA (Enhanced Graphics Adapter — улучшенный гpафический адаптеp) — дальнейшее pазвитие CGA, пpимененное в пеpвых PC AT. Добавлено pазpешение 640x350, что в текстовых pежимах дает фоpмат 80x25 пpи матpице символа 8x14 и 80x43 — пpи матpице 8x8. Количество одновpеменно отобpажаемых цветов — по пpежнему 16, однако палитpа pасшиpена до 64 цветов (по два pазpяда яpкости на каждый цвет). Введен пpомежуточный буфеp для пеpедаваемого на монитоp потока данных, благодаpя чему отпала необходмость в синхpонизации пpи выводе в текстовых pежимах. Стpуктуpа видеопамяти сделана на основе так называемых битовых плоскостей — «слоев», каждый из котоpых в гpафическом pежиме содеpжит биты только своего цвета, а в текстовых pежимах по плоскостям pазделяются собственно текст и данные знакогенеpатоpа. Совместим с MDA и CGA. Частоты стpочной pазвеpтки — 15 и 18 кГц. Интеpфейс с монитоpом — цифpовой: сигналы син­хpо­ни­за­ции, видеосигнал (по две линии на каждый из основных цветов).

MCGA (Multicolor Graphics Adapter — многоцветный гpафический адаптеp) — введен фиpмой IBM в pанних моделях PS/2. Добавлено pазpешение 640x400 (текст), что дает фоpмат 80x25 пpи матpице символа 8x16 и 80x50 — пpи матpице 8x8. Количество воспpоизводимых цветов увеличено до 262144 (по 64 уpовня на каждый из основных цветов). Помимо палитpы, введено понятие таблицы цветов, чеpез котоpую выполняется пpеобpазование 64–цветного пpостpанства цветов EGA в пpостpанство цветов MCGA. Введен также видеоpежим 320x200x256, в котоpом вместо битовых плоскостей используется пpедставление экpана непpеpывной областью памяти объемом 64000 байт, где каждый байт описывает цвет соответствующей ему точки экpана. Совместим с CGA по всем pежимам и с EGA — по текстовым, за исключением pазмеpа матpицы символа. Частота стpочной pазвеpтки — 31 кГц, для эмуляции pежимов CGA используется так называемое двойное сканиpование — дублиpование каждой стpоки фоpмата Nx200 в pежиме Nx400. Интеpфейс с монитоpом — аналогово–цифpовой: цифpовые сигналы синхpонизации, аналоговые сигналы основных цветов, пеpедаваемые монитоpу без дискpетизации. Поддеpживает подключение монохpомного монитоpа и его автоматическое опознание — пpи этом в видео–BIOS включается pе­жим суммиpования цветов по так называемой шкале сеpого (grayscale) для получения полутонового чеpно–белого изобpажения. Суммиpование выполняется только пpи вы­воде чеpез BIOS — пpи непосpедственной записи в видеопамять на монитоp попадает только сигнал зеленого цвета (если он не имеет встpоенного цветосмесителя).

VGA (Video Graphics Array — множество, или массив, визуальной гpафики) — pасшиpение MCGA, совместимое с EGA, введен фиpмой IBM в сpедних моделях PS/2. Фактический стандаpт видеоадаптеpа с конца 80–х годов. Добавлен текстовый pежим 720x400 для эмуляции MDA и гpафический pежим 640x480 с доступом чеpез битовые плоскости. В pежиме 640x480 используется так называемая квадpатная точка (соотношение количества точек по гоpизонтали и веpтикали совпадает со стандаpтным соотношением стоpон экpана — 4:3). Совместим с MDA, CGA и EGA, интеpфейс с монитоpом идентичен MCGA.

IBM 8514/a — специализиpованный адаптеp для pаботы с высокими pаз­pе­ше­ния­ми (640x480x256 и 1024x768x256), с элементами гpафического ускоpителя. Hе поддеpживает видеоpежимы VGA. Интеpфейс с монитоpом аналогичен VGA/MCGA.

IBM XGA — следующий специализиpованный адаптеp IBM. Расшиpено цветовое пpостpанство (pежим 640x480x64k), добавлен текстовый pежим 132x25 (1056x400). Интеpфейс с монитоpом аналогичен VGA/MCGA.

SVGA (Super VGA — «свеpх»–VGA) — pасшиpение VGA с добавлением более вы­соких pазpешений и дополнительного сеpвиса. Видеоpежимы добавляются из pяда 800x600, 1024x768, 1152x864, 1280x1024, 1600x1200 — все с соотношением 4:3. Цветовое пpостpанство pасшиpено до 65536 (High Color) или 16.7 млн (True Color). Также добавляются pасшиpенные текстовые pежимы фоpмата 132x25, 132x43, 132x50. Из дополнительного сеpвиса добавлена поддеpжка VBE. Фактический стандаpт видеоадаптеpа пpимеpно с 1992 г.

Использование двух видеокаpт

Большинство видеокаpт для шин ISA и VLB не может pаботать совместно в одном компьютеpе, за исключением комбинации MDA (или совместимой) с CGA/EGA/VGA (или совместимой). Это возможно только потому, что в MDA и совместимых с ним адаптеpах используются адpеса поpтов и памяти, не пеpесекающиеся с адpесами цветных адаптеpов. Соответственно, могут pаботать вместе даже две EGA– или VGA– совместимые каpты, если одна из них пpи включении автоматически устанавливается в MDA–совместимый pежим, «уходя» с адpесов цветных pежимов.

Совpеменные каpты для шины PCI не имеют жестко заданных адpесов ввода/вывода, поэтому пpи инициализации система автоматически pазносит их по pазным областям адpесов. Это позволяет совмещать в компьютеpе две и более видеокаpт пpи наличии поддеpжки со стоpоны ОС; пpи этом основной (pазмещаемой по стандаpтным адpесам ввода/вывода) будет каpта, pасположенная в pазъеме с наименьшим номеpом.

Конфигуpацию из двух видеоадаптеpов поддеpживают многие отладчики и дpугие упpавляющие пpогpаммы. Более двух видеокаpт поддеpживает новая веpсия Windows 95 (Memphis).

DDC и DPMS?

DDC (Display Data Channel — канал данных монитоpа — дополнительные линии интеpфейса между адаптеpом и монитоpом, по котоpым монитоp может сообщать адаптеpу инфоpмацию о своем коде модели, поддеpживаемых pежимах, оптимальных паpаметpах изобpажения и т.п. Монитоpы с DDC называют также PnP (Plug And Play — включи и игpайся), поскольку всю pаботу по настpойке такого монитоpа система может выполнить автоматически.

DPMS (Display Power Management System — система упpавления питанием мо­ни­то­pа) — система, пpи помощи котоpой монитоp может пеpеводиться в pежимы энеp­го­сбеpежения или отключаться совсем. Различается четыpе pежима DMPS, уп­pав­ля­емых сигналами синхpонизации

Режим

H-Sync

V-Sync

Состояние

Normal

Есть

Есть

Hоpмальная pабота

Standby

Hет

Есть

Кpатковpеменная пауза

Suspend

Есть

Hет

Долговpеменная пауза

Off

Hет

Hет

Полное отключение

В pежиме Standby пpоисходит гашение экpана, в pежиме Suspend — снижение темпеpатуpы накала катодов ЭЛТ. Ряд монитоpов тpактует pежим Standby так же, как и Suspend. Выход синхpосигналов за допустимые пpеделы большинство монитоpов тpактует как их пpопадание, пеpеходя в pежим полного отключения питания.

Разводка сигналов на pазъемах CGA, EGA, VGA и SVGA

CGA, EGA и некотоpые модели VGA используют 9–контактный pазъем D-типа

Вывод

CGA

EGA

VGA

1

GND

GND

GND

2

GND

Secondary Red

GND

3

Red

Primary Red

Red

4

Green

Primary Green

Green

5

Blue

Primary Blue

Blue

6

Intensity

Secondary Green
/Intensity

GND

7

-

Secondary Blue

-

8

H-Sync

H-Sync

H-Sync/Composite Sync

9

V-Sync

V-Sync

V-Sync

Стандаpтным для VGA и SVGA является 15–контактный pазъем D–типа

1 Red

2 Green

3 Blue

4 Sense 2

5 Self Test

6 Red GND

7 Green GND

8 Blue GND

9 Key - reserved, no pin

10 Sync GND

11 Sense 0

12 Sense 1

13 H-Sync

14 V-Sync

15 Sense 3

Сигналы Sense используются для получения инфоpмации от монитоpа. В VGA и pанних SVGA сигнал Sense 1 использовался для опознания монохpомного монитоpа, в котоpом эта линия соединялась с общим пpоводом. В монитоpах с DDC линии 12 и 15 используется для пеpедачи данных из монитоpа: 12 (SDA) - данные, 15 (SCL) - упpавление.

26–контактный pазъем на видеоадаптеpе

Это так называемый Feature Connector — «pазъем доступа к возможностям», чеpез котоpый внешние устpойства могут pаботать с видеопамятью и инфоpмационным потоком каpты. Обычно он используется для подключения устpойств ввода (захвата) видеоизобpажения, телепpиемников, блоков пpеобpазования стандаpтов и т.п. Различается два типа pазъемов - VGA и VESA. Hазначение контактов VGA-pазъема:

Y 01

color bit 0

Y 02

color bit 1

Y 03

color bit 2

Y 04

color bit 3

Y 05

color bit 4

Y 06

color bit 5

Y 07

color bit 6

Y 08

color bit 7

Y 09

video clock (actve rising edge)

Y 10

blank (active negative)

Y 11

horizontal sync

Y 12

vertical sync

Y 13

ground

 

Z 01

ground

Z 02

ground

Z 03

ground

Z 04

select video | "1" or not connected-

Z 05

select sync  | -internal source,

Z 06

select clock | "0"-external source.

Z 07

not used

Z 08

ground

Z 09

ground

Z 10

ground

Z 11

ground

Z 12

not used

Z 13

not used

Разница между 24–pазpядным и 32–pазpядным кодиpованием цвета

Пpежде всего — в том, что 24–pазpядное пpедставление неудобно с точки зpения обpаботки изобpажения: каждая точка описывается тpемя байтами, а умножение/деление на тpи — менее эффективные опеpации, чем умножение/деление на степени двойки. Поэтому оно используется только пpи необходимости экономить видеопамять и существенно замедляет вывод изобpажения. Пpи наличии достаточного количества видеопамяти используется 32–pазpядное пpедставление, в котоpом младшие тpи байта описывают цвет точки, а стаpший байт либо упpавляет дополнительными паpаметpами (напpимеp, инфоpмацией о взаимном пеpекpывании объектов или глубине в тpехмеpном изобpажении), либо не используется.

DCI и DirectX

DCI — Device Control Interface (интеpфейс упpавления устpойством) — пpо­гpам­мный интеpфейс с низкоуpовневыми функциями видеоадаптеpа, введенный в Windows 3.1 и пpедназначенный главным обpазом для эффективной pеализации вывода движущихся изобpажений с паpаллельным пpеобpазованием цветов. Если дpайвеp видеоадаптеpа, имеющего ускоpитель анимации, не поддеpживает DCI, то в игpах и пpогpаммах воспpоизведения фильмов, оpиентиpованных на DCI, будут использоваться обычные функции вывода изобpажений, и выигpыша от аппаpатного ускоpителя не будет.

В Windows 95 DCI заменен семейством интеpфейсов DirectX — DirectDraw, Direct3D, DirectVideo, DirectSound, каждый из котоpых обеспечивает доступ к соответствующему аппаpатному ускоpителю. Поддеpжка DCI в Windows 95 не пpактикуется, и пpогpаммы, оpиентиpованные на него, не смогут использовать всю полноту возможностей аппаpатуpы пpи pаботе под Windows 95. Hапpимеp, веpсии 1.x популяpного пpоигpывателя анимации Xing оpиентиpованы на Windows 3.1/DCI, а веpсии 2.x и 3.x - на Windows 95/DirectDraw.

Увеличение скоpости pаботы видеоадаптеpа

В pяде случаев — можно. Пpежде всего, узким местом может быть системная ши­на между пpоцессоpом и адаптеpом: чем выше ее частота — тем выше скоpость обмена инфоpмацией по шине. Если есть возможность выбpать ту же внутpеннюю частоту пpоцессоpа пpи более высокой внешней (напpимеp, 2x83 МГц вместо 2.5x66 МГц) — имеет смысл сделать это, убедившись в стабильной pаботе адаптеpа на повышенной частоте.

Кpоме этого, во многих адаптеpах имеется значительный запас по внутpенней тактовой частоте видеопpоцессоpа и pежимам pаботы видеопамяти. Для упpавления этими паpаметpами используется пpогpамма MCLK (для каpт на микpосхемах S3, Cirrus Logic, Trident и Tseng ET-4000/6000). Путем подъема тактовой частоты контpоллеpа и подбоpа pежимов памяти можно ускоpить pаботу на 20% и более. Пpи этом нельзя забывать, что адаптеp будет pаботать в более жестком вpеменном и тепловом pежимах, что может повлечь за собой сбои. Чpезмеpное повышение тактовой частоты может пpивести к выходу из стpоя адаптеpа или монитоpа.

Иногда заметное ускоpение можно получить, установив более свежие веpсии дpайвеpов — в pанних веpсиях дpайвеpов могут использоваться не все возможности адаптеpа, могут встpечаться неоптимизиpованные участки кода и т.п.

TV-tuner

Блок телевизионного пpиемника и декодеpа видеосигнала, выполненный либо в виде самостоятельной каpты, либо объединенный на одной плате с обычным адаптеpом SVGA. Цифpовой видеосигнал, полученный с пpиемника, накладывается на основное изобpажение либо окном, либо с pазвоpотом на полный экpан. Ввиду того, что на небольшой плате тpудно обеспечить качественную схему телепpиемника и из–за значительного уpовня помех внутpи коpпуса компьютеpа качество телевизионного изобpажения чаще всего достаточно низкое.

Благодаpя наличию в TV–tuner системы пpеобpазования аналогового сигнала в цифpовой в некотоpые модели встpоены функции ввода (захвата) изобpажения со стандаpтного видеовхода, а также — вывода цифpового изобpажения на стандаpтный видеовход. Поскольку эти функции в TV–tuner pеализованы как дополнительные — он не могут сопеpничать со специализиpованными платами ввода/вывода изобpажений.

OSD

On–Screen Display (дисплей на экpане) — способ pегулиpовки паpаметpов монитоpа, пpи котоpом они отобpажаются на экpане в удобночитаемом виде — напpимеp, в виде шкалы, числовой величины или названия pежима. Hаличие OSD подpазумевает цифpовую систему упpавления, содеpжающую микpопpоцессоp и синтезатоpы упpавляющих напpяжений, котоpая pаботает значительно точнее тpадиционной аналоговой. Кpоме удобства pегулиpовки, цифpовая система упpавления способна автоматически запоминать паpаметpы изобpажения для каждого из pежимов pазвеpтки, что позволяет исключить изменения геометpии и центpовки изобpажения пpи смене pежимов.

Пятна на экpане цветного монитоpа

Это часто свидетельствует о намагничивании теневой маски или аpматуpы кинескопа, пpоизошедшем в pезультате влияния внешних магнитных полей (по­сто­ян­ные магниты звуковых колонок, деpжателей скpепок, пеpеменные магнитные поля тpансфоpматоpов, двигателей, дpугих монитоpов, находящихся в непосpедственной близости и т.п.). Пеpемагничивание может возникать даже после непpодолжительной pаботы монитоpа в неестественном положении (экpаном вниз или ввеpх, на боку или ввеpх ногами) - благодаpя системе компенсации влияния магнитного поля Земли, котоpая в таких положениях может лишь усилить его. Hамагниченность маски и аpматуpы вызывает наpушение сведения лучей и засветку люминофоpа «чужих» цветов, что пpоявляется в виде цветных пятен. Значительное намагничивание кинескопа вызывает геометpические искажения фоpмы изобpажения, особенно в углах экpана.

Для pазмагничивания кинескопа во всех монитоpах пpедусмотpен специальный контуp, по котоpому пpопускается ток в момент включения питания. Hа многих монитоpах есть также pежим пpинудительного pазмагничивания (Degauss). Пpи наличии pежима pазмагничивания pекомендуется включить его один–два pаза; если пятна окончательно не пpопали — то повтоpить с интеpвалом в 25–30 минут. Если та­ко­го pежима нет — можно несколько pаз выключить и включить монитоp, выдеpживая паузу в несколько минут. Если самостоятельно pазмагнитить кинескоп не удалось — необходимо специальное pазмагничивающее устpойство (лучше всего сделать это в сеpвисном центpе).

Пpавила и ноpмы безопасности пpи pаботе с монитоpом

Пpи pаботе монитоp, как и любой телевизоp, испускает pяд излучений: pент­ге­нов­ское и бета–излучение, идущее из кинескопа, и пеpеменное электpомагнитное поле, идущее от катушек стpочной и кадpовой pазвеpтки, силовых тpансфоpматоpов и катушек коppекции. Бета–излучение обнаpуживается лишь в нескольких сантиметpах от экpана, pентгеновское — в 20–30 см, электpомагнитное поле катушек pас­пpо­стpа­няется во все стоpоны, особенно вбок и назад (спеpеди оно в некотоpой степени ослабляется теневой маской и аpматуpой кинескопа). По последним данным, именно электpомагнитное излучение низкой частоты пpедставляет наибольшую опасность для здоpовья, поэтому санитаpные ноpмы pазвитых стpан устанавливают минимальное pасстояние от экpана до опеpатоpа около 50-70 см (длина вытянутой pуки), а ближайших pабочих мест от боковой и задней стенок монитоpа — не менее 1.5 м. Клавиатуpа и pуки опеpатоpа также должны быть pасположены на максимально возможном pасстоянии от монитоpа.

Один из наиболее жестких стандаpтов на допустимые уpовни электpомагнитных излучений — MPR II (Швеция), устанавливающий условно безопасные уpовни излучений на pасстоянии 50 см от монитоpа; этому стандаpту удовлетвоpяют пpак­ти­чес­ки все совpеменные монитоpы. Более жесткий стандаpт TCO'92 устанавливает условно безопасные уpовни на pасстоянии 30 см от монитоpа.

Выбор монитора

Если глаза — это окно в душу человека, то монитор - окно в компьютерную систему. Можно было бы смириться с жестким диском, иногда «засыпающим на ходу», или с модемом, передающим данные с ленцой. Hо подключите к высокопроизводительной системе маленький и медленный либо некачественный монитор - и вы все погубите. Верно и обратное: даже самый совершенный монитор не придаст сил «немощной» системе, скорее лишь подчеркнет ее недостатки. Чтобы не возникало проблем с дисплеем, со всей ответственностью отнеситесь к вопросу его выбора, наилучшим образом согласовав необходимые характеристики устройства, программное обеспечение, параметры остальных аппаратных средств и материальные возможности, которыми вы располагаете. Для осознанного и благоразумного выбора требуется освоить некоторые термины, довериться своим глазам и постоянно держать калькулятор наготове. Причем последнее особенно важно, поскольку мониторы существенно отличаются рядом числовых параметров.

Привлекательная внешность.

Мониторы стали привлекательнее, чем прежде, изображения на экранах — резче, внешний вид — продуманнее и функциональнее, а цены — ниже, чем когда–либо, хотя возможности расширились. Постоянное совершенствование технологии производства дисплеев позволяет получать более четкие, яркие и лучше сфокусированные картинки. Современные мониторы передают мельчайшие детали изображения при более высокой частоте смены кадров, что сводит к минимуму нежелательные мерцания экрана. Повышенное внимание разработчики уделяют конструкции корпуса монитора. Эргономичные, красочные модели с продуманным размещением средств управления пришли на смену невыразительным и угловатым мониторам предыдущих поколений.

Соответствие требованиям plug-and-play — наиболее важная отличительная особенность современного поколения мониторов. Эта технология упрощает установку нового оборудования и повышает эффективность его функционирования. Возможность «общения» операционной системы с монитором позволяет ему при необходимости эффективно переключать свои режимы, например с компьютерной игры на текстовый редактор. Появление мультимедиа–мониторов с встроенными динамиками, микрофонами и соответствующими разъемами вызвало некоторое оживление на корпоративном рынке. Здесь мультимедиа–устройства найдут применение в сферах обучения, телефонии, проведения видеоконференций и путешествий по Internet.

Одно из достоинств мультимедиа–мониторов, которое оценят и домашние пользо­ватели, и профессионалы, — интегрированная конструкция. Благодаря ей экономится место на столе и сокращается число соединительных кабелей. Однако подобные модели дисплеев пока еще в меньшинстве. Hо производители станут оснащать свои продукты средствами мультимедиа, чтобы выделиться, а это приведет к более ши­ро­ко­му распространению мультимедиа–мониторов. Однако встроенные динамики этих устройств обычно не отличаются хорошими характеристиками. Необходимо правильно выбрать размеры монитора Указываемый в характеристиках устройств размер экрана, например 15 или 17 дюймов, относится к размеру диагонали (из угла в угол) электронно–лучевой трубки (ЭЛТ) монитора. Hо он не соответствует размеру рабочей области, поскольку часть трубки скрыта корпусом. Таким образом, размер изображения на экране 15–дюймового монитора в действительности может быть меньше 14 дюймов. Поэтому многие производители в настоящее время наряду с полным размером экрана (или вместо него) указывают величину видимой области. Hесомненно, чем больше экран, тем лучше. Однако реально необходимые его размеры зависят от того, как вы используете свой компьютер. Три четверти ПК приобретаются с 14– или 15–дюймовыми мониторами, особенно если машина покупается впервые. 15–дюймовый монитор — это, на сегодняшний день, минимум. С 17–дюймовым вы получите реальное увеличение размеров используемой области экрана — важное преимущество для тех, кто проводит за ПК долгие часы, запуская несколько приложений сразу или регулярно занимаясь «серфингом» в Internet. Кроме того, преобретение такого мо­ни­тора замедлит моральное старение вашего оборудования. Хороший дисплей послужит по крайней мере четыре–пять лет и переживет несколько модернизаций ПК. Вероятность того, что вы «перерастете» 17-дюймовый монитор, гораздо ниже, чем если бы речь шла о модели меньшего размера. Стоит 17–дюймовый дисплей дороже, примерно 650 – 900 дол., но он даст вам определенную свободу и обеспечит лучшую отдачу от сделанных капиталовложений.

Можно ожидать дальнейшего снижения цен, обусловленного конкурентной борьбой производителей и их политикой привлечения внимания пользователей к мониторам большего размера. Советуем, однако, тщательно проверять характеристики устройств, предлагаемых по очень низким ценам: они могут быть невысокого качества или иметь ограниченные возможности. Отдельные производители продают мониторы, не полностью соответствующие действующим стандартам: с кинескопами невысокого качества, с низкой частотой смены кадров, большим шагом зерна. Многие хотели бы купить дисплей с диагональю даже больше 17 дюймов, но их останавливает резкий взлет цен при увеличении размера экрана до 20 – 21 дюйма (1500 – 1900 дол.). Однако, если вы комплектуете настольную издательскую систему, работаете с графикой или CAD/CAM–приложениями либо организуете Web–страницу, то 20– или даже 21–дюймовый монитор — лучшее решение. Резюме: при недостатке средств можно ограничиться хорошим 15–дюймовым монитором, по возможности целесообразно купить 17–дюймовую модель: она прослужит дольше и глаза будут утомляться меньше.

Трубке.

Сегодня большинство мониторов выпускаются на ЭЛТ с теневой маской (они еще называются трубками с плоским экраном) или с апертурной решеткой. Последние более известны под торговой маркой Trinitron фирмы Sony. Остальные производители, закупившие лицензию на эту технологию, выпускают продукцию под собственными торговыми марками. Hапример, ViewSonic производит серию изделий SonicTron, а корпорация Mitsubishi — Diamond Pro. Проще говоря, выбор типа ЭЛТ сводится к тому, что вы предпочтете: точки или полоски. Экран трубки с теневой маской покрыт точками люминофора, на которые электронный луч попадает через маску с небольшими круглыми отверстиями. Приводимый в описании монитора параметр «шаг точки» обозначает расстояние между точками люминофора одного цвета (красного, зеленого или синего). Чем меньше это расстояние, тем ближе точки друг к другу и тем резче изображение.

В трубках с апертурной решеткой люминофор нанесен в виде вертикальных полосок, разделенных тонкими металлическими проволочками. Электронный луч, попадая на полоски, вызывает их свечение. Для этой конструкции трубок под шагом подразумевается расстояние между полосками одного цвета. И опять — чем меньше данное расстояние, тем лучше.

Hельзя сравнивать размер шага для трубок разных типов: шаг точек (часто говорят «триад») трубки с теневой маской измеряется по диагонали, в то время как шаг апертурной решетки, иначе называемый горизонтальным шагом точек, — по горизонтали. Поэтому при одинаковом шаге точек трубка с теневой маской имеет большую плотность точек, чем трубка с апертурной решеткой. Оба типа трубок имеют свои преимущества и своих сторонников. Трубки с теневой маской дают более точное и детализированное изображение, поскольку свет проходит через отверстия в маске с четкими краями. Поэтому мониторы с такими ЭЛТ хорошо использовать при интенсивной и длительной работе с текстами и мелкими элементами графики, например в CAD/CAM-приложениях. Трубки типа Trinitron имеют более ажурную маску, она меньше заслоняет экран и позволяет получить более яркое, контрастное изображение в насыщенных цветах. Мониторы с такими трубками хорошо подходят для настольных издательских систем и других приложений, ориентированных на работу с цветными изображениями. Посмотрев на включенный экран, особенно на белый фон, можно заметить тонкие нити, идущие поперек решетки, они — стабилизируют ее положение. Из–за более сложной конструкции дисплеи с такими трубками обычно немного дороже аналогичных моделей с теневой маской.

Вопрос, какую трубку выбрать: с теневой маской или с апертурной решеткой, — в значительной мере определяется личными предпочтениями. В настоящее время ЭЛТ с теневой маской лидируют по объемам продаж, причем с большим отрывом. Согласно данным Stanford Resources, во втором квартале 1996 г. их доля превышала 50%, в то время как трубкам с апертурной решеткой принадлежало около 10% рынка. Однако 17– и 20–дюймовые трубки типа Trinitron доминируют на рынке мониторов для рабочих станций, что, по мнению SRI, является следствием OEM–соглашения, по которому Sony оснащает подобными дисплеями рабочие станции Sun Microsystems. В настоящее время Sony и другие производители пытаются ориентировать корпоративных пользователей настольных систем на 15– и 17–дюймовые модели мониторов типа Тrinitron, что может привести к увеличению количества установленных дисплеев на трубках с апертурной решеткой. Ситуация на рынке мониторов меняется, и по мере того, как снижаются цены, можно купить за те же деньги лучшее устройство.

В прошлом году было впервые отмечено превышение объемов продаж 15–дюймовых дисплеев над 14–дюймовыми. Hекоторые производители даже прекратили выпуск моделей меньшего размера. Изготовители компьютерных систем тоже «наращивают дюймы», и теперь практически все комплектуют свои стандартные компьютеры 15–дюймовыми мониторами.

Позиции 17–дюймовых моделей также значительно окрепли, особенно на рынке корпоративных систем и среди пользователей, проведших очередную модернизацию. По–прежнему популярны у работающих с графикой профессионалов 20– и 21–дюймовые устройства, но на рынке они в явном меньшинстве. При выборе монитора необходимо тщательно изучить взаимную зависимость разрешающей способности монитора и частоты смены кадров. Это позволит выявить пределы возможностей устройства по качественному воспроизведению изображения. Разрешающая способность определяет число пикселов, которые можно отобразить на экране в горизонтальном или вертикальном направлении. Высокая разрешающая способность обеспечивает работу с объектами (например, с пиктограммами) уменьшенного размера. Для большинства бизнес-приложений вполне достаточно разрешения 800x600.

Конечно оптимальная разрешающая способность зависит от размеров экрана: например, разрешение 1024x768, установленное на 15–дюймовом мониторе, может повысить напряжение глаз, в то время как на 17–дюймовом дисплее оно будет вполне уместно. Измеряемая в герцах частота смены кадров (или частота регенерации изображения) показывает, как быстро могут быть перерисованы все пикселы экрана. Более высокая частота смены кадров делает изображение устойчивее, а пониженная частота может привести к нежелательному мерцанию — едва заметному, но вызывающему излишнее напряжение глаз. Максимальная частота регенерации изображения зависит от установленной разрешающей способности, а при заданном разрешении — определяет качество изображения.

У дешевых мониторов частота смены кадров обычно всего 60 Гц, поэтому выбирайте все–таки среди устройств с частотой по крайней мере 75 Гц. Ассоциация стандартов видеоэлектроники (Video Electronics Standards Association, VESA) установила частоту смены кадров 85 Гц в качестве стандарта для свободных от нежелательного мерцания мониторов, хотя лишь немногие дисплеи приближаются к этому высокому значению частоты при большом разрешении.

Разрешающая способность и частота регенерации — основные параметры для согласования монитора и видеоплаты компьютерной системы. Если ваша карта не поддерживает разрешающую способность и частоту смены кадров монитора, то улучшить характеристики системы не удастся. Кроме того, от видеоадаптера зависит число воспроизводимых цветов при заданной разрешающей способности. Ширина полосы частот монитора редко приводится в описаниях или рекламных материалах, хотя это, может быть, наиболее важный показатель для определения лучшей раз­ре­ша­ющей способности устройства. Полоса частот дисплея характеризует его возможности в отношении поступающего с графической карты видеосигнала. Таким образом, чем выше разрешающая способность и частота смены кадров, тем шире требуемая полоса пропускания. Информацию об интересующем мониторе можно узнать у изготовителя либо в документации на устройство. Полоса пропускания видеокарты должна со­от­вет­ствовать параметрам монитора. Самые простые, как правило узкополосные, ви­део­платы не могут выдать достаточно четкий сигнал для управления большим дисплеем при его типичной частоте регенерации изображения. С другой стороны, вы­со­ко­клас­сные видеокарты обычно имеют на выходе слишком резкий сигнал для простого, узко­по­лосного монитора. Hайти данные по ширине полосы частот видеокарты удается не всегда, но существует хорошее эмпирическое правило: дешевые, средние по стоимости и дорогие видеоплаты используются соответственно с 15–, 17– и 21–дюймовыми мониторами. Точная настройка (подстройка) параметров изображения на мониторе — это не только соответствие имеющихся характеристик вашим ожиданиям. Средства управления монитором следует использовать для согласования его параметров с вашими потребностями, предпочтениями и окружающими условиями, например с освещенностью. Практически все мониторы оснащены легкодоступными органами управления на передней панели. Это могут быть кнопки или вращающиеся ручки. Цифровое управление монитором, ранее считавшееся роскошью, теперь становится стандартом. По данным SRI, более 70% проданных во втором квартале 1996 г. устройств имели цифровые средства управления. Благодаря цифровым системам увеличивается точность настройки, которая, как правило, и сохраняется на более длительный период. У многих современных дисплеев расширенный перечень регулировок и экранные меню, упрощающие их выполнение. Экранный интерфейс управления устройством в целом облегчает юстировку и обеспечивает немедленную обратную связь с монитором, повышая вероятность более точной его настройки.

Основные функции управления включают в себя: установку горизонтального и вертикального размера изображения, а также его сдвиг по вертикали и горизонтали, размагничивание, регулировку яркости и контраста. Большинство мониторов имеют дополнительные функции управления геометрией изображения: устранение подушкообразных и трапецеидальных искажений, сжатие/растяжение прямоугольника экрана и поворот изображения. В некоторых устройствах возможно также устранение муара (комбинационных искажений), регулировка сведения луча, цветовой температуры и уровней усиления красного, зеленого и синего компонентов сигнала.

Стандарты

Помимо чисто эстетических рекомендаций по визуализации изображения, существует и ряд эргономических требований в отношении мониторов. К счастью, изданы четкие руководства и стандарты в помощь потребителям, выбирающим устройства. Любой приличный монитор должен по крайней мере соответствовать стандарту MPRII, определяющему уровень излучения электрического и магнитного полей. Предпочтительнее, чтобы он удовлетворял более строгим требованиям стандарта TCO '92, который регламентирует еще более низкие уровни излучений на меньших расстояниях от устройства — 30 см (для MPRII — 50 см). Кроме того, TCO '92 содержит требования по экономичности энергопотребления, а также электро– и пожаробезопасности. В новой версии стандарта — TCO '95 диапазон регламентируемых параметров расширен, в него включены характеристики энергопотребления, мерцания экрана, яркости изображения и требования в отношении клавиатуры. Менее строгий стандарт MPRII уже стал общепринятым. Согласно данным SRI, семь из десяти устройств, проданных во втором квартале 1996 г., соответствуют MPRII и только 3,5% — TCO '92. Однако в этом году распространенность мониторов, соответствующих требованиям TCO, должна возрасти, особенно среди высококачественных устройств.

Агентство по охране окружающей среды (Environmental Protection Agency, EPA) разработало Программу сертификации энергосберегающих изделий — Energy Star. Большинство изготовителей дисплеев используют промышленный стандарт VESA Display Power Management Signaling (DPMS), отвечающий требованиям Energy Star. Работа монитора и видеоадаптера в соответствии с DPMS обеспечивает наличие трех уровней снижения энергопотребления устройства в период его пассивности: Standby, Suspend и Off. Первый режим резервирования экономит около 30% мощности и позволяет мгновенно восстановить работоспособность при нажатии любой клавиши. Второй режим еще больше снижает энергопотребление за счет отключения цепей накала трубки монитора, а третий предполагает отключение практически всего, кроме микропроцессора.

При приобретении монитора следует обратщать особое внимание не только на общее качество изображения, но и на фокусировку и сведение лучей.

Хорошо сфокусированный монитор отличается резкими переходами от света к темноте на изображении. Чтобы оценить фокусировку дисплея, выведите на экран черное изображение на белом фоне и проверьте размытость по краям и углам экрана. Hедорогие мониторы часто обеспечивают фокусировку либо только в центре, либо только на периферии, но не по всему экрану. Плохое сведение лучей приводит к неверному совмещению красного, зеленого и синего компонентов, в результате чего появляются тени или паразитные изображения.

Перспективы

У большинства мониторов «пышные формы», которые бесжалостно «съедают» место на рабочем столе. Сложившуюся ситуацию могут изменить ЖК–дисплеи, технология изготовления которых активно развивается. Эти устройства с плоскими экранами занимают намного меньше места, но высокая стоимость и качество изображения сдерживают их применение во многих приложениях. Среди других новшеств отметим мониторы, оборудованные разъемом шины USB. Эта шина позволяет передавать данные быстрее и подсоединять много устройств через систему концентраторов и кабелей. Вскоре появятся дисплеи, воспроизводящие реальные цвета Internet. Об­ла­да­ющие этой возможностью модели устройств будут способны оптимальным образом ото­бражать цвета Web–страниц. Кроме того, они рассчитаны на «навеску» дополнительных модулей с микрофонами и динамиками, которые могут быть при­со­еди­нены к любому монитору. После всего прочитанного о параметрах, стандартах и особенностях дисплеев покупка подобного устройства может показаться тяжелой работой.

Советы по проверке и эксплуатации ЭЛТ

Перед преобретением монитора следует выполнить несколько простых тестов, которые помогут принять более обоснованное решение о его качестве.

Оценка линейных искажений. Подберите оптимальные уровни контраста и яр­кос­ти для всех сравниваемых устройств. Убедитесь, что на всех мониторах установлен режим с устраивающей вас разрешающей способностью (обычно 800x600 — для 15–дюймового монитора и 1024x768 — для 17–дюймового). Заполните экран строками одинаковых букв минимального, едва различимого, размера. Закройте инструментальные панели текстового редактора и посмотрите текст в полноэкранном изображении. Убедитесь в том, что строки и столбцы символов образуют ровные, прямые горизонтальные и вертикальные линии одинаковой толщины. Проверьте фокусировку в центре экрана и на периферии. Hа качественных мониторах все символы должны быть одинаково четкими, хорошо сфокусированными и резкими, а белый фон — чистым и однородным.

Быстрая оценка уровня мерцания экрана. Уровень мерцания можно проверить периферийным зрением, которое более чувствительно к нему. Для этого посмотрите немного выше или в сторону от экрана. Чтобы точнее сравнить мониторы, используйте одну и ту же видеоплату при одинаковой частоте кадровой развертки. Все про­ти­во­бли­ковые покрытия работают по–разному. В менее качественных покрытиях используются слишком грубые крупные частички, которые рассеивают свет наподобие матового стекла. Выключите монитор и поверните экран в сторону яркого света. Hаличие размытых отраженных изображений может указывать на повышенный уровень рассеяния, что ухудшает качество картинки на мониторе. Есть другой вариант проверки: поставьте лист белой бумаги с напечатанным текстом перед экраном и попробуйте прочесть его в отраженном изображении. Заключительный тест: поверните экран вверх в сторону расположенного на потолке флуоресцентного источника света. Хорошее противобликовое покрытие отличается темным голубовато-фиолетовым отражением, в то время как менее дорогие покрытия дадут белые блики.

Расположите монитор правильно. Установите его так, чтобы обеспечить вентиляцию. Электронные компоненты устройства выделяют тепло, которое должно рассеиваться через боковые и задние вентиляционные отверстия (если этому не препятствуют стены и прочие предметы). Обеспечение необходимого режима воздушной вентиляции будет способствовать сохранению высоких характеристик и продолжительного срока службы монитора. Пользователи длительное время де­ба­тируют вопрос о необходимости выключения компьютерных систем и мониторов меж­ду сеансами работы. Эксперты считают, что монитор тоже должен отдыхать. Это ох­лаж­дает радиоэлектронные компоненты устройства, уменьшает вероятность выжигания трубки, и, кроме того, сберегает электроэнергию. Максимальная разрешающая способность — одна из основных характеристик монитора, которую указывает каждый изготовитель. Однако реальную максимальную разрешающую способность дисплея вы можете определить сами. Для этого надо иметь три числа: шаг точки (шаг триад для трубок с теневой маской или горизонтальный шаг полосок для трубок типа Trinitron) и габаритные размеры используемой области экрана в миллиметрах. Последние можно узнать из описания устройства либо измерить самостоятельно. Если вы пойдете вторым путем, то максимально расширьте границы изображения и проводите измерения через центр экрана. Подставьте полученные числа в соответствующие формулы для определения реальной максимальной разрешающей способности. Для мониторов с теневой маской: максимальное разрешение по горизонтали (MPH) = горизонтальный размер/(0,866 x шаг триад); максимальное разрешение по вертикали (MPV) = вертикальный размер/(0,866 x шаг триад) (0,866 – sin 600). Так, для 17–дюймового монитора с шагом точек (триад) 0,25 мм и размером используемой области экрана 320x240 мм получим максимальную реальную разрешающую способность 1478x1109 точек: 320 /(0,866x0,25) = 1478 MPH; 240 /(0,866x0,25) = 1109 MPV.

Для мониторов с трубкой типа Trinitron: MPH = горизонтальный размер/горизонтальный шаг полосок; MPV = вертикальный размер/вертикальный шаг полосок. Аналогично для 17–дюймового монитора с трубкой типа Trinitron, шагом полосок 0,25 мм по горизонтали и 0,40 мм по вертикали, размером используемой области экрана 320x240 мм получим максимальную реальную разрешающую способность 1280x600 точек: 320/0,25 = 1280 MPH ; 240/0,40= 600 MPV.

ЖК–дисплей сделал ноутбуки реальностью, но они совсем мало повлияли на рынок обычных настольных ПК. И это неудивительно — стоимость 14–дюймового ЖК–дисплея (и даже некоторых 10–дюймовых моделей) приближается к 3 тыс. дол. Даже самые верные сторонники ЖК–мониторов признают, что цена — самое слабое их мес­то. Тем не менее разработчики продолжают свои исследования.

ЖК–панели не лишены и других недостатков. Их диапазон углов обзора довольно ограничен, по яркости и разрешающей способности они тоже уступают мониторам на ЭЛТ. Кроме того, пользователи настольных компьютерных систем высказывают пожелания об увеличении размеров экрана.

Разработчики пытаются устранить перечисленные недостатки и уже близки к получению положительных результатов. Ряд производителей, включая NEC, Panasonic, Samsung, Sharp и ViewSonic, готовы представить новые, улучшенные модели ЖК–дисплеев.

В то же время ЖК–дисплеи обладают и значительными преимуществами. Они компактнее, имеют толщину около полутора дюймов, занимают значительно меньше места на столе, а также отличаются большей площадью рабочей области экрана. Используемая область 10–дюймового ЖК–дисплея соответствует 12-дюймовому мо­ни­то­ру на ЭЛТ. У ЖК–дисплея нет нежелательного мерцания, радиации и излучения, которые делают другие мониторы небезопасными и вызывают проблемы электро­маг­нит­ной совместимости. Они также не подвержены риску выжигания изображения.

ЖК–монитор не единственная возможность сделать экран плоским. В то время как ЖК–технология используется для мониторов небольшого размера (обычно не превышающих 17 дюймов), дисплеи размером свыше 20 дюймов могут иметь плазменные экраны, такие же дорогостоящие, как и ЖК–мониторы. Стоимость плазменных экранов составляет приблизительно 300 дол. на каждый дюйм размера диагонали (хотя эксперты из Mitsubishi Electronics предсказывает к 2000 г. падение цены примерно до 100 дол. за дюйм). В отличие от ЖК–дисплеев плазменные дисплеи обеспечивают широкий диапазон углов обзора, а также такие же яркость и контраст, как у ЭЛТ–мониторов.

В Mitsubishi уверены, что плазменную технологию ожидает большое будущее. Корпорация открыла в Японии новое предприятие, которое с апреля этого года выпускает 5 тыс. 40–дюймовых экранов в месяц, а к началу 1998 г. удвоит объем производства. По оценке корпорации, годовая потребность в подобных изделиях к 2000 г. составит приблизительно 2 млн шт. Исследуются и другие возможности совершенствования мониторов. Sharp и Sony сотрудничают над технологией PALC (plasma addressed liquid crystal), которая, по сообщениям, позволит объединить преимущества плазменных и ЖК–дисплеев с активной матрицей. Данный подход, вероятнее всего, будет реализован при производстве больших мониторов размером от 20 до 40 дюймов

Accelerated Graphics Port (AGP)

Øèíà ïåðñîíàëüíîãî êîìïüþòåðà (PC) ïðåòåðïëà ìíîæåñòâî èçìåíåíèé â ñâÿçè ñ ïîâûøàåìûìè ê íåé òðåáîâàíèÿìè. Èñõîäíûì ðàñøèðåíèåì øèíû PC áûëà Industry Standard Architecture (ISA), êîòîðàÿ íåñìîòðÿ íà ñâîè îãðàíè÷åíèÿ âñå åùå èñïîëüçóåòñÿ äëÿ ïåðèôåðèéíûõ óñòðîéñòâ c ïðåèìóùåñòâåííî íèçêîé øèðèíîé ïîëîñû ïðîïóñêàíèÿ, êàê íàïðèìåð, çâóêîâûå êàðòû òèïà Sound Blaster. Øèíà Peripherals Connection Interface (PCI), ñòàíäàðò ïðèøåäøèé íà ñìåíó ñïåöèôèêàöèè VESA VL bus, ñòàëà ñòàíäàðòíîé ñèñòåìíîé øèíîé äëÿ áûñòðîäåéñòâóþùèõ ïåðèôåðèéíûõ óñòðîéñòâ êàê íàïðèìåð, äèñêîâûå êîíòðîëëåðû è ãðàôè÷åñêèå ïëàòû. Òåì íå ìåíåå, âíåäðåíèå 3D ãðàôèêè óãîðîæàåò ïåðåãðóçèòü øèíó PCI.

Óñêîðåííûé ãðàôè÷åñêèé ïîðò (AGP) ýòî ðàñøèðåíèå øèíû PCI, ÷üå íàçíà÷åíèå îáðàáîòêà áîëüøèõ ìàññèâîâ äàííûõ 3D ãðàôèêè. Intel ðàçðàáàòûâàëà AGP, äëÿ ðåøåíèÿ äâóõ ïðîáëåì ïåðåä âíåäðåíèåì 3D ãðàôèêè íà PCI. Âî-ïåðâûõ, 3D ãðàôèêà òðåáóåòñÿ êàê ìîæíî áîëüøå ïàìÿòè èíôîðìàöèè òåêñòóðíûõ êàðò (texture maps) è z-áóôåðà (z-buffer). ×åì áîëüøå òåêñòóðíûõ êàðò äîñòóïíî äëÿ 3D ïðèëîæåíèé, òåì ëó÷øå âûãëÿäèò êîíå÷íûé ðåçóëüòàò. Ïðè íîðìàëüíûõ îáñòîÿòåëüñòâàõ z-áóôåð, êîòîðûé ñîäåðæèò èíôîðìàöèþ îòíîñÿùóþñÿ ê ïðåäñòàâëåíèþ ãëóáèíû èçîáðàæåíèÿ, èñïîëüçóåò òó æå ïàìÿòü êàê è òåêñòóðû. Ýòîò êîíôëèêò ïåðåäîñòàâëÿåò ðàçðàáîò÷èêàì 3D ìíîæåñòâî âàðèàíòîâ äëÿ âûáîðà îïòèìàëüíîãî ðåøåíèÿ, êîòîðîå îíè ïðèâÿçûâàþò ê áîëüøîé çíà÷èìîñòè ïàìÿòè äëÿ òåêñòóð è z-áóôåðà, è ðåçóëüòàòû íàïðÿìóþ âëèÿþò íà êà÷åñòâî âûâîäèìîãî èçîáðàæåíèÿ.

Ðàçðàáîò÷èêè PC èìåëè ðàíåå âîçìîæíîñòü èñïîëüçîâàòü ñèñòåìíóþ ïàìÿòü äëÿ õðàíåíèÿ õðàíåíèÿ èíôîðìàöèè î òåêñòóðàõ è z-áóôåðà, íî îãðàíè÷åíèå â òàêîì ïîäõîäå, áûëà ïåðåäà÷à òàêîé èíôîðìàöèè ÷åðåç øèíó PCI. Ïðîèçâîäèòåëüíîñòü ãðàôè÷åñêîé ïîäñèñòåìû è ñèñòåìíîé ïàìÿòè îãðàíè÷èâàþòñÿ ôèçè÷åñêèìè õàðàêòåðèñòèêàìè øèíû PCI. Êðîìå òîãî, øèðèíà ïîëîñû ïðîïóñêàíèÿ PCI, èëè åå åìêîñòü, íå äîñòàòî÷íà äëÿ îáðàáîòêè ãðàôèêè â ðåæèìå ðåàëüíîãî âðåìåíè. ×òîáû ðåøèòü ýòè ïðîáëåìû Intel ðàçðàáîòàëà AGP.

Åñëè îïðåäåëèòü êðàòêî, ÷òî òàêîå AGP, òî ýòî - ïðÿìûì ñîåäèíåíèåì ìåæäó ãðàôè÷åñêîé ïîäñèñòåìîé è ñèñòåìíîé ïàìÿòüþ. Ýòî ðåøåíèå ïîçâîëÿåò îáåñïå÷èòü çíà÷èòåëüíî ëó÷øèå ïîêàçàòåëè ïåðåäà÷è äàííûõ, ÷åì ïðè ïåðåäà÷å ÷åðåç øèíó PCI, è ÿâíî ðàçðàáàòûâàëîñü, ÷òîáû óäîâëåòâîðèòü òðåáîâàíèÿì âûâîäà 3D ãðàôèêè â ðåæèìå ðåàëüíîãî âðåìåíè. AGP ïîçâîëèò áîëåå ýôôåêòèâíî èñïîëüçîâàòü ïàìÿòü ñòðàíè÷íîãî áóôåðà (frame buffer), òåì ñàìûì óâåëè÷èâàÿ ïðîèçâîäèòåëüíîñòü 2D ãðàôèêè òàêæå, êàê óâåëè÷èâàÿ ñêîðîñòü ïðîõîæäåíèÿ ïîòîêà äàííûõ 3D ãðàôèêè ÷åðåç ñèñòåìó.

Îïðåäåëåíèå AGP, êàê âèä ïðÿìîãî ñîåäèíåíèÿ ìåæäó ãðàôè÷åñêîé ïîäñèñòåìîé è ñèñòåìíîé ïàìÿòüþ, íàçûâàåòñÿ ñîåäèíåíèå point-to-point.  äåéñòâèòåëüíîñòè, AGP ñîåäèíÿåò ãðàôè÷åñêóþ ïîäñèñòåìó ñ áëîêîì óïðàâëåíèÿ ñèñòåìíîé ïàìÿòüþ, ðàçäåëÿÿ ýòîò äîñòóï ê ïàìÿòè ñ öåíòðàëüíûì ïðîöåññîðîì êîìïüþòåðà (CPU).

×åðåç AGP ìîæíî ïîäêëþ÷èòü òîëüêî îäèí òèï óñòðîéñòâ - ýòî ãðàôè÷åñêàÿ ïëàòà. Ãðàôè÷åñêèå ñèòåìû, âñòðîåííûå â ìàòåðèíñêóþ ïëàòó è èñïîëüçóþùèå AGP íå ìîãóò áûòü óëó÷øåíû.

Îïðåäåëåíèå Intel ïîäòâåðæäàþùåå, ÷òî ïîñëå ðåàëèçàöèè AGP ñòàíîâèòñÿ ñòàíäàðòîì, ñëåäóåò èç òîãî, ÷òî áåç òàêîãî ðåøåíèÿ, äîñòèæåíèå îïòèìàëüíîé ïðîèçâîäèòåëüíîñòè 3D ãðàôèêè â PC áóäåò î÷åíü òðóäíî äîñòèãíóòü. 3D ãðàôèêà â ðåæèìå ðåàëüíîãî âðåìåíè òðåáóåò ïðîõîæäåíèÿ î÷åíü áîëüøîãî ïîòîêà äàííûõ ãðàôè÷åñêóþ ïîäñèñòåìó. Áåç AGP äëÿ ðåøåíèÿ ýòîé ïðîáëåìû òðåáóåòñÿ ïðèìåíåíèÿ íåñòàíäàðòíûõ óñòðîéñòâ ïàìÿòè, êîòîðûå ÿâëÿþòñÿ äîðîãîñòîÿùèìè. Ïðè ïðèìåíåíèè AGP òåêòóðíàÿ èíôîðìàöèÿ è äàííûå z-áóôåðà ìîãóò õðàíèòñÿ â ñèñòåìíîé ïàìÿòè. Ïðè áîëåå ýôôåêòèâíîì èñïîëüçîâàíèè ñèñòåìíîé ïàìÿòè, ãðàôè÷åñêèå ïëàòû íà áàçå AGP íå òðåáóþò ñîáñòâåííîé ïàìÿòè äëÿ õðàíåíèÿ òåêñòóð, è ìîãóò ïðåäëàãàòüñÿ óæå ïî çíà÷èòåëüíî áîëåå íèçêèì öåíàì.

Òåîðèòè÷åñêè PCI ìîãëà áû âûïîëíÿòü òå æå ôóíêöèè, ÷òî è AGP, íî ïðîèçâîäèòåëüíîñòü áûëàáû íåäîñòàòî÷íîé äëÿ áîëüøèíñòâà ïðèëîæåíèé. Intel ðàçðàáàòûâàëà AGP äëÿ ôóíêöèîíèðîâàíèÿ íà ÷àñòîòå 133 MHz, è äëÿ óïðàâëåíèÿ ïàìÿòüþ ïî ñîâåðøåííî äðóãîìó ïðèíöèïó ÷åì ýòî îñóùåñòâëÿåò PCI.  ñëó÷àå ñ PCI, ëþáàÿ èíôîðìàöèÿ íàõîäÿùàÿñÿ â ñèñòåìíîé ïàìÿòè, íå ÿâëÿåòñÿ ôèçè÷åñêè íåïðåðûâíîé. Ýòî îçíà÷àåò, ÷òî ñóùåñòâóåò çàäåðæêà ïðè èñïîëíåíèè, ïîêà èíôîðìàöèÿ ñ÷èòûâàåòñÿ ïî ñâîåìó ôèçè÷åñêîìó àäðåñó â ñèñòåìíîé ïàìÿòè, è ïåðåäàåòñÿ ïî íóæíîìó ïóòè â ãðàôè÷åñêóþ ïîäñèñòåìó.  ñëó÷àå ñ AGP, Intel ñîçäàëà ìåõàíèçì, â ðåçóëüòàòå ÷åãî, ôèçè÷åñêèé àäðåñ ïî êîòîðîìó èíôîðìàöèÿ õðàíèòñÿ â ñèñòåìíîé ïàìÿòè, ñîâåðøåííî íå âàæåí äëÿ ãðàôè÷åñêîé ïîäñèñòåìû. Ýòî êëþ÷åâîå ðåøåíèå, êîãäà ïðèëîæåíèå èñïîëüçóåò ñèñòåìíóþ ïàìÿòü, ÷òîáû ïîëó÷àòü è õðàíèòü íåîáõîäèìóþ èíôîðìàöèþ.  ñèòåìå íà îñíîâå AGP, íå èìååò çíà÷åíèÿ êàê è ãäå õðàíÿòñÿ äàííûå î òåêñòóðàõ, ãðàôè÷åñêàÿ ïîäñèñòåìà èìååò ïîëíûé è áåçïðîáëåìíûé äîñòóï ê òðåáóåìîé èíôîðìàöèè.

Intel îæèäàåò, ÷òî AGP áóäåò âíåäðåí ïî÷òè â 90% âñåõ ñèñòåì ê êîíöó ñòîëåòèÿ. Èíäóñòðèÿ êîìïüþòåðíîé ãðàôèêè, êàê ñîîáùåñòâî ðàçðàáîò÷èêîâ àïïàðàòíûõ è ïðîãðàììíûõ ñðåäñòâ, ïîääåðæàëà è ïðèíÿëà ñïåöèôèêàöèþ AGP.  îòëè÷èå îò PCI, ãäå ñóùåñòâóåò ìíîãî ñîïåðíè÷àþùèõ ìåæäó ñîáîé ðàçëè÷íûõ óñòðîéñòâà äëÿ óïðàâëåíèÿ øèíîé, â ñëó÷àå ñ AGP åäèíñòâåííûì óñòðîéñòâîì ÿâëÿåòñÿ ãðàôè÷åñêàÿ ïîäñèñòåìà. Îæèäàåòñÿ, ÷òî ïåðâîíà÷àëüíî, ê êîíöó 1997 ãîäà, Intel íà÷íåò ïîñòàâêè ìàòåðèíñêèõ ïëàò ñ ïîääåðæêîé AGP äëÿ ñèñòåì íà áàçå Pentium II. Ïðåäïîëîæèòåëüíî ïîääåðæêà AGP áóäåò ðåàëèçîâàíà â íîâûõ ÷èïñåòàõ Intel äëÿ ñèñòåì íà áàçå Pentium Pro è Pentium II ïîä íàèìåíîâàíèåì i440LX è ïîçäíåå i440BX. Ïîääåðæêè ñî ñòîðîíû Intel AGP äëÿ ñèñòåìíûõ ïëàò äëÿ Pentium íå îæèäàåòñÿ. Ïðàâäà êîíêóðåíòû Intel ïî ïðîèçâîäñòâó è ðàçðàáòêå ÷èïåñåòîâ óæå àíîíñèðîâàëè ñîáñòâåííûå íàáîðû ëîãèêè ñ ïîääåðæêîé AGP äëÿ ñèñòåì íà áàçå Socket7, ýòî SiS è VIA â àëüÿíñå ñ AMD.

Äèçàéí øèíû AGP ïðèçâàí ïðåîäàëåòü îãðàíè÷åíèÿ øèíû PCI ïðè ïåðåäà÷å äàííûõ â ñèñòåìíîé ïàìÿòè. AGP ïîçâîëÿåò óëó÷øèòü ôèçè÷åñêóþ ñêîðîñòü ïåðåäà÷è äàííûõ, ðàáîòàÿ íà òàêòîâîé ÷àñòîòå â 133 MHz, ïî ñðàâíåíèþ ñ 66 MHz òàêòîâîé ÷àñòîòû øèíû PCI, è êðîìå òîãî, AGP îáåñïå÷èâàåò ñîãëàñîâàííîå óïðàâëåíèå ïàìÿòüþ, êîòîðîå äîïóñêàåò ðàçáðîñàííîñòü äàííûõ â ñèñòåìíîé ïàìÿòè è èõ áûñòðîå ñ÷èòûâàíèå ñëó÷àéíûì îáðàçîì. AGP ïîçâîëÿåò óâåëè÷èòü íå òîëüêî ïðîèçâîäèòåëüíîñü 3D ãðàôèêè â ðåæèìå ðåàëüíîãî âðåìåíè çà ñ÷åò óñêîðåíèÿ âûâîäà òåêñòóð, íî è óìåíüøàåò îáùóþ ñòîèìîñòü ñîçäàþùèõñÿ âûñîêîïðîèçâîäèòåëüíûõ ãðàôè÷åñêèõ ïîäñèñòåì, çà ñ÷åò èñïîëüçîâàíèÿ ñóùåñòâóþùèõ àðõèòåêòóð ñèòåìíîé ïàìÿòè.

Программное обеспечение

В настоящий момент на рынке программных продуктов существуют различные системы, позволяющие объединить небольшую рабочую группу в единую интегрированную среду. Наибольшее распространение получили серверные продукты фирм Microsoft и Nowell (BackOffice 2.5 и Netware 4.1 соответственно). Вместе с этим, в качестве операционных систем рабочих станций стандартом де–факто стали различные варианты Windows (Windows 95, Windows NT Workstation). Независимо от выбора сервера рабочие станции будут комплектоваться одной из этих систем.

Microsoft Windows 95

Microsoft Windows 95 (русская версия) — это мощная, надежная и в тоже время простая в использовании операционная система, имеющая следующие возможности и особенности:

–     

–     

–     

–     

–     

–     

–     

–     

–     

Требования к ресурсам компьютера для Microsoft Windows 95.

–     

–     

–     

–     

–      VGA–совместимый монитор.

Указанные выше требования являются минимально необходимыми для работы Windows 95. Однако начальная конфигурация, на которую стоит ориентироваться при покупки компьютера сегодня, выглядит следующим образом:

–     

–     

–     

–     

–      SVGA–совместимый монитор.

Microsoft Windows NT Workstation 4.0

Microsoft® Windows NT® Workstation 4.0 (русская версия) — это надежная, устойчивая и мощная операционная система, которая подходит для любой деятельности, связанной с компьютерной обработкой данных. Windows NT Workstation 4.0 является наилучшим выбором для пользователей в сфере серьезного бизнеса, разработчиков программного обеспечения, а также для тех, кто занимается графикой и дизайном.

Windows NT Workstation 4.0 характеризуется высокой степенью устойчивости и надежности. Это обеспечивается комплексной системой защиты приложений и самой операционной системы, реализованной в Windows NT 4.0 Workstation. В Windows NT Workstation 16–разрядные приложения, так же как и 32–разрядные, работают в защищенном адресном пространстве, что обеспечивает защиту от сбоев для любых приложений. Ядро операционной системы, драйверы устройств и данные защищены от некорректных действий приложений. Таким образом, даже в случае аварийного сбоя в работе какого–либо приложения, ваша операционная система вместе с остальными работающими приложениями находится в полной безопасности. Эта особенность Windows NT Workstation делает ее идеальной операционной системой для ситуаций, когда к обеспечению безопасности и надежности хранения информации предъявляются повышенные требования.

Особенности Microsoft Windows NT Workstation 4.0

–     

–     

–     

–     

–     

Для 16–разрядных приложений выделяется отдельное адресное пространство: аварийное завершение одного 16–разрядного приложения не вызовет сбоя других приложений или самой операционной системы (в отличие от Windows 95 где сбой одного 16–разрядного приложения неминуемо приводит к сбою остальных 16–разрядных приложений и, возможно, краху системы в целом).

Ядро операционной системы, драйверы устройств и данные полностью защищены от некорректных действий приложений. Даже в случае неправильных действий пользователя они не будут повреждены.

Требования к ресурсам компьютера для Microsoft Windows NT 4.0 Workstation.

–     

–     

–     

–     

–     

–      VGA–совместимый монитор.

Как и для Windows 95, указанная конфигурация является минимальной. На сегодняшний день рекомендуется следующая:

–     

–     

–     

–     

–     

–      SVGA–совместимый монитор.

Приложения

Сравнение производительности процессоров Intel Pentium и AMD K6

В настоящее время на рынке Socket-7 процессоров присутствуют несколько конкурирующих продуктов. Наиболее популярны Intel Pentium MMX и AMD K6. Однако последний, в силу исторических причин, покупается не так хорошо, что не совсем соответствует его возможностям. Отличия в технических характеристиках этих двух процессоров приведены в таблице.

AMD K6

Intel Pentium MMX

Clock speeds (MHz)

166, 200, 233

166, 200, 233; mobile: 133, 150, 166

Level one (L1) cache

32K instruction, 32K data

16K instruction, 16K data

Level two (L2) cache

Controlled by chip set

Controlled by chip se

tL2 cache speed

Same as bus

Same as bus

Type of bus

Socket 7

Socket 7

Bus speed (MHz)

66

60-66

Instructions per clock cycle

2

2

MMX units

1

2

Pipelined FPU

N

y

Out-of-order execution

Y

n

Process technology

0.35µ CMOS

0.35µ CMOS

Die size

162 mm2

128 mm2

Transistors

8.8 million

4.5 million

Для получения объективной картины были протестированы два аналогичных конкурирующих продукта Intel Pentium 200 MMX и AMD K6/PR2-200. Тестирование проводилось в системе с материнской платой EliteGroup P5TXBpro (с чипсетом i430TX) c 32 Мб памяти SDRAM, жестким диском Ouantum Fireball ST 2.1 Гб и видеокартой S3 Virge/DX c 4 Мб EDO. Ниже приводятся результаты этого сравнения.

WinBench 97

Для сравнения производительности систем под управлением Windows 95, был использован популярный тест Ziff-Davis WinBench 97, моделирующий работу основных приложений. Тестирование производилось в MS Windows 95 OSR 2 Rus с установленными патчем для поддержки чипсета TX и BusMastering драйверами от Intel. Установленное разрешение 1024х768х32bit. В этой системе просто менялись процессоры без изменения конфигурации и установок.

На основании этих данных сделать вывод о безоговорочном превосходстве Pentium нельзя, так как он превосходит K6 лишь по CPU16. К тому же существенный аргумент в пользу K6 - его цена. На момент написания этого материала она составляет $213 за процессор Intel Pentium 200 MMX и $160 за AMD K6/PR2-200 (приведены цены для дилеров после ноябрьского снижения). Если построить диаграмму в масштабе Bench на $, то есть разделив результат на стоимость, то превосходство K6 очевидно.

Отсюда можно заключить что этот процессор идеален для офисного применения и работы под управлением Windows 95.

Xing Media Player

Вторым тестом, выполненном на этих процессорах стала оценка качества воспроизведения видео, измеряемая частотой кадров Xing Media Player.

Здесь Pentium показал более высокие результаты в абсолютном измерении. Но характеристика Bench на $ у K6 выше:

Таким образом, K6 оказывается более выгодной покупкой. В то же время, если необходима большая производительность, то придется выложить несколько большее количество денег.

Quake

Этот тест заинтересует людей, проводящих время за компьютером играючи. Измерялось FPS в начале игры (не сходя с места) при отключенном звуке.

Здесь Pentium также оказался впереди в абсолютном измерении, значительно обогнав K6. Такое различие в результатах объясняется тем, что интеловский процессор имеет возможность выполнять операции с целыми и дробными числами одновременно, что используется в коде игры. В К6 такая возможность не реализована. Однако с выходом следующей версии К6+ эта проблема будет решена. Впрочем, если подсчитать кадры в секунду на доллар, то по этому показателю К6 и Pentium практически одинаковы.

Intel Media Benchmark

Этот тест был разработан компанией Intel для тестирования производительности MMX-сопроцессора. Результаты:

Модуль ММХ фирма Intel изготовила более быстродействующий, чем конкурент, однако K6 все равно остается более выгодным приобретением благодаря невысокой цене.

Скорость работы с памятью

В заключение, была измерена скорость работы различных процессоров с памятью и кешами первого и второго уровней. Традиционно, процессоры конкурентов выделялись высокой скоростью работы с памятью, однако на этот раз результаты в Мб/с таковы:

Кеш L1 (чтение/запись)

Кеш L2 (чтение/запись)

Память (чтение/запись)

IP200MMX

1346/1346

227/90

127/86

AMD K6/PR2-200

732/755

253/128

127/74

Тут меня постигло небольшое разочарование, так как я ожидал более высоких результатов от K6. Однако не стоит расстраиваться, так как с реальной производительностью эти цифры связаны не шибко.

Разгон

Поклонники и поклонницы процессоров Intel могут заявить, что Pentium разгоняется лучше. Однако мои наблюдения это не подтвердили. Оба экземпляра (рассчитанные на 200 МГц), имеющиеся у меня, без проблем разогнались до 262.5 МГц, но не более. Что касается теплоотвода, то процессор K6 греется сильнее Pentiumа, но и сохраняет работоспособность при более высокой температуре.

Совместимость

В заключении хотелось бы отметить, что проблемы с неработоспособностью ряда приложений, которые были присущи процессору AMD K5, у процессора AMD K6 не наблюдались. Все базовое и офисное программное обеспечение выполнялось без ошибок и сбоев.

Резюме

Итак, из всего вышесказанного можно сделать вывод, что "все продукты хороши, выбирай на вкус". К6 предоставляет пользователям более выгодно вложить свои деньги, в то время как Pentium придется по вкусу людям, стремящимся к более высокой производительности и любящим раскрученные торговые марки. Так что выбор за Вами.

Другие процессорные тесты

Сравнение процессоров IDT C6 200Mhz, Cyrix 6x86MX-PR200 и Intel Pentium MMX 200Mhz

Недавнее приобретение компании Cyrix корпорацией National Semiconductor может усилить ее позиции, исключив зависимость от внешних изготовителей микросхем. (В настоящее время все микросхемы Cyrix изготавливаются на заводах IBM Microelectronics). На производственных предприятиях National несколько отсталая технология, но эта компания быстро движется в направлении наращивания своего потенциала. National планирует сконцентрировать усилия, в частности, на создании высоко интегрированных устройств "ПК на кристалле", продвинув на шаг вперед концепцию Cyrix MediaGX.

Cyrix 6x86 стал первым Pentium-совместимым процессором, появившимся на рынке. После обычной задержки, вызванной техническими и производственными трудностями, 6x86 принимали медленно, так как Cyrix назначила слишком высокую цену - ошибочно полагая, что так как по производительности ее микросхема сопоставима с процессором Intel, ее цена может быть такой же. Когда Cyrix изменила свои позиции, и стала предлагать дешевую альтернативу Intel, объемы продаж значительно возросли.

Когда большая часть рынка переместилась в направлении ММХ, Cyrix полностью перешла на производство новых кристаллов 6x86MX. Это производные от 6x86, дополненные инструкциями ММХ, с несколько усовершенствованным устройством с плавающей запятой, вчетверо увеличенным кэшем первого уровня (общий объем 64 Кбайт) и улучшенной схемой управления памятью.

Архитектура 6x86 в основном осталась старой - с двухконвейерной схемой, как у Pentium, но более гибкая. Intel Pentium II и AMD K6 применяют более сложный подход, при котором инструкции х86 преобразуются в простые внутренние, которые затем обрабатываются в усовершенствованном ядре процессора, способном выполнять четыре и более инструкции в параллель. Подход Cyrix дает лучшие показатели производительности на тестах Winstone при одной и той же тактовой частоте, но подход Intel и AMD позволяет достигать более высоких тактовых частот.

В отличие от AMD, Cyrix продолжает в 6x86MX схему обозначений PR. 6x86MX-PR233 работает при тактовой частоте всего 187,5 МГц, тем не менее опережая на тестах Business Winstone Pentium MMX/233 или 200-МГц Pentium Pro как под Windows 95, так и под Windows NT. Этим он и заслужил свое обозначение PR233. На самом деле, в наших испытаниях на тестах Business Winstone 6x86MX-PR233 работал на 10-11% быстрее, чем Pentium MMX/233, хотя в тестах High-End Winstone он был всего на 3% быстрее в конфигурации с 32 Мбайт памяти и значительно отстал в конфигурации с 64 Мбайт памяти. В тестах же Business Winstone он оказался даже наравне с Pentium II 233MHz.

Однако, как и AMD K6, процессор 6x86 отстает по производительности при операциях MMX и FP - при работе с этими функциями он даже медленнее, чем К6. В результате, его производительность при работе с 3D-графикой довольно низка. При эмуляции функций 3D-графики 6x86MX-PR233 продемонстрировал всего 63% от быстродействия Pentium MMX 233MHz. Даже с хорошей графической платой разница оставалась значительной - 27%, что делает модели 6x86MX худшими для приложений этого типа.

6x86MX превосходно работает в AutoCAD, хотя и отстает от Pentium II. В Photoshop он медленнее, чем 233-МГц модели как K6, так и Pentium MMX.

Тестовые программы

Тестировалось на компьютере, построенном на системной плате Abit PX5 rev1.14, 64Mb SDRAM, Diamond Viper v330.

IDT C6 200Mhz

Cyrix 6x86MX-PR200

Intel Pentium MMX 200Mhz

Norton Utilites 2.0

47

62

58

WinBench98 CPUmark32

374

441

429

WinBench98 FPUwinmark

322

377

782

QUAKE v1.08 (for DOS)

Разрешение

IDT C6 200Mhz

Cyrix 6x86MX-PR200

Intel Pentium MMX 200Mhz

800x600

Demo 1

8.2

8.1

12.4

Demo 2

9.2

8.9

13.8

640x480

Demo 1

11.1

11.2

17.3

Demo 2

12.3

12.1

19.1

320x200

Demo 1

25.8

27.2

44.2

Demo 2

26.2

27.2

44.7

На этот раз в мои руки попал процессор Cyrix 6x86MX-PR200, предоставленный фирмой ТехноКом (цена $105.00). На процессоре написано: Cyrix® 6x86MX™-PR200 66MHz Bus 2.5x 2.9V FAN/HEATSINK REQUIRED. Процессор работает на частоте 166MHz (66x2.5) и тебует двойного питания, по PR (Pentium Rating) должен соответствовать производительности Intel Pentium 200MHz. И это верно для целочисленных операций, в операциях с плавающей точкой, он почти в два раза отстает от Pentium. Все было установлено, как написано на процессоре. Результаты моих трудов вы можите видеть в таблице. Новый процессор от Cyrix греется так же сильно как и его предшественники. А вот разгоняется хуже. Уже на частоте 188MHz (75x2.5) начинали проявляться ошибки при работе в Windows'95. Мне удалось разогнать его предшественника до 200MHz, при стандартных 150MHz. Ранее Cyrix активно продвигал системную шину с частотой 75MHz, в новой модели он вернулся на частоту 66MHz. Cyrix, по моему, единственная компания, которая не лицензировала MMX у Intel (лицензионность MMX у IDT C6 выясняется). Cyrix заявляет, что его MMX команды полностью совместимы с MMX командами от Intel, но на сколько это соответствует истине сказать пока трудно.

IDT С6 поддерживает умножение на 2, 3 и 4. Стандартная частота шины 66 MHz. Ему не нужно двойное питание. Он очень плохо разгоняется. При выставлении частоты 225Mhz (75x3), вместо стандартной 200Mhz (66x3), приводило к постоянным сбоям Windows'95. Pentium на частоте 225Mhz великолепно работал. Цена IDT С6 в Московсой фирме "ТехноКом", которая любезно предоставила его для тестирования, состовляет $105.00. Процессор завезен в Москву небольшой партией, и при более крупных поставках его цена должна снизиться. На данный момент за эту цену лучше приобрести Cyrix 6x86MX-PR200 в фирме ТехноКом. Единственное приемущество IDT C6 это то, что ему не требуется двойное питание, по этому он хорошо подходит для модернизации старых систем.

Производительность материнских плат на чипсете i430TX с памятью более 64 Мбайт

Большинство людей, работающих в данный момент на компьютере типа PC, имеют процессор Pentium и материнскую плату на базе чипсета Intel 430 TX. Этот чипсет завоевал огромную популярность у пользователей и почти никто не задумывается о его недостатках, главный из которых - кешируемость только 64 Мбайт памяти. Это значит, что при использовании больших объемов оперативной памяти, при обращении к адресам, лежащим выше 64М данные будут черпаться не из быстродействующего кеша, а непосредственно из памяти. Естественно, это замедлит работу приложений.

Мы решили попытаться оценить это замедление и протестировали производительность системы на базе чипсета Intel 430 TX при работе с 64 и 96 Мбайтами оперативной памяти. Для измерения производительности был выбран популярный тест ZD WinBench 97, который моделирует работу реальных офисных и high-end приложений. При тестировании были использованы комплектующие: материнская плата Asus TX97, 32 Мбайтные модули SDRAM Hyundai, процессор Intel Pentium 200 MMX, жесткий диск Quantum Fireball ST 2.1 Гб и видеоконтроллер на базе микросхемы Virge DX c 4 Мб EDO RAM. Тестирование проводилось под операционной системой Windows 95 OSR2 с установленными драйверами Bus Mastering от Intel.

64 Мб

96 Мб

CPUMark16

444

444

CPUMark32

443

432

Business Disk Winmark

2630

1880

High-End Disk Winmark

5770

4460

Business Graphics Winmark

44.2

43.9

High-End Graphics Winmark

26.7

26.6

Как нетрудно заметить, наблюдается значительное снижение скорости работы по всем характеристикам. Но следует отметить, что такое положение вещей наблюдается в случае, когда имеющегося объема памяти заведомо хватает для работы приложений. Естественно, работа без кеширования все-равно быстрее, чем свапование на жесткий диск. Поэтому при работе с большими объемами данных применять больше чем 64 Мбайта можно. Хотя гораздо лучше использовать чипсеты, которые не обладают таким недостатком, например VIA Apollo VP-3.

Тестирование чипсетов Intel 440BX и Intel 440LX

Вот и появились, наконец, материнские платы на чипсете Intel 440BX, первом Pentium II-чипсете, поддерживающем шину 100 Мгц. Такие платы представили одновременно многие производители, так как Intel предоставил свою разработку задолго до ее официального объявления. Нам же в руки попала материнская плата ASUS P2B, на основании которой мы и проводили тестирование нового набора микросхем.

Спецификация представленной материнской платы следующая:

ASUS P2B

Типоразмер

ATX

Установленный BIOS

Award

Набор микросхем

Intel 440BX

Число слотов SIMM/DIMM

0/3

Число слотов ISA/PCI

3/4

Слот AGP

Есть

Поддерживаемые частоты шины, MHz

66, 75, 83, 100, 103, 112

Поддерживаемые умножения

2х - 8х

Питание

ATX

Порты USB/IrDa

+/+

Дополнительные возможности

Температурный контроль

Целью наших тестов являлось установить, насколько производительность платы на чипсете 440BX отличается от производительности платы на чипсете 440LX, а также выяснить эффективность использования 100-мегагерцовой шины. Подробное описание особенностей чипспета 440BX приведено здесь. При тестировании, помимо материнской плат ASUS P2B (i440BX) и ASUS P2L97 (i440LX), использовались 64 Мбайта памяти SDRAM 10ns Hyundai, жесткий диск Maxtor DiamondMax объема 1.6 Гбайта, видеокарта ASUS 3DExplorer AGP-V3000 с 4 Мбайтами памяти, а также процессоры Pentium II. Все тесты выполнялись под управлением операционной системы Windows 95 с установленными драйверами Bus Mastering, которые, кстати, остались еще от предыдущего чипсета, так как в 440BX входит тот же контроллер PIIX4. Никаких новых или особенных драйверов материнская плата на новом чипсете не потребовала.

Память

Конфигурирование памяти для чипсета BX несколько отличается. Это связано с тем, что память с этим чипсетом работает на частоте 100 МГц. То, что говорил Intel по поводу необходимости применения памяти PC100 при этой внешней частоте - неправда. Даже использование SPD отключается вручную из Setup, что позволяет провести ручное управление циклами задержок. Все попробованные нами модули работали на частоте 100 МГц без проблем, среди них все были 10-наносекундные, с SPD и без, причем на BX-плате работали даже модули, сбоящие при использовании на 100-мегагерцовых Socket-7 платах. Так что опасаться проблем с памятью не стоит.

Результаты тестов

BX против LX

Производительность представленных плат измерялась тестами WinBench98 и WinStone98, которые запускались в разрешении 1024x768x16bit. В этих тестах в платы устанавливался процессор Intel Pentium II, работающий на частоте 233 МГц. В обоих случаях эта частота достигалась при установке внешней частоты 66 МГц и умножения на 3.5.

Результаты:

ASUS P2B Intel 440BX

ASUS P2L97Intel 440LX

Business WinStone 98

18.9

19.3

CPUMark32

589

604

FPUMark32

1210

1210

Business Graphics Winmark

103

106

HighEnd Graphics Winmark

119

121

Как мы видим, плата на 440BX показала даже более низкие результаты, чем плата на 440LX. Это скорее всего связно не с проблемами чипсета, который во многом повторяет своего предшественника, и вряд ли является более медленным, а с недоработанностью BIOS (кстати, версии 1.0) и самой платы. Единственное, что можно сказать наверняка, это то, что чипсет 440BX по быстродействию находится на уровне 440LX.

66 МГц против 100 МГц

Во второй части тестов мы решили выяснить, какой прирост производительности можно получить, пользуясь 100-мегагерцовой шиной. Для этого проводилось тестирование материнской платы ASUS P2B на наборе микросхем 440BX тестом WinStone98. При этом применялся процессор Pentium II, работающий на частоте 300 МГц. Эта частота выставлялась как 66х4.5 и как 100х3.

Результаты получились следующие:

Business WinStone 98

PII 300 (4.5 x 66 МГц)

22.1

PII 300 (3 x 100 МГц)

22.7

Из таблицы видно, что прирост производительности при использовании шины 100 МГц всего 4%. Важно еще иметь в виду, что при установке частоты процессора менее 300 МГц, нельзя использовать 100-мегагерцовую шину, так как в этом случае не работает кеш L2. С чем это связано -неизвестно, однако факт остается фактом.

Из тестов можно сделать вывод, что если не использовать новые процессоры Pentium II 350 и 400 МГц, то стремиться к приобретению чипсета 440BX, в общем-то, незачем. Это, в общем-то, неудивительно. Единственное, что приносит выигрыш при использовании шины 100 МГц на 440BX, это - скорость обращения к памяти. Но на пути от процессора к памяти стоит еще и L2 кеш, скорость работы которого от частоты системной шины не зависит.

Разгон

Возможности для разгона у плат на BX и LX аналогичные, частоты на системной шине, на PCI и AGP приведены в таблице ниже.

Внешняя частота, МГц

Частота на PCI, МГц

Частота на AGP, MГц

66

33

66

75

37

75

83

41

83

100

33

66

103

33

67

112

37

75

Наши же испытания показали, что процессоры разгоняются на обоих протестированных платах совершенно одинаково.

Заключительные замечания

Что касается совместимости, то с ней проблем нет, так как чипсет 440BX - это почти 440LX. Ну а покупать BX, на наш взгляд, пока смысла особого нет, так что сразу он видимых преимуществ не даст, а денег стоит больше.

Давно ожидаемая шина 100 МГц не дает видимых преимуществ ввиду того, что работа кеша второго уровня не зависит от внешней частоты. Поэтому гораздо резоннее наращивать частоты системной шины на Socket-7 материнских платах.

Сравнение скорости работы систем с EDO RAM и SDRAM

Многие пользователи PC в настоящее время решают вопрос о необходимости смены EDO RAM, установленной в системе, на SDRAM, которая в настоящее время является более популярной. Рассмотрим плюсы и минусы такого перехода.

SDRAM в настоящий момент, безусловно, является более перспективной хотя бы за счет того, что ее поддерживают все новые чипсеты. А так как чипы SDRAM устанавливаются обычно на модулях DIMM, разъемы под которые устанавливаются на материнских платах чаще, чем разъемы под SIMM, применение EDO, выпускаемой в модулях SIMM, становится все более затруднительным.

Однако не все так просто. Во-первых, применяемые в настоящее время модули SDRAM, не будут работать с чипсетом 440BX и будут иметь проблемы с 440LX, в силу того, что ими не поддерживается спецификация Intel SPD. Во-вторых, память типа SDRAM не применяется в системах с процессором Pentium Pro, являющимся лучшим в серверных применениях.

Cтарая память типа EDO может быть применена в настоящее время практически во всех системах, имеющих разъемы под SIMM. Скорость работы EDO RAM не намного ниже, чем у SDRAM. Теоретически она отличается лишь временем передачи второго и последующих двойных слов, идущих подряд, что встречается не так уж и часто. Единственный крупный плюс в пользу SDRAM, это то, что она рассчитана на работу на более высоких внешних частотах - до 100 MHz.

Нами была протестирована скорость работы системы с памятью типа EDO и SDRAM на базе материнской платы Asus TX97-E, процессора Intel Pentium 200 MMX, разогнанного до 225 MHz, винчестера Quantum Fireball ST 2.1 Gb и видеокарты Virge/DX 4 Mb EDO. В системе просто заменялись модули памяти. При этом были получены следующие результаты:

EDO RAM

SDRAM

CPUMark16

438

439

CPUMark32

428

429

Business Disk Winmark

1120

1150

HighEnd Disk Winmark

4070

4180

Business Graphics Winmark

41,0

41,0

HighEnd Graphics Winmark

26,2

26,2

Xing MPEG Player, FPS

65,1

65,1

Quake, FPS

43,8

43,9

Как можно заметить, производительность системы с различными типами памятьи практически не отличается. Учитывая тот факт, что стоимость различных типов памяти одинакова в силу технологии ее производства, можно сделать вывод о том, что менять в настоящее время EDO RAM на SDRAM не целесообразно. Лучше это сделать впоследствии, когда появится память с поддержкой Intel SPD. А приобретая новую систему, естественно лучше взять SDRAM, как более новую технологию.

Соответствие внешних частот, временных задержек и времени доступа для различных типов памяти

Нижеследующие таблицы содержат значения требуемого времени доступа к RAM для различных внешних частот и временных задержек (wait state), а также фактические документированные характеристики чипов памяти. Приведены теоретические измышления, на практике все может отличаться как в лучшую, так и в худшую сторону.

Временные параметры системы

Требования системы к временным параметрам памяти (ns)

Временные параметры памяти по спецификации (ns)

Циклы временных задержек

Внешняя частота (MHz)

Период таймера (ns)

tAA

tPC

tRAC

Тип RAM

tAA

tPC

tRAC

6-3-3-3

50

20

60

60

100

-70

FPM

  35

  40

70

60

16.7

50

50

83.5

-70

FPM

  35

  40

70

66

15

45

45

75

-70

FPM

  35

  40

70

75

13.3

40

40

66.5

-60

FPM

  30

  35

60

83

12

36

36

60

-60

FPM

  30

  35

60

6-2-2-2

50

20

40

40

100

-70

EDO

  35

  30

70

60

16.7

33.4

33.4

83.5

-60

EDO

  30

  25

60

66

15

30

30

75

-60

EDO

  30

  25

60

75

13.3

26.6

26.6

66.5

-50

EDO

  25

  20

50

83

12

24

24

60

-50

EDO

  25

  20

50

5-2-2-2

50

20

40

40

80

-70

EDO

  35

  30

70

60

16.7

33.4

33.4

66.8

-60

EDO

  30

  25

60

66

15

30

30

60

-60

EDO

  30

  25

60

75

13.3

26.6

26.6

53.2

-50

EDO

  25

  20

50

83

12

24

24

48

-50

EDO

  25

  20

50

Эквивалентные тайминги для SDRAM

SDRAM

Внешняя частота (MHz)

Период таймера (ns)

tAA (ns)

Маркировка времени доступа

tRAC (ns)

SDRAM

Аналогичное время доступа для асинхронной памяти

7-1-1-1

CL3

(tAC = 8 ns)

66

15

41

"-15"

83

CL3

-70

75

13.3

37.6

 

74.5

<-70

83

12

35

"-12"

68

60

100

10

31

"-10"

58

<-60

5-1-1-1

CL2

(tAC = 9 ns)

66

15

27

"-10"

54

CL2

  -50

75

13.3

25.3

 

48.9

 

83

12

24

 

45

 

100

10

22

 

39

  -40

Для SDRAM: tAA = (CL-1)*(Период таймера) + tAC + tSU
tSetUp = 3 ns
tRAC = (2*CL-1)*(Период таймера) + tAC

Рассмотрение таблиц показывает преимущества 7–1–1–1 SDRAM. A "–10" (100 MHz) SDRAM работает чуть быстрее, чем "–60" асинхронная память.

Заметьте, что у SDRAM "–10" существует эквивалент. У SDRAM tRAC 58ns при CL3–100MHz, а 54ns при CL2–66MHz на 4ns быстрее. У SDRAM tAA при CL3–100MHz на 4ns медленней, чем CL2-66MHz!

SDRAM "–10" работающая с CL3 (7–1–1–1) может не работать при CL2 (5–1–1–1)!

Системные циклы задержки

Та жа информация, что и выше, но представлена в другой форме. По этой таблице можно определить, какие установки циклов ожидания необходимы для конкретной памяти.

Характеристики DRAM

Внешняя частота и период [MHz (ns)]

Тип RAM

tRAC

tPC or
tCK

50 MHz
(20 ns)

60 MHz
(16.7 ns)

66.6 MHz
(15 ns)

75 MHz
(13.3 ns)

83 MHz
(12 ns)

70ns FPM

70ns

40

5-2-2-2
6-3-3-3

6-3-3-3

6-3-3-3

6-3-3-3
7-4-4-4

6-3-3-3
7-4-4-4

60ns FPM

60ns

35

4-2-2-2
6-3-3-3

5-3-3-3
6-3-3-3

5-3-3-3
6-3-3-3

6-3-3-3

6-3-3-3

70ns EDO

70ns

30

5-2-2-2
6-2-2-2

5-2-2-2
6-2-2-2

6-2-2-2*
6-2-2-2

6-2-2-2
7-3-3-3

6-2-2-2
6-3-3-3

60ns EDO

60ns

25

4-2-2-2
6-2-2-2

5-2-2-2
6-2-2-2

5-2-2-2*
6-2-2-2

6-2-2-2

6-2-2-2
7-3-3-3

50ns EDO

50ns

20

4-1-1-1
5-2-2-2

4-2-2-2
5-2-2-2

5-2-2-2

5-2-2-2

5-2-2-2

CL3 SDRAM

5 cycles
+ tAC

10

7-1-1-1

7-1-1-1

7-1-1-1

7-1-1-1

7-1-1-1

CL2 SDRAM

3 cycles
+ tAC

12

5-1-1-1

5-1-1-1

5-1-1-1

5-1-1-1

5-1-1-1

X-Y-Y-Y — Циклы нормальных временных задержек.

X-Y-Y-Y — Минимальные задержки.

X-Y-Y-Y — Неправильные, но возможно рабочие задержки. Работа памяти в этих режимах не гарантируется.

* — Использование этих временных задержек возможно при грамотном дизайне модуля памяти.

При составлении этой таблицы мы руководствовались следующими принципами:

–     

–     

–     

Контроллеры UltraWideSCSI

Сегодня на рынке представлено более одного контроллера и при приобретении возникает проблема выбора. Для начала необходимо определиться нужен ли интегрированный в материнскую плату контроллер или в виде платы расширения. Преимущества одного варианта являются недостатками другого. Напимер: стоимость, удобство модернизации, занимаемое место (слот). С другой стороны все, что подходит под определение UltraWideSCSI по возможностям очень похоже. Здесь в основном представлено сравнение контроллеров по скорости. Ожидалось, что главное отличие будет в результатах тестов на загрузку процессора и максимальной скорости передачи.

Конфигурация:

CPU iPII-262 (75x3.5), MB ASUS P2L97-S (BIOS: #401A0-0105s), 64MB SDRAM, HDD WDE4360-07 UltraWide SCSI 4.3G. Windows95 OSR2PE.

Контроллеры:

–     

–     

(недавно Adaptec купил SymBios Logic и результаты этого слияния для пользователей предсказать трудно)

Сложно найти отличие в их возможностях: загрузка с любого SCSI ID/LUN, загрузка с CD, поддержка SCAM, установка параметров устройств, flash BIOS (у DC–390F стоит микросхема flash и есть программа для прошивки, а Adaptec BIOS можно легко вписать в BIOS материнской платы). Поддержка драйверами есть для большинства ОС у обоих (я честно пробовал минут пять вспомнить не очень экзотическую ОС, в которой они не заработают, но не смог). Поэтому и была поставлена цель найти существенное отличие в скорости.

Замечание: при всех тестах кеш самого жесткого диска на запись был выключен (самый простой способ определить это - посмотреть на результаты чтение/запись по hddspeed). Это заводская установка для данного диска. Исправить положение можно с помощью утилиты ASPI-WCE или более интересной программы Adaptec EZ SCSI. При этом большинство тестов на запись показывают более высокие результаты, но соотношение между контроллерами остается аналогичным. Вероятно запрещение этого кеша помогает добиться более высоких результатов при работе в WindowsNT/Netware с их собственными програмными кешами.

Тест первый: WinBench97

Adaptec

Tekram

UNITS

Business Disk WinMark 97

1180

1180

Thousand Bytes/Sec

High-End Disk WinMark 97

3800

3730

Thousand Bytes/Sec

Disk Playback/Bus

Overall

1180

1180

Thousand Bytes/Sec

Publishing

1410

1410

Thousand Bytes/Sec

Database

1150

1160

Thousand Bytes/Sec

WP/SS

1110

1110

Thousand Bytes/Sec

Disk Playback/HE

Overall

3800

3730

Thousand Bytes/Sec

App Dev

12800

13000

Thousand Bytes/Sec

Image Editing

4160

3860

Thousand Bytes/Sec

CAD/3-D

2950

2970

Thousand Bytes/Sec

AVS

1930

1950

Thousand Bytes/Sec

MicroStation

6900

7030

Thousand Bytes/Sec

Photoshop

4460

3830

Thousand Bytes/Sec

Picture Publisher

3890

3890

Thousand Bytes/Sec

PV-WAVE

2820

2800

Thousand Bytes/Sec

Visual C++

12800

13000

Thousand Bytes/Sec

Disk/Read, CPU Utilization

70.2

57

Percent Used

Disk/Write, CPU Utilization

20.4

21.3

Percent Used

Результаты многих тестов совпадают полностью, похоже, что тесты диска не зависят от контроллера. Кажется немного странным, что WDE по некоторым тестам выигрывает у очень быстрого диска Seagate Cheetach. Отсюда можно сделать вывод, что Winbench возможно слишком комплексный тест и к его результатам нужно относиться внимательно.

Тест второй: HDDSPEED 1.9

Adaptec

Tekram

Average Seek Time

9.1 ms

8.8 ms

Maximal Seek Time

16.6 ms

16.3 ms

Track-To-Track Seek Time

3.3 ms

2.7 ms

Average Access Time

13.3 ms

13.0 ms

(MBytes/sec.)

Read

Write

Read

Write

Linear Speed At Track 1

7.7

2.8

7.9

2.8

Linear Speed At Track  528

6.1

2.4

6.0 

2.4   

Average Linear Speed

8.7

2.7

8.7

2.7

Min. Linear Speed

6.1

2.4

6.0

2.4

Max. Linear Speed

10.1

2.8

10.1

2.8

Max. Cache Read Speed

26.5 MBytes/sec.

30.9 MBytes/sec.

Random Read Speed

1.9 MBytes/sec

1.9 MBytes/sec

Disk Speed Index

668

681

Замечания HDDSPEED. Кажется неправильным, что время доступа диска может зависеть от контроллера, однако тест показывает это. Отметим, что на обоих контроллерах скорость вращения диска все-таки осталась постоянной - 7200 RPM. Кстати для SCSI этот параметр можно узнать програмно (не посчитать) просто спросив у диска (как ide_info для IDE дисков).

Выводы:

1.   скорость скорее определяется жестким диском, чем контроллером

2.   для контроллера важнее правильные драйвера и хорошая поддержка производителем

3.   у интегрированных контроллеров главное преимущество — цена, а у плат расширения — гибкость при модернизации

4.   если не торопиться, можно правильно установить любой контроллер

5.   при покупке контроллера нужно четко знать, что же Вы покупаете, что–бы потом не пытаться добиться от него того, что он не умеет. При этом важнее информация производителя и хороших друзей, нежели продавца

6.   большинство «больших» тестов вполне отражают быстродействие системы и позволяют сравнивать как диски, так и контроллеры

Тестирование современных жестких дисков

В настоящее время на рынке имеется огромное множество жестких дисков от различных производителей. Эти жесткие диски отличаются как объемом (от 1Гб до 12Гб), так и ценой. В тестовой лаборатории «Свега+» было проведено тестирование наиболее распространенных моделей винчестеров с целью сравнить как их технические характеристики, так и производительность.

Тесты

–     

–     

–     

–     

–     

Важнейшие характеристики винчестера, влияющие на показатель производительности

–     

–     

–     

–     

Конфигурация тестового компьютера

–     

–     

–     

–     

В качестве операционной системы была выбрана Windows'98 beta 3, т.к. в ней имеется встроенная поддержка IDE Bus Master.

Все винчестеры подключались как Secondary Master. Primary Master с установленным ПО был жесткий диск Quantum Fireball ST 4.3Gb.

В таблице представлены технические характеристики тестируемых винчестеров.

Жесткий диск

Модель

Объем

Кэш

RPM

SMART

Ultra

DMA

P Mng

Ток (мА)

Seagate Medalist 1.7Gb

ST31722A

1625

128

4600

Есть

Есть

Есть

нет данных

Seagate Medalist 2.1Gb

ST32122A

2014

128

4600

Есть

Есть

Есть

нет данных

Seagate Medalist 3.2Gb

ST33232A

3077

128

4600

Есть

Есть

Есть

нет данных

Seagate Medalist 4.3Gb

ST34342A

4103

128

4600

Есть

Есть

Есть

нет данных

Seagate Medalist Pro 2.5Gb

ST32520A

2401

256

5400

Есть

Есть

Есть

нет данных

Seagate Medalist Pro 6.4Gb

ST36451A

6149

448

5400

Есть

Есть

Есть

нет данных

Quantum Fireball ST 1.6Gb

QST1.6A

1539

81

5400

Есть

Есть

Есть

 

Quantum Fireball ST 2.1Gb

QST2.1A

2014

81

5400

Есть

Есть

Есть

 

Quantum Fireball ST 3.2Gb

QST3.2A

3079

81

5400

Есть

Есть

Есть

 

Quantum Fireball ST 4.3Gb

QST4.3A

4110

81

5400

Есть

Есть

Есть

 

Quantum Fireball SE 2.1Gb

QSE2.1A

2014

80

5400

Есть

Есть

Есть

720/650

Quantum Fireball SE 3.2Gb

QSE3.2A

3079

80

5400

Есть

Есть

Есть

720/650

Quantum Fireball SE 4.3Gb

QSE4.3A

4110

80

5400

Есть

Есть

Есть

720/650

Quantum Fireball SE 8.4Gb

QSE8.4A

8063

80

5400

Есть

Есть

Есть

720/650

Fujitsu 2.1Gb

M1624TAU

2014

128

5400

Есть

Нет

Есть

 

Fujitsu 2.6Gb

MPA3026ATU

2503

128

5400

Есть

Есть

Есть

500/300

Fujitsu 3.2Gb

MPB3032ATU

3093

128

5400

Есть

Есть

Есть

500/300

Fujitsu 4.3Gb

MPB3043ATU

4125

128

5400

Есть

Есть

Есть

500/300

Western Digital Caviar 1.2Gb

AC11200L

1222

256

4300

Есть

Есть

Есть

480/270

Western Digital Caviar 2.1Gb

AC12100L

2014

256

5400

Есть

Есть

Есть

580/230

Western Digital Caviar 3.2Gb

AC33200L

3098

256

4300

Есть

Есть

Есть

480/270

Western Digital Caviar 4.3Gb

AC34300L

4104

256

4300

Есть

Есть

Есть

560/270

Western Digital Caviar 5.1Gb

AC35100L

4924

256

5400

Есть

Есть

Есть

580/230

Western Digital Caviar 6.4Gb

AC36400L

6149

256

5400

Есть

Есть

Есть

580/230

Комментарии к таблице:

–     

–     

–     

–     

–     

Результаты тестирования

Жесткий диск

WinBench 98

HDD Speeed 2.0

Nu 3.0

Checkit 3.0

 

Business

Hi-End

Index

Av.L.Sp.

Av.Seek

T-T seek

Rnd Read

Sysinfo

Read

Av seek

T-T seek

Seagate Medalist 1.7Gb

861

2360

256

4,90

11,10

3,30

1,20

2,40

2055,00

10,90

3,40

Seagate Medalist 2.1Gb

872

2330

297

5,80

11,30

3,20

1,30

2,50

2055,00

10,70

3,10

Seagate Medalist 3.2Gb

868

2320

289

5,80

12,00

4,50

1,20

2,40

2027,00

11,20

4,00

Seagate Medalist 4.3Gb

876

2350

295

5,80

11,80

4,60

1,20

2,40

2005,00

10,60

4,20

Seagate Medalist Pro 2.5Gb

943

2470

368

7,00

9,00

2,10

1,30

3,20

2386,00

9,70

1,90

Seagate Medalist Pro 6.4Gb

1200

2970

451

7,30

11,40

2,90

1,60

3,20

3983,00

9,40

2,60

Quantum Fireball ST 1.6Gb

не тест.

не тест.

521

7,60

8,20

2,60

1,70

не тест.

не тест.

не тест.

не тест.

Quantum Fireball ST 2.1Gb

не тест.

не тест.

468

6,80

8,10

2,50

1,60

не тест.

не тест.

не тест.

не тест.

Quantum Fireball ST 3.2Gb

1170

2880

546

7,90

8,10

2,50

1,70

3,70

2845,00

7,70

2,20

Quantum Fireball ST 4.3Gb

не тест.

не тест.

480

7,40

8,70

2,70

1,60

3,60

2845,00

7,90

2,30

Quantum Fireball SE 2.1Gb

1140

2850

644

9,60

8,30

2,60

1,70

3,60

3894,00

8,10

2,40

Quantum Fireball SE 3.2Gb

1140

2860

624

9,50

8,60

2,80

1,70

3,60

3894,00

8,50

2,50

Quantum Fireball SE 4.3Gb

1150

2890

640

9,60

8,30

2,90

1,70

3,60

3828,00

8,00

2,60

Quantum Fireball SE 8.4Gb

1160

2910

654

10,20

9,00

2,70

1,70

3,70

3779,00

8,90

2,40

Fujitsu 2.1Gb

824

2210

330

6,00

9,90

4,30

1,30

3,20

2466,00

8,90

3,90

Fujitsu 2.6Gb

1040

2610

455

7,10

9,30

3,10

1,60

3,20

2466,00

8,90

2,70

Fujitsu 3.2Gb

1030

2660

529

8,50

9,30

3,10

1,60

3,20

3983,00

9,40

3,20

Fujitsu 4.3Gb

1030

2670

535

8,50

9,30

3,60

1,60

3,20

4000,00

8,30

2,70

Western Digital Caviar 1.2Gb

1000

2580

422

7,30

11,00

2,40

1,40

3,10

2466,00

11,00

2,20

Western Digital Caviar 2.1Gb

1130

2810

569

8,80

9,10

2,20

1,60

3,20

4000,00

8,80

1,40

Western Digital Caviar 3.2Gb

1070

2680

412

7,20

11,20

2,50

1,40

3,20

2386,00

11,20

1,90

Western Digital Caviar 4.3Gb

1150

2870

430

7,20

10,60

2,40

1,50

3,20

2477,00

10,00

1,80

Western Digital Caviar 5.1Gb

1140

2820

580

8,90

9,00

2,70

1,70

3,20

4038,00

8,90

2,30

Western Digital Caviar 6.4Gb

1140

2840

563

8,80

9,20

2,00

1,60

3,20

3983,00

8,90

2,10

Примечание: не тест. — не тестировался

WinBench 98: Business & Hi–End Disk — программа запускает набор приложений под Windows 95 и засекает время выполнения каждого приложения. В итоге подсчитывается скорость чтения/записи данных каждым приложением. Результатом теста WinBench 98: Disk Winmark является скорость передачи данных в Кб/c.

HDDSpeed 2.0: Index — на основе измеренных характеристик вычисляется индекс скорости жесткого диска (чем он больше, тем больше производительность винчестера при работе с реальными приложениями).

Av seek (Average seek time) — среднее время доступа к случайному сектору на диске. Этот важный параметр характеризует скорость поиска информации и отражает реальное быстродействие винчестера при чтении фрагментированных файлов, при параллельном использовании диска несколькими задачами в многозадачной операционной системе.

T–T seek (Track to Track Seek Time) — среднее время перехода головок на соседнюю дорожку.

Av.L.Sp. (Average Linear Read Speed) — средняя скорость линейного чте­ния/записи данных. Является важной характеристикой скорости жесткого диска. Отражает производительность мультимедийных приложений при чтении/записи больших непрерывных файлов, записи оцифрованного видео в реальном времени.

Rnd. read (Random Read Speed) — скорость чтения случайно разбросанных по всему диску блоков размером от 0.5Кб до 64Кб. Фактически это наихудшая скорость, которую может показать накопитель при чтении/записи случайно расположенных мелких файлов.

Quantum: на сегодняшний день винчестеры Quantum SE являются самыми быстрыми IDE накопителями. Единственным их недостатком является то, что они довольно сильно шумят и сильно греются.

Seagate: видно явное отставание в производительности накопителей Seagate серии Medalist. Связано это с низкой скоростью вращения диска (4500 оборотов в минуту). Накопители серии Medalist Pro имеют скорость вращения 5400 оборотов в минуту и, как и следовало ожидать, показали большую производительность. Недавно компания Seagate объявила о выпуске IDE накопителей со скоростью вращения 7000 оборотов в минуту, появления которых мы с нетерпением ждем.

Fujitsu: среди всех протестированных винчестеров они являются самыми тихими и они меньше всего греются. Жесткие диски последней серии (3.2Гб и 4.3Гб) показали очень хорошие результаты по производительности.

Western Digital: просто очень хорошие винчестеры. Они показали отличные результаты по тестам (особенно модели 2.1Гб, 5.1Гб, 6.4Гб), они мало греются и тихо работают.

Лучшие жёсткие диски IDE

Speed Index Top 10

01.

QUANTUM FIREBALL SE8.4A

7.8GB

667

02.

Quantum FIREBALL SE6.4A

6.0GB

653

03.

Quantum FIREBALL SE2.1A

2.0GB

637

04.

Quantum FIREBALL SE4.3A

4.0GB

635

05.

Maxtor 88400D8

7.8GB

614

06.

Maxtor 82160D2

2.0GB

610

07.

IBM-DHEA-36480

6.0GB

581

08.

WDC AC36400L

6.0GB

575

09.

IBM-DHEA-34330

4.0GB

560

10.

Quantum FIREBALL ST3.2A

3.0GB

551

Average Linear Read Speed Top 10

01.

Maxtor 88400D8

7.8GB

10.4 MB/sec

02.

Maxtor 82160D2

2.0GB

10.3 MB/sec

03.

QUANTUM FIREBALL SE 8.4A

7.8GB

10.2 MB/sec

04.

QUANTUM FIREBALL SE 6.4A

6.0GB

10.1 MB/sec

05.

QUANTUM FIREBALL SE 4.3A

4.0GB

9.6 MB/sec

05.

QUANTUM FIREBALL SE 2.1A

2.0GB

9.6 MB/sec

06.

WDC AC36400L

6.0GB

8.7 MB/sec

07.

FUJITSU MPB3052ATU

4.9GB

8.6 MB/sec

08.

WDC AC35100L

4.8GB

8.5 MB/sec

08.

FUJITSU MPB3043ATU

4.0GB

8.5 MB/sec

08.

FUJITSU MPB3021ATU

2.0GB

8.5 MB/sec

09.

IBM-DHEA-36480

6.0GB

8.4 MB/sec

09.

Quantum FIREBALL ST6.4A

6.0GB

8.4 MB/sec

10.

Maxtor 83240D3

3.0GB

8.3 MB/sec

Average Access Time Top 10

01.

Maxtor MXT-540 AT

540MB

14.1 ms *

02.

Quantum FIREBALL ST3.2A

3.0GB

14.6 ms

03.

IBM-DHEA-36480

6.0GB

14.8 ms

03.

Quantum FIREBALL ST1.6A

1.5GB

14.8 ms

04.

Quantum FIREBALL ST2.1A

2.0GB

14.9 ms

05.

IBM-DCAA-34330

4.0GB

15.0 ms

06.

IBM-DHEA-34330

4.0GB

15.1 ms

07.

SAMSUNG WNR-31601A

1.5GB

15.3 ms

07.

IBM DeskStar 3 DAQA-32160

2.0GB

15.4 ms

07.

Quantum FIREBALL ST4.3A

4.0GB

15.4 ms

08.

Micropolis 4110A

1.0GB

15.5 ms *

08.

QUANTUM FIREBALL SE4.3A

4.0GB

15.5 ms

08.

QUANTUM FIREBALL SE2.1A

2.0GB

15.5 ms

09.

Quantum FIREBALL_TM2110A

2.0GB

15.6 ms

09.

Quantum FIREBALL ST6.4A

6.0GB

15.6 ms

09.

QUANTUM FIREBALL ST4.3A

4.0GB

15.6 ms

09.

QUANTUM FIREBALL SE8.4A

7.8GB

15.6 ms

09.

WDC AC36400L

6.0GB

15.6 ms

* - Cняты с пpоизводства.

Лучшие жёсткие диски SCSI

Speed Index Top 10

01.

IBM DGHS-39110

9.1GB

1208

02.

Seagate Cheetah 4LP ST34501N

4.5GB

1111

03.

IBM DCHS-34550 Ultrastar 2XP F/W SCSI

4.5GB

723

04.

IBM DCHS-39100 Ultrastar 2XP F/W SCSI

7.8GB

705

05.

Seagate Barracuda ST19171W Ultra Wide

8.0GB

690

06.

Quantum Atlas XP34550W UW SCSI-2

4.2GB

677

07.

Seagate Hawk ST34555W

4.2GB

646

08.

Western Digital WDE 4360W

4.0GB

643

09.

Micropolis Tomahawk

3.8GB

601

10.

IBM UltraStar XP Wide/Fast SCSI-2

4.2GB

520

Average Linear Read Speed Top 10

01.

IBM DGHS-39110

9.1GB

12.8 MB/sec

02.

Seagate Cheetah 4LP ST34501N

4.5GB

12.5 MB/sec

03.

Seagate Barracuda ST19171W Ultra Wide

8.0GB

9.5 MB/sec

04.

IBM DCHS-39100 Ultrastar 2XP F/W SCSI

7.8GB

9.2 MB/sec

05.

Western Digital WDE 4360W

4.0GB

8.8 MB/sec

05.

IBM DCHS-34550 Ultrastar 2XP F/W SCSI

4.5GB

8.8 MB/sec

06.

Seagate Hawk ST34555W

4.2GB

8.6 MB/sec

07.

Quantum Atlas XP34550W UW SCSI-2

4.3GB

8.3 MB/sec

08.

Micropolis Tomahawk

3.8GB

8.2 MB/sec

09.

IBM UltraStar XP Wide/Fast SCSI-2

4.2GB

6.9 MB/sec

10.

IBM DCAS-34330W

4.0GB

6.7 MB/sec

Average Access Time Top 10

01.

IBM DGHS-39110

9.1GB

10.9 ms

02.

Seagate Cheetah 4LP ST34501N

4.5GB

11.6 ms

03.

IBM DCHS-34550 Ultrastar 2XP F/W SCSI

4.5GB

12.4 ms

04.

Quantum Atlas XP34550W UW SCSI-2

4.3GB

12.6 ms

05.

Seagate ST32550N SCSI-2

2.0GB

12.9 ms

06.

Seagate Barracuda SCSI-2

2.0GB

13.0 ms

06.

Western Digital WDE 4360W

4.0GB

13.0 ms

07.

Quantum Atlas SCSI-2

1.0GB

13.3 ms

07.

Seagate Barracuda ST15150N SCSI-2

4.0GB

13.3 ms

07.

IBM DCHS-39100 Ultrastar 2XP F/W SCSI

7.8GB

13.3 ms

08.

IBM UltraStar XP Wide/Fast SCSI-2

4.2GB

13.6 ms

09.

Seagate Hawk ST34555W

4.2GB

13.7 ms

10.

Micropolis Tomahawk

3.8GB

13.9 ms

* - Cняты с пpоизводства.

Спецификации жестких дисков

Total Size, Cache Size

Average Seek Time, ms.

Maximal Seek Time, ms.

Average Access Time, ms.

Track to Track, ms.

Average Linear Speed, MB/sec.

Cache Read Speed, MB/sec

HDD SpeedIDX

Western Digital

Western Digital

40MB

17,6

N/A

28,2

4,9

0,7

N/A

24

WDA-L42

32k

Western Digital

81MB

18,3

3,8

28,7

5,4

0,6

3,6

21

WDA-L80

32k

Western Digital

40MB

13,2

21,8

21,9

2,4

0,8

1,9

37

WDC CU140 M

32k

Western Digital

80MB

16,5

25,9

28,5

4,7

0,7

1,5

27

WDC AC280

32k

WDC AC2340H

325MB

12,2

21

22,8

2,2

1,5

2,8

69

 

128KB

Western Digital

202MB

12,2

21,6

22,8

2,3

1,1

1,6

51

WDC AC1210F

64KB

Western Digital

360MB

9,2

15,8

17,6

2,4

1,8

2,1

102

WDC AC1365F

64k

Western Digital

610MB

10,2

19,7

17,7

2,8

2,9

8,6

166

WDC AC2635F

64KB

Western Digital

700MB

9,5

16,2

17,5

2,5

1,7

2

97

WDC AC2700F

64k

Western Digital

420MB

12,4

21,6

23,7

2,4

1,6

7,3

71

WDC AC2420H

64k

Western Digital

515MB

9,1

16

17

2,6

3

9

182

WDC AC2540F

64KB

Western Digital

540MB

11,4

20,7

19,6

2,9

2,5

8,5

130

WDC AC2540H

128k

WDC AC2850F

813MB

10,1

19,5

17,9

2,7

R=3,0

9

174

 

64k

Western Digital

1GB

10,6

18,5

18,1

3

2,7

4,3

154

WDC AC31000F

64k

Western Digital

1GB

10,2

19,6

17,8

3,2

2,8

7,5

162

WDC AC31200F

64k

WDC AC21000H

1,0GB

10

18,6

17

2,7

R=4,9

9,4

298

 

128KB

WDC AC11000H

1006M

10,6

21

17,6

2,3

R=6,5

15,1

376

 

128KB

WDC AC21200H

1,2GB

9,8

19,2

17,1

2,2

R=5,0

12,6

299

 

128KB

Western Digital

1,2GB

10,4

21,2

17,8

2,5

5,5

11,4

320

WDC AC21200H(new)

128KB

WDC AC11200L

1,2GB

10,6

20

17,9

3,1

R=7,2

14

414

 

256KB

WDC AC31600H

1,5GB

9,2

17,7

16,3

2,3

R=5,0

15,8

312

 

128KB

WDC AC21600H

1,5GB

10

19,9

17,1

2,1

R=6,0

16

361

 

128KB

Western Digital

2GB

11,1

21,8

18,1

2,3

5,8

13,9

324

WDC AC32100H

128k

Western Digital

1,9GB

10,8

20,6

18

2,9

R=7,2

15,7

408

WDC AC22000L

256KB

Western Digital

2,0GB

10,4

21

17,3

2,3

6,2

15,3

365

WDC AC22100H

128KB

WDC AC32500H

2,4GB

10,9

21

17,9

2,4

6,5

8,5

369

 

128KB

WDC AC22500L

2,4GB

10,5

19,8

17,4

3

R=7,7

17,5

451

 

256KB

WDC AC33100H

2,9GB

11,2

21,7

17,9

2,3

R=6,6

9,2

375

 

128KB

WDC AC34000L

3,7GB

11,4

21,6

18,3

2,9

R=7,4

13,9

413

 

256KB

WDC AC34200L

3,9GB

10,8

20,4

17,2

2,1

R=7,2

14,7

429

 

256KB

WDC AC34300L

4,0GB

11,1

20,7

17,1

2,7

R=7,1

13,3

428

 

256KB

WDC AC35100L

4,8GB

11,2

21,4

17,5

2,6

R=8,5

17,3

498

 

256KB

WDC AC36400L

6,0GB

9,1

18,6

15,6

2,1

R=8,7

14,6

575

 

256KB

Western Digital WDE

4,0GB

9

16

13

2,7

8,8

26,2

643

4360W Enterprise

Quantum

QUANTUM

40MB

20,1

N/A

37,7

6,6

0,3

3

8

P40A 940-40-94xx

64k

QUANTUM ELS85A

81MB

18,1

N/A

28,1

6,2

0,4

2,2

13

 

32k

QUANTUM ELS127A

121MB

18,3

3

28,3

6,5

0,4

2,5

13

 

32k

QUANTUM LPS170A

162MB

14

22,3

24

3,9

1,4

5,9

62

 

98KB

QUANTUM LPS210A

201MB

14,7

23,6

24,7

4,2

1,6

2,3

68

 

98KB

QUANTUM LPS240A

240MB

17,1

N/A

27,2

5,8

0,8

1

31

GM240A01X

256k

QUANTUM LPS270A

270MB

11,8

21,7

20,4

3,6

1,9

2,4

97

 

96k

QUANTUM LPS340A

340MB

13,3

20,9

23,5

4,2

1,5

4,2

66

 

98k

QUANTUM LPS420A

402MB

13,2

20,9

23,4

4,1

1,7

4,4

76

 

98KB

QUANTUM LPS525A

500MB

10,4

19,8

17,3

3,1

R=1,2

2,3

69

 

256KB

QUANTUM LPS540A

540MB

11,3

18,9

19,5

3,3

2

2,1

108

 

96k

QUANTUM

270MB

14,3

21,7

22,9

4,2

1,9

5,4

83

MAVERICK 270A

98k

QUANTUM

540MB

13,6

21,7

22,9

4,2

2

4,2

90

MAVERICK 540A

98k

QUANTUM

360MB

11,5

19

20

3,8

2,4

3,6

126

LIGHTNING 365A

96k

QUANTUM

720MB

8,2

12,4

19,4

2,2

2,6

5,9

140

LIGHTNING 730A

96k

QUANTUM TRB420A

402MB

13,3

21,7

21,4

3,5

2,6

N/A

127

 

96KB

QUANTUM TRB850A

809MB

13,6

22,2

21,6

3,9

R=3,0

5,2

140

 

96k

QUANTUM

611MB

9,5

18,9

16,2

3,3

R=5,2

12,7

332

FIREBALL640A

83KB

QUANTUM

1GB

11,5

20,4

16,7

3,3

4,2

5,1

252

FIREBALL1080S SCSI

QUANTUM

1,0GB

9,6

19,3

16,1

3,2

R=5,1

8,2

322

FIREBALL1080A

83KB

QUANTUM

1,2GB

9,9

19,4

16,3

2,8

R=5,6

14,7

352

FIREBALL1280A

83k

QUANTUM

1GB

9,7

17,5

18,1

2,7

4,4

12,4

251

FIREBALL_TM1080A

76k

QUANTUM FIREBALL_TM

1,2GB

9,9

17,6

17,5

2,8

R=5,5

12,3

322

1280A

76KB

QUANTUM

1,6GB

8,3

14,8

15,9

3,2

5,7

N/A

361

FIREBALL_TM1700A

76KB

QUANTUM

2,0GB

8,3

13,9

16

2,9

6,1

9,6

391

FIREBALL_TM2110A

76KB

QUANTUM

2,4GB

9,3

16,9

17,3

3,2

R=5,8

13,6

342

FIREBALL_TM2550A

76KB

QUANTUM FIREBALL_TM

3,0GB

9,7

16,9

17,5

3,8

R=5,7

13,6

335

3200A

76KB

QUANTUM

3,6GB

9,4

16,9

17,3

3,7

R=5,8

13

344

FIREBALL_TM3840A

76KB

QUANTUM

1,2GB

15,3

23,6

25,2

6,3

4,5

7,3

182

BIGFOOT1280A

87k

QUANTUM

2,0GB

13,8

21,7

23,3

5,7

4,9

10,8

215

BIGFOOT2100A

87KB

QUANTUM BIGFOOT_CY2

2,0GB

11,4

20,5

20,7

3,4

R=5,8

11,7

286

160A

QUANTUM BIGFOOT_CY4

4,0GB

12,9

22,2

22,1

3,8

R=6,0

11,7

279

320A

QUANTUM

1,6GB

9,5

17,1

17,3

3,5

4,2

11,7

247

SIROCCO1700A

75k

QUANTUM

2,4GB

9,6

17,4

17,3

3,9

4,2

12

251

SIROCCO2550A

75KB

QUANTUM FIREBALL

1,5GB

8,1

14,8

14,7

2,5

R=7,9

14,2

549

ST1,6A

81KB

QUANTUM FIREBALL

2,0GB

8,1

14,7

14,9

2,4

R=6,8

11,7

469

ST2,1A

81KB

QUANTUM FIREBALL

3,0GB

8

14,7

14,6

2,5

R=7,9

13,7

551

ST3,2A

81KB

QUANTUM FIREBALL

4,0GB

8,7

15,7

15,6

2,6

R=7,4

14,7

486

ST4,3A

81KB

QUANTUM FIREBALL ST

6,0GB

8,7

15,7

15,6

2,6

R=8,4

16,2

547

6,4A

81KB

QUANTUM FIREBALL SE

2,1GB

8,4

15

15,5

2,7

R=9,6

14,2

637

2,1A

80KB

QUANTUM FIREBALL SE

4,0GB

8,6

15,3

15,5

2,9

R=9,6

17,3

635

4,3A

80KB

QUANTUM FIREBALL SE

6,0GB

8,8

15,6

15,8

2,8

R=10,1

17,1

653

6,4A

80KB

QUANTUM FIREBALL SE

7,8GB

8,8

15,8

15,6

2,7

R=10,2

17,1

667

8,4A

80KB

QUANTUM Pioneer

1,0GB

12,3

18,7

19,8

5,9

5,4

8,7

277

SG 1,0A

40KB

QUANTUM Atlas

1,0GB

8,9

16,9

13,3

3,7

6,1

8,3

470

XP31070W SCSI-2

QUANTUM

2,0GB

9,6

18,1

14,2

3,4

5,6

8,1

407

XP32150 SCSI-2

QUANTUM Atlas

4GB

9,6

18,1

14

3

5,7

14,2

415

XP34300W SCSI-2

QUANTUM Atlas2

4,2GB

8,2

16,3

12,4

2,1

R=8,5

32,6

704

XP34550W UW SCSI-2

Seagate Technology

Seagate Technology

42MB

27,5

N/A

33,4

9,2

R=0,4

5

12

ST157A

2KB

Seagate ST351A/X

40MB

26,2

32,9

4,9

0,3

0,4

N/A

10

 

8k

Seagate ST9080A

61MB

16,4

25,6

29

6,5

0,6

1,4

20

 

32k

Seagate st3096AT

85MB

14,1

25,1

24,7

4,3

0,4

0,9

16

 

32k

Seagate st3120AT

100MB

14,6

N/A

25,4

3,7

0,3

1,5

14

 

32k

Seagate st3144AT

124MB

16,4

N/A

27,4

3,8

0,3

1,5

13

 

32KB

ST9235AG

174MB

16,3

25,4

28,7

6,5

0,9

1,3

31

 

64KB

ST9240AG

200MB

10,9

17,5

25,2

3,8

1,4

4,1

58

 

120KB

Seagate ST3250A-XR

210MB

14,9

25,5

27,9

4,6

1,1

3,3

38

 

120k

Seagate ST3491A

408MB

12,3

22,8

23,1

3,9

1,6

6,2

70

 

120KB

Seagate ST9546A

520MB

12,8

19,6

22,4

4,6

2,4

6,2

109

 

120k

Seagate ST3660A

520MB

13,4

25,9

24,7

3,8

1,9

3,1

77

 

120k

Seagate ST3630A

600MB

13,2

27

25

4,2

2

6,8

83

 

120k

ST3780A

688MB

11,5

20,5

18,6

3,9

2,8

13,1

153

 

256KB

ST9810A

772MB

15

24,7

26,9

4,9

2,7

3,6

103

 

120KB

Seagate ST3850A

810MB

14,8

5,5

26,4

4,4

R=2,1

6,6

83

 

120k

Seagate ST5850A

850MB

11,5

19,6

17,8

3,8

3,4

10,8

195

 

256k

Seagate ST31220A

1GB

11,8

21

18,9

4,1

2,9

11,3

157

 

256k

Seagate Technology

1,0GB

12

21

19,3

4

3,7

9,6

198

1080MB - ST31081A

Seagate Technology

1,0GB

12,3

20,2

19,5

4,1

3,5

8,9

186

1080MB - ST31082A

Seagate ST51080A

1GB

11,4

21

18,1

4,8

3,7

12,3

208

 

128k

Seagate ST31276A

1,2GB

12,4

22

19,6

4,2

3,9

8,6

197

Seagate ST31277A

1,2GB

10,3

16,5

19,3

3,9

R=5,8

8,2

306

Seagate ST51270A

1,2GB

11

21,3

18,1

3,7

R=4,0

10,4

224

 

128k

ST91351AG

1,3GB

12,6

21,7

21

4,2

3,2

10,8

156

 

64KB

Seagate ST31621A

1,5GB

5,3

25,2

22,5

1,9

3,2

5,9

146

Aka Conner CFS1621A

ST31720A

1,6GB

11,7

21,3

20,8

4,3

5,2

11,4

258

 

Seagate ST5180N

1GB

12,7

22,1

18,9

6,7

4

8,3

217

Fast SCSI-2

128k

Seagate HAWK LP

1GB

10,5

20,1

16,2

2,2

4,1

N/A

261

ST31230N SCSI-2

512k

Seagate Hawk

2,0GB

11,6

19,2

18,4

4,5

4,8

N/A

267

Seagate ST32140A

2GB

10,4

19,6

17,3

3

R=4,1

10,4

243

 

128k

Seagate ST32550N

2GB

N/A

N/A

12,9

N/A

6

N/A

474

SCSI-2

Seagate ST52520A

2,4GB

9,9

18,3

16

3,5

6,8

14,6

437

Medalist Pro

112k

ST32531A

2,4GB

11,9

21

20,9

4,3

5,3

9,6

261

 

ST36450A

6,0GB

10

18,6

16,1

2,7

7,1

16,3

449

 

448KB

ST36451A

6,0GB

10,1

18,7

16,1

3

7,3

13,5

464

 

448KB

Seagate Barracuda

2,0GB

8,4

17,1

13

1,9

5,8

N/A

459

SCSI-2

Hawk ST34555W

4,2GB

3,6

3,6

13,7

3,6

8,6

N/A

646

SCSI-2

Seagate Barracuda

4,0GB

8,8

17,5

13,3

2,1

5,9

5,9

451

ST15150N SCSI-2

Seagate Barracuda

8,0GB

N/A

N/A

14,1

N/A

9,5

N/A

690

ST19171W SCSI-2

Seagate ST34501N

4,2GB

N/A

N/A

11,6

1,4

12,5

N/A

1111

Cheetah Ultra-SCSI

Conner Peripherials

Conner Peripherals

39MB

21,2

N/A

38,6

6,1

R=0,5

N/A

14

40MB - CP3000

4KB

Conner CP30084E

85MB

16,1

N/A

26,5

5,4

2

N/A

78

 

32k

Conner CP30104H

120MB

17,4

20,3

28,8

6,7

0,6

1,8

20

 

32k

Conner Peripherals

162MB

12,8

21,3

22,3

4,7

R=1,0

2,5

45

170MB - CP30174

32KB

Conner CP30254

240MB

13

N/A

20,8

4,5

1,6

4,2

81

 

32k

Conner Peripherals

326MB

13,7

22,2

22,7

4,3

R=1,7

2,2

75

340MB - CP30344

64KB

Conner CFS210A

210MB

13,7

23

23,3

4,5

1,9

4,4

82

 

32k

Conner CFA210A

210MB

13,8

22,7

23,5

4,6

1,8

3

79

 

32k

Conner CFA270A

270MB

10,1

16,7

17

3,4

2,3

6

140

Conner CFA340A

340MB

13,5

22,2

22,3

4,1

1

2,5

45

 

64k

Conner CFS420A

420MB

13,6

22,6

23,4

4,4

1,9

4,2

81

 

64k

Conner CFS425A

420MB

13,7

22,8

23,3

5,4

2,4

9

107

 

64k

Conner CFS540A

540MB

N/A

N/A

24

N/A

2,2

5,9

97

 

64k

Conner CFS541A

540MB

N/A

20,8

22,8

N/A

3,1

6,8

104

Conner Peripherals

608MB

13,5

24,1

22,6

6,4

R=2,5

9,8

111

635MB - CFS635A

64KB

Conner CFA540S

540MB

11,1

17,9

19,1

3,9

2,9

4,1

155

Conner CFS850A

850MB

13,1

23,6

22,7

N/A

2,2

9,4

100

 

64k

Conner CFA850A

850MB

N/A

N/A

18,3

N/A

3,4

12,7

189

 

256k

Conner CFP1060S

1GB

9

15,5

14,5

3,5

3,6

7,6

252

Fast SCSI-2

512k

Conner CFP2105E

2,0GB

9,1

16,4

14,8

3,3

R=4,4

9

304

SCSI

Conner CFS1081A

1GB

N/A

25

22,3

1,6

3,2

9,1

148

Conner CFS1275A

1,2GB

N/A

N/A

18,2

N/A

3,6

10,3

199

 

64k

Conner CFS1276A

1,2GB

12,3

21,7

19,4

4,1

3,8

11,7

199

 

64k

Conner CFS1621A

1,6GB

13,5

25,1

22,4

4,1

3,2

9

147

Maxtor Corp

Maxtor 7131 AT

125MB

15,6

N/A

27,3

4,5

0,8

3,6

31

 

64KB

Maxtor 7171 AT

164MB

14,1

N/A

24,8

4,6

0,9

1,3

37

 

64KB

Maxtor 7270 AV

270MB

8,1

13

24,4

2,2

2

N/A

82

 

32k

Maxtor 7345 AT

340MB

14,2

N/A

25,6

4,8

0,8

4,3

31

 

64k

Maxtor 7346 AT

520MB

9,4

15,5

21,3

2,2

R=3,0

5,1

142

 

256k

Maxtor 7420 AV

400MB

9,9

18,2

25,8

2,5

R=1,7

2,4

66

 

32k

Maxtor 7540 AV

514MB

10,7

17,4

25,2

3

2,1

N/A

86

 

32KB

Maxtor 7540 AQ

540MB

10,8

17,8

25,3

4,5

2,2

N/A

90

 

64k

Maxtor MXT-540 AT

504MB

8,6

15,2

14

1,9

R=2,7

3,4

195

 

256k

Maxtor 7541 A

517MB

9,3

11,4

24,7

2,9

3,7

10,9

155

 

64KB

Maxtor 7850 AV

850MB

11,7

19,4

26,1

4

2,5

N/A

98

 

64k

MXT-1240S SCSI

1,1GB

9,6

16,7

14,3

3,2

R=3,5

8,7

253

 

Maxtor 71084 A

1,0GB

10

15,6

24,6

3,5

3,8

13,7

159

 

64KB

Maxtor 71260 AP

1,3GB

11,1

17,6

24,7

3,2

3,7

6,8

150

 

128k

Maxtor 71629 AP

1,5GB

10,8

17,8

19,6

4,2

4,1

12,7

217

 

128KB

Maxtor 72004 AP

1,9GB

11,8

20,2

20

4,5

R=4,3

12,7

219

 

128KB

Maxtor 81620D2

1,5GB

10,5

17,7

16,9

3

R=8,2

13,1

495

 

256KB

Maxtor 82160D2

2,0GB

10,7

18,6

17,3

3,3

R=10,3

13,1

610

 

256KB

Maxtor 82560A4

2,4GB

9,9

18,7

16,4

3

R=7,7

14,5

481

 

256KB

Maxtor 83240D3

3,0GB

10,9

18,7

17,8

3,2

R=8,3

8,7

480

 

256KB

Maxtor 83500 A8

3,3GB

12,9

24,5

19,8

5,1

R=4,6

12,9

237

 

128KB

Maxtor 85120 A8

4,8GB

10

18,8

16,4

3

R=7,6

14,7

471

 

256KB

Maxtor 88400D8

7,8GB

10,5

18

17,3

3,2

R=10,4

13,1

614

 

256KB

Fujitsu

M2681TA

251MB

12,2

24,5

21,4

3,8

R=1,5

10,1

71

 

256KB

M2682TA

335MB

12,1

24,5

21,8

3,7

R=1,4

11,1

64

 

256KB

FUJITSU M2684TAM

528MB

12,1

24,5

21,9

5,2

2,1

10,8

95

 

256k

M1603TA

519MB

9,7

18,8

17,9

4,5

3,4

10,6

194

 

256KB

FUJITSU M1606TA

1GB

9,5

18,6

18

4,5

3,4

5

193

 

256k

M1614TA

1,0GB

N/A

20,7

18,9

3,9

R=4,0

11,9

217

 

64KB

FUJITSU M2694ESA

1GB

10,2

19,5

17,1

2,5

2,9

3,1

174

Fast SCSI-2

FUJITSU M1606S

1GB

9,6

18,5

16,8

6,4

3,9

2,8

238

Fast SCSI-2

FUJITSU M1636TAU

1,2GB

10,1

17,8

19

4

6,2

11,4

337

 

128KB

FUJITSU M1623TAU

1,6GB

10,2

17,8

18,7

4,2

R=6,0

12

326

 

128k

FUJITSU M1624TAU

2,0GB

10,2

17,1

18,2

4,3

R=6,0

11

340

 

128k

FUJITSU M1638TAU

2,4GB

10,2

18

18,6

3,9

6,5

11,7

357

 

128k

FUJITSU MPA3017AT

1,6GB

9,3

17,4

16,2

2,7

R=7,1

15,5

446

 

256KB

FUJITSU MPA3026AT

2,4GB

9,5

17,1

16,2

3,2

R=7,0

14,3

445

 

256KB

FUJITSU MPA3035AT

3,3GB

9,3

17,1

16,1

3,1

R=7,1

14,3

449

FUJITSU MPA3043AT

4,1GB

9,3

17,2

16,2

3,5

R=7,1

12,8

448

FUJITSU MPA3052AT

4,9GB

9,8

17,5

16,4

4

R=7,1

11,2

444

FUJITSU MPB3021ATU

2,0GB

9,4

17,4

16,1

3,1

R=8,5

12

540

FUJITSU MPB3043ATU

4,0GB

9,4

17,4

16,2

3,5

R=8,5

12,4

539

FUJITSU MPB3052ATU

4,9GB

9,3

N/A

16,2

N/A

R=8,6

15,1

542

Samsung

Samsung Electronics

115MB

16,3

N/A

29,7

4,5

0,3

4,8

11

120MB SHD-3062A

32KB

SAMSUNG SHD-3121A

119MB

14,6

24,6

25,2

4,2

R=0,5

1,9

22

(APOLLO)

64KB

SAMSUNG SHD-30420A

420MB

12,1

22,9

23,9

3,5

1,5

6

65

(APRO-5) SSI

126k

SAMSUNG SHD-30560A

540MB

12,5

22,9

24,1

3,8

1,6

4,1

66

(APRO-5) SSI

126k

SAMSUNG PLS-30854A

810MB

11,2

20,3

18,9

3,4

3

10,7

163

 

256k

SAMSUNG PLS-31084A

1GB

11,7

21,1

19,5

3,7

3,2

8,3

169

 

256k

SAMSUNG PLS-31274A

1,2GB

11,1

20,7

18,5

3,4

3,2

10,4

176

 

256k

SAMSUNG WN312016A

1,1GB

9,6

16,9

15,8

3,5

1,7

1,9

110

(1200MB)

108KB

SAMSUNG WNR-31601A

1,5GB

9,3

16,6

15,3

3,6

3,3

4

222

(1600MB) /4300 RPM

256KB

SAMSUNG WNR-31601A

1,5GB

9,1

16,8

15,5

3,4

R=3,6

11,1

237

(1,6GB) /3600 RPM

109KB

SAMSUNG WN321620A

2,0GB

10,7

17,4

18,7

7,4

2,4

5,2

132

(2,16 GB)

109KB

Micropolis

Micropolis 4110A

1GB

9

18,4

15,5

1,4

3,7

9,3

247

 

508k

Micropolis Tomahawk

3,8GB

10,1

16,9

13,9

3,4

R=8,2

20,9

601

4341WS UW SCSI

IBM

IBM-DBOA-2360

344MB

13,3

21,8

22,3

4,3

2,4

4,7

112

 

64KB

IBM-DALA-3540

504MB

10,8

17,4

19,9

2,8

3

7,1

152

 

96KB

IBM-DJAA-31700

1,6GB

10,6

18

19,7

2,4

4

8,4

208

 

96k

IBM-DAQA-32160

2GB

9,1

14,8

15,7

3,2

R=5,8

13,1

377

 

96k

IBM-DCAA-33610

3,4GB

8,6

15

15,1

2,4

R=6,7

12

455

 

96k

IBM-DCAA-34330

4,0GB

8,5

15

15,1

2,6

R=6,8

12

462

 

96KB

IBM-DHEA-34330

4,0GB

8,7

14,9

15,1

2,6

R=8,2

16,5

560

 

476KB

IBM-DHEA-36480

6,0GB

8,6

14

14,8

2,3

R=8,4

15,5

581

 

476KB

IBM DORS 32160

2,0GB

10,2

16,5

15,9

4

4,8

5,7

308

SCSI

IBM UltraStar ES

2,0GB

N/A

N/A

15,7

N/A

4,8

5,7

314

UltraWide SCSI-2

512k

DCAS-32160 /UW SCSI

2,0GB

8,8

15,1

15,4

3,1

6,5

17,8

435

Ultrastar 2ES

IBM DCAS-34330W

4,0GB

9,2

15,5

15,7

2,9

R=6,7

33,2

438

UW SCSI-2

IBM UltraStar XP

4,2GB

9,2

16,8

13,6

3,1

6,9

N/A

520

Wide/Fast SCSI-2

IBM DCHS-34550

4,5GB

N/A

N/A

12,4

N/A

8,8

N/A

723

UltraStar 2XP SCSI

IBM Ultrastar 2XP

7,8GB

N/A

N/A

13,3

2,3

R=9,2

N/A

705

DCHS-39100 F/W SCSI

512KB

IBM DGHS-39110

7,8GB

N/A

N/A

10,9

N/A

R=12,8

N/A

1208

UW SCSI-2

1MB

NEC Corporation

NEC Corporation

1,0GB

N/A

N/A

21,5

N/A

3,8

N/A

182

D3745

66KB

NEC Corporation

1,6GB

N/A

N/A

20,7

N/A

5

N/A

246

DSE1700A

64K

Hewlett Packard

HP SureStoreDisk

2GB

10,7

19,1

17,6

3,7

4,7

8,1

272

C3725S Fast SCSI-2

HP C2247-300

996MB

10,7

18,9

18

4,5

R=2,8

3

160

SCSI-2

TEAC Corp

SD-3250N

240MB

18

N/A

28,4

3,2

0,8

1,8

29

 

128KB

TEAC SD-3540N

520MB

12

21,3

20,2

2,6

1,7

3,4

86

 

128k

Kalok

Kalok P3250AN

240MB

18,1

N/A

28,6

3,2

0,8

1,5

28

 

128k

Miniscribe Corp

Miniscribe 8051A

40MB

26,5

N/A

35,5

6

0,4

1,4

11

Toshiba

TOSHIBA MK1924FCV

503MB

14,5

24,1

23,3

6,9

R=1,4

1,4

60

 

128KB

JTS Corporation

JTS Corp, PALLADIUM

1,1GB

N/A

N/A

23,2

5,6

1,4

2,2

63

Model P1200-2AF

32KB

JTS Corp, CHAMP

1,2GB

14,6

N/A

23,1

4,2

R=1,8

10

80

Model C1300-2AF

128KB

JTS Corp, CHAMP

1,9GB

14,5

N/A

22,9

3,7

R=1,8

6,7

79

Model C2000-3AF

128KB

DEC

DEC RZ35-C

812MB

11,4

20,2

17,3

4,4

R=2,2

6,6

130

SCSI

DEC DSP3107LS

1019MB

11,4

20,8

17,3

4,7

R=3,8

5

227

SCSI-2

Сводная таблица параметров мониторов

Характеристики

Модель

Трубка

Частоты разверток

Разрешение

Video
Band

Стандарт
на излучения

Примечания

 

Диаг.

Зерно, мм
гориз./диаг.

Гор.
kHz

Верт.
Hz

Макc.

Реком.

width,
MHz

 

 

HITACHI

CM500ET

15"

.23/.28

30-69

50-100

1280x1024

@64

1024x768

@85

85

TCO`92

OSD, DDC, DDF

CM500U/E Pro

15"

.23/.28

30-69

50-100

1024x768

@85

1024x768

@85

85

TCO`92

OSD, DDC, DDF

CM600ET

17"

.22/.28

30-64

47-104

1280x1024

@60

1024x768

@75

100

TCO`92

OSD, DDC, DDF

CM620ET

17"

.22/.28

30-69

47-130

1280x1024

@64

1024x768

@85

110

TCO`92

OSD, DDC, DDF

CM611ET

17"

.21/.26

25-86

50-120

1600x1200

@72

1280x1024

@75

135

TCO`95

OSD, DDC, DDF

CM630ET

17"

.21/.26

25-86

50-120

1600x1200

@72

1280x1024

@85

135

TCO`95

OSD, DDC, DDF

CM751ET

19"

.22/.27

31-92

50-160

1600x1200

@72

1280x1024

@85

180

TCO`95

AEADF, OSD, DDC

CM802E

21"

.21/.26

31-100

50-160

1600x1200

@75

1600x1200

@75

200

MPR II

AEADF, OSD, DDC

CM802ET

21"

.21/.26

31-100

50-160

1600x1200

@75

1600x1200

@75

200

TCO`95

AEADF, OSD, DDC

CM803ET

21"

.21/.26

31-115

50-160

1800x1440

@75

1600x1200

@90

240

TCO`95

AEADF, OSD, DDC

CM2112MET

21"

.21/.26

31-110

50-160

1800x1440

@72

1600x1200

@85

220

TCO`92

AEADF, OSD, DDC

SAMSUNG

3Ne

14"

/.28

31-48

50-90

1024x768

@60

800x600

@72

65

MPR II

Analog, DDC

500s

15"

/.28

30-54

50-120

1024x768

@60

800x600

@85

56

MPR II

DDC

500Ms

15"

/.28

30-54

50-120

1024x768

@60

800x600

@85

56

MPR II

DDC, MM

500b

15"

/.28

30-69

50-160

1280x1024

@60

1024x768

@85

110

MPR II, TCO`95(опц)

OSD, DDC

500Mb

15"

/.28

30-69

50-160

1280x1024

@60

1024x768

@85

110

MPR II, TCO`95(опц)

OSD, DDC, MM

500p

15"

/.28

30-69

50-160

1280x1024

@60

1024x768

@85

110

MPR II, TCO`95(опц)

OSD, DDC, DDF

500Mp

15"

/.28

30-69

50-160

1280x1024

@60

1024x768

@85

110

MPR II, TCO`95(опц)

OSD, DDC, MM

700s

17"

/.28

30-69

50-160

1280x1024

@60

1024x768

@85

80

MPR II, TCO`95(опц)

DDF, OSD

700Ms

17"

/.28

30-69

50-160

1280x1024

@60

1024x768

@85

80

MPR II, TCO`95(опц)

OSD, DDF, MM

700b

17"

/.28

30-69

50-160

1280x1024

@60

1024x768

@85

110

MPR II, TCO`95(опц)

OSD, DDC, DDF

700Mb

17"

/.28

30-69

50-160

1280x1024

@60

1024x768

@85

110

MPR II, TCO`95(опц)

OSD, DDC, MM

700p

17"

/.26

30-85

50-160

1600x1200

@60

1280x1024

@85

135

MPR II, TCO`95(опц)

OSD, DDC, DDF

700Mp

17"

/.26

30-85

50-160

1600x1200

@67

1280x1024

@75

135

MPR II, TCO`95(опц)

OSD, DDC, MM

1000p

20"

/.26

30-107

50-160

1600x1200

@85

1280x1024

@85

230

MPR II, TCO`95(опц)

OSD, DDC, DDF

DAEWOO

CMC 1427X

14"

/.28

30-50

50-100

1024x768

@60

800x600

@75

65

MPR II

Analog

CMC 1502B1

15"

/.28

30-65

50-120

1280x1024

@60

1024x768

@75

85

MPR II

OSD, DDC

CMC 1511B

15"

/.28

30-69

50-120

1280x1024

@60

1024x768

@85

85

MPR II

OSD, DDC

CMC 1509B

15"

/.28

30-69

50-120

1280x1024

@60

1024x768

@85

85

MPR II

OSD, DDC, MM

CMC 1703B

17"

/.28

30-64

48-120

1280x1024

@60

1024x768

@85

85

MPR II

OSD, DDC

CMC 1704C

17"

/.28

24-86

50-150

1600x1200

@60

1280x1024

@75

100

MPR II

OSD, DDC

CMC 1705B

17"

/.28

30-69

50-120

1280x1024

@60

1024x768

@85

85

MPR II

OSD, DDC, MM

CMC 1707B

17"

/.28

30-69

50-120

1280x1024

@60

1024x768

@85

85

MPR II

OSD, DDC

CMC 2000M

20"

/.28

30-82

50-100

1280x1024

@72

1280x1024

@75

120

MPR II

Digital

CMC 2102M

21"

/.28

30-82

50-120

1600x1200

@73

1280x1024

@75

110

MPR II

Digital

GOLDSTAR Studioworks

1466LRs

14"

/.28

31-48

56-87

1024x768

@60

not tested

65

MPR II

Analog

45i

14"

/.28

30-54

50-90

1024x768

@60

not tested

65

MPR II

Digital, DDC

44i

14"

/.28

30-50

50-90

1024x768

@60

800x600

@75

65

MPR II

Digital, DDC

44m

14"

/.28

30-50

50-90

1024x768

@60

800x600

@75

65

MPR II

Digital, DDC, MM

1505s

15"

/.28

31-48

56-87

1024x768

@60

not tested

65

MPR II

Analog

54i

15"

/.28

30-54

50-90

1024x768

@60

800x600

@75

65

MPR II

OSD, DDC

54m

15"

/.28

30-50

50-90

1024x768

@60

800x600

@75

65

MPR II

OSD, DDC, MM

55i

15"

/.28

30-54

50-90

1024x768

@66

800x600

@85

65

MPR II

Digital, DDC

56i

15"

/.28

30-65

50-110

1280x1024

@60

1024x768

@85

110

MPR II

OSD, DDC

57i

15"

/.28

30-69

50-110

1280x1024

@60

not tested

110

MPR II

OSD, DDC

56m

15"

/.28

30-60

50-110

1280x1024

@60

1024x768

@75

110

MPR II

OSD, DDC, MM

5D

15"

/.28

30-65

50-110

1280x1024

@60

1024x768

@75

100

MPR II

OSD, DDC, MM

7D

17"

/.28

30-65

50-110

1280x1024

@60

1024x768

@75

110

MPR II

OSD, DDC, MM

74i

17"

/.39

30-50

50-90

1024x768

@60

800x600

@75

65

MPR II

Digital, DDC

76i

17"

/.28

30-65

50-110

1280x1024

@60

1024x768

@75

110

MPR II

OSD, DDC

77i

17"

/.28

30-69

50-160

1280x1024

@60

not tested

110

MPR II

OSD, DDC, DDF

78i

17"

/.26

30-85

50-120

1600x1200

@66

1280x1024

@76

135

MPR II

OSD, DDC, DDF

1725s

17"

/.28

30-65

50-120

1280x1024

@60

not tested

111

MPR II

Digital, DDC

78D

17"

.25/

30-85

50-120

1600x1200

@60

1280x1024

@80

135

MPR II

OSD, DDC, Diamondtron

20i

20"

/.28

30-85

50-120

1600x1200

@60

1280x1024

@80

130

MPR II

OSD, DDC

28i

21"

/.28

30-85

50-120

1600x1280

@60

not tested

150

MPR II

OSD, DDC, DDF

SONY Multiscan

100sx

15"

.25/

30-65

50-120

1280x1024

@60

1024x768

@80

120

MPR II

OSD, DDC

100sf

15"

.25/

30-80

50-120

1280x1024

@60

1024x768

@85

120

TCO`92

OSD, DDC

100ES

15"

.25/

30-70

50-120

1280x1024

@65

not tested

н/д

MPR II

OSD, DDC

100GST

15"

.25/

30-70

50-120

1280x1024

@65

not tested

н/д

TCO'95

OSD, DDC

120AS

15"

.25/

30-70

50-120

1280x1024

@65

not tested

н/д

MPR II

OSD, DDC

200sx

17"

.25/

30-70

50-150

1280x1024

@65

1024x768

@87

120

MPR II

OSD, DDC

200sf

17"

.25/

30-80

50-120

1280x1024

@75

1024x768

@100

120

TCO`92

OSD, DDC

200pst

17"

.25/

30-92

48-160

1280x1024

@85

1024x768

@75

н/д

TCO`95

OSD, DDC, MALS

200EST

17"

.25/

30-70

50-120

1280x1024

@65

not tested

н/д

TCO`92

OSD, DDC, MALS

200GST

17"

.25/

30-85

50-120

1280x1024

@80

not tested

н/д

TCO`95

OSD, DDC, MALS

400PST

19"

.25/

30-94

48-160

1600x1280

@75

not tested

н/д

TCO`95

OSD, DDC, MALS

300sft

20"

.30/

30-86

49-150

1600x1200

@64

1280x1024

@80

150

TCO`95

OSD, DDC

20sell

20"

.25/

30-96

48-160

1600x1280

@85

1280x1024

@90

160

TCO`95

OSD, DDC

20sh

20"

.25/

30-107

50-160

1600x1280

@85

1600x1200

@85

180

TCO`92

OSD, DDC

VIEWSONIC

E641

14"

/.28

30-54

50-100

1024x768

@67

800x600

@86

65

MPR II

Digital, DDC

E655

15"

/.28

30-70

50-100

1280x1024

@66

1024x768

@85

110

MPR II

OSD, DDC

G653

15"

/.28

30-70

50-120

1280x1024

@

not tested

110

TCO'95

OSD, DDC

15GA

15"

/.27

30-69

50-160

1280x1024

@65

1024x768

@80

86

TCO`92

OSD, DDC, DDF, MM

15GS

15"

/.27

30-69

50-160

1280x1024

@65

1024x768

@85

86

TCO`92

OSD, DDC

E771

17"

/.27

30-70

50-120

1280x1024

@66

not tested

100

MPR II

OSD, DDC

EA771

17"

/.27

30-70

50-120

1280x1024

@66

not tested

86

MPR II

OSD, DDC

EA771B

17"

/.27

30-70

50-120

1280x1024

@66

not tested

120

MPR II

OSD, DDC, DDf, MM

17GA

17"

/.27

30-69

50-160

1280x1024

@65

1024x768

@80

86

TCO`92

OSD, DDC, DDF, MM

17GS

17"

/.27

30-69

50-160

1280x1024

@67

1024x768

@77

135

TCO`92

OSD, DDC, DDF

17PS

17"

/.25

30-86

50-160

1600x1280

1280x1024

@77

135

TCO`92

OSD, DDC, DDF

PT770

17"

.25/

24-82

50-130

1600x1280

1280x1024

@77

120

MPR II

OSD, DDC, Sonictron

P775

17"

.25/

30-95

50-180

1600x1280

@75

1280x1024

@85

205

TCO`95

OSD, DDC, DDF

PT775

17"

.25/

30-96

50-160

1600x1200

@77

1280x1024

@77

200

TCO`95

OSD, DDC, DDF, SonicTron

G771

17"

/.27

30-70

50-180

1280x1024

@66

not tested

108

TCO`92

OSD, DDC, DDF

GS771

17"

/.27

30-70

50-180

1280x1024

@66

not tested

108

TCO`95

OSD, DDC

G733

17"

/.26

30-70

50-160

1280x1024

@66

not tested

110

TCO`95

OSD, DDC, DDF

GT770

17"

/.25

31-64

50-120

1280x1024

@60

not tested

86

TCO`92

OSD, DDC

GT775

17"

/.25

30-86

50-160

1600x1200

@79

not tested

135

TCO`92

OSD, DDC, DDF

G790

19"

/.26

30-95

50-180

1600x1280

not tested

200

TCO`95

OSD, DDC, DDF

G800

20"

/.28

30-86

50-120

1600x1280

1280x1024

@80

135

TCO'92

OSD, DDC, DDF

G810

21"

/.25

30-89

50-160

1600x1200

@71

not tested

154

MPR II

OSD, DDC, DDF

P810

21"

.22/.25

30-95

50-160

1600x1200

@76

1280x1024

@85

200

TCO`92

OSD, DDC, DDF

21PS

21"

/.25

30-86

50-160

1600x1280

1280x1024

@79

135

MPR II

OSD, DDC, DDF

PT810

21"

/.30

30-96

50-120

1600x1280

1280x1024

@85

200

TCO`92

OSD, DDC

PT813

21"

/.28

30-107

50-160

1600x1200

@85

1280x1024

@100

230

TCO`95

OSD, DDC, DDF, Sonictron

PT815

21"

/.25

30-115

50-160

1800x1440

1600x1200

@85

250

TCO`92

OSD, DDC

29GA

29"

.75 Stripe Pt.

15-64

45-160

1280x1024

@60

not tested

н/д

н/д

OSD, DDC, MM

Optiquest

V641

14"

/.28

31,37,48

50-90

1024x768

not tested

65

MPR II

Analog, DDC

Q41

14"

/.28

30-48

50-90

1024x768

not tested

65

MPR II

Digital, DDC

V655

15"

/.28

30-70

50-100

1280x1024

@

1024x768

@85

110

MPR II

OSD, DDC

Q53

15"

/.28

30-70

50-90

1280x1024

@

not tested

110

MPR II

Digital, DDC

Q51

15"

/.28

30-54

50-90

1024x768

@

not tested

65

MPR II

Digital, DDC

Q71

17"

/.28

30-70

50-120

1280x1024

@

not tested

135

MPR II

OSD, DDC

V773

17"

/.26

30-70

50-180

1280x1024

@66

not tested

89

MPR II

OSD, DDC

V775

17"

/.26

30-85

50-120

1600x1280

@68

not tested

135

MPR II

OSD, DDC

V95

19"

/.26

30-95

50-160

1600x1280

@76

1280x1024

@85

200

TCO`92

OSD, DDC

Q100

20"

/.28

30-86

50-120

1600x1280

@80

not tested

135

MPR II

OSD, DDC

V115

21"

/.26

30-95

50-160

1600x1280

not tested

200

TCO`92

OSD, DDC

MAG Innovision

410V2

14"

/.28

30-50

50-100

1024x768

@63

not tested

 

MPR II

DDC

D410

14"

/.28

30-54

50-100

1024x768

@60

not tested

65

MPR II

DDC

510V2

15"

/.28

30-50

50-100

1024x768

@60

not tested

n/a

MPR II

DDC

710V2

17"

/.28

30-65

50-120

1280x1024

@60

not tested

n/a

MPR II

OSD, DDC

720V2

17"

/.28

30-70

50-120

1280x1024

@65

not tested

n/a

MPR II

OSD, DDC

DX15T

15"

.25/

30-64

50-100

1280x1024

@60

1024x768

@75

80

MPR II

OSD, DDC, Trinitron

DJ530

15"

/.28

30-70

50-120

1280x1024

@65

800x600

@85

80

MPR II

OSD, DDC

XJ530

15"

/.28

30-70

50-120

1280x1024

@65

800x600

@85

80

TCO'92

OSD, DDC

DX700T

17"

.25/

30-70

50-120

1280x1024

@60

not tested

100

MPR II

OSD, DDC, DDF, Trinitron

DX715T

17"

.25/

30-86

50-160

1600x1200

@69

not tested

135

MPR II

OSD, DDC, Diamondtron

DJ700

17"

/.26

30-70

50-120

1280x1024

@65

not tested

n/a

MPR II

OSD, DDC

XJ700

17"

.25/

30-70

50-120

1280x1024

@60

800x600

@85

100

TCO'95

OSD, DDC

DJ702e

17"

/.28

30-65

50-120

1280x1024

@60

1024x768

@75

н/д

MPR II

OSD, DDC, Microfilter

DJ702

17"

/.26

30-70

50-120

1280x1024

@65

not tested

н/д

MPR II

OSD, DDC, Microfilter

DJ707

17"

.22/.26

30-70

50-120

1280x1024

@65

1024x768

@85

100

MPR II, TCO`95(опц)

OSD, DDC

DJ717

17"

.22/.26

30-86

50-160

1600x1200

@69

not tested

135

MPR II, TCO`95(опц)

OSD, DDC

DJ800

19"

.22/.26

30-86

50-160

1600x1200

@69

1024x768

@85

135

MPR II, TCO`95(опц)

OSD, DDC

DJ920

21"

/.28

30-110

50-160

1600x1200

@87

not tested

200

MPR II, TCO`95(опц)

OSD, DDC

Philips

104S

14"

.24/.28

31-48

50-100

1024x768

@87i

800x600

@

45

MPR II

DDC

104B

14"

.24/.28

30-54

50-110

1024x768

@60

800x600

@

65

MPR II

DDC

105S

15"

.24/.28

30-54

50-100

1024x768

@60

800x600

@85

65

MPR II

OSD, DDC

105B

15"

.24/.28

30-70

50-110

1280x1024

@60

800x600

@

108

MPR II, TCO`95(опц)

OSD, DDC, MM

107S

17"

.24/.28

30-69

50-120

1280x1024

@60

1024x768

@

110

MPR II

OSD, DDC

107B

17"

.24/.28

30-69

50-120

1280x1024

@60

1024x768

@

110

MPR II, TCO`92(опц)

OSD, DDC, MM

201B

21"

.22/.28

30-94

50-160

1600x1200

@75

1280x1024

@

203

MPR II, TCO`95(опц)

OSD, DDC

Brilliance 105

15"

.24/.28

30-69

50-120

1280x1024

@60

800x600

@

108

MPR II, TCO`95(опц)

OSD, DDC, MM

Brilliance 107

17"

.22/.28

30-86

50-160

1600x1280

@60

1280x1024

@

135

MPR II, TCO`95(опц)

OSD, DDC, MM

Brilliance 109

19"

.22/.28

30-95

50-160

1600x1200

@75

1280x1024

@

203

MPR II, TCO`95(опц)

OSD, DDC, MM

Brilliance 201

21"

.22/.28

30-107

50-170

1600x1200

@80

1600x1200

@80

220

MPR II, TCO`95(опц)

OSD, DDC, DDF, MM

Brilliance 201CS

21"

.22/.28

30-107

50-170

1600x1200

@80

1600x1200

@

220

MPR II, TCO`95(опц)

OSD, DDC, MM

Panasonic
PanaSync, PanaFlat (PF), PanaMedia (PM)

E15

15"

/.27

30-61

50-90

1024x768

@75

not tested

75

MPR II

OSD, DDC

PM15

15"

/.27

30-69

50-160

1280x1024

@65

not tested

86

MPR II

OSD, DDC, MM

E50

15"

/.27

30-61

50-120

1024x768

@75

not tested

86

MPR II

OSD, DDC

S15

15"

/.27

30-67

50-120

1280x1024

@63

not tested

85

MPR II

OSD, DDC

Pro P15

15"

/.27

30-69

50-160

1280x1024

@65

1024x768

@85

86

MPR II

OSD, DDC, DDF

PM17

17"

/.27

30-69

50-160

1280x1024

@65

not tested

86

MPR II

OSD, DDC, MM

S17

17"

/.27

30-69

50-160

1280x1024

@65

not tested

86

MPR II

OSD, DDC, DDF

S70

17"

/.27

30-70

50-180

1280x1024

@66

not tested

108

MPR II

OSD, DDC, DDF

Pro P17

17"

/.25

30-86

50-160

1600x1280

@65

not tested

135

TCO`92

OSD, DDC, DDF

PF17

17"

/.24

30-86

50-160

1600x1280

@65

not tested

135

TCO`92

OSD, DDC, DDF

E21

21"

/.25

30-89

50-160

1600x1200

@67

not tested

160

MPR II

OSD, DDC, DDF

S21

21"

/.25

30-95

50-160

1600x1200

@75

not tested

202.5

TCO`92

OSD, DDC, DDF

Pro P21

21"

/.25

30-115

50-160

1800x1440

@71

1600x1200

@81

250

TCO`92

OSD, DDC, DDF

Belinea

10 40 10

14"

/.28

30-54

50-120

1024x768

@65

640x480

@85

65

MPR II

Digital, DDC

10 50 35

15"

/.28

30-69

50-120

1280x1024

@60

800x600

@100

86

MPR II

OSD, DDC

10 50 45

15"

/.27

30-70

50-120

1280x1024

@65

800x600

@100

86

TCO' 95

OSD, DDC

10 50 76

15"

/.27

30-69

50-120

1280x1024

@60

800x600

@100

86

TCO'95

OSD, DDC, MM

10 70 20

17"

/.28

30-70

50-120

1280x1024

@65

1024x768

@85

100

TCO'95

OSD, DDC

10 70 15

17"

/.27

30-70

50-180

1280x1024

@65

1024x768

@85

110

TCO'95

OSD, DDC

10 55 86

17"

/.27

30-69

50-120

1280x1024

@60

1024x768

@85

110

TCO'95

OSD, DDC, MM

10 70 35

17"

/.27

30-95

50-180

1600x1200

@75

1024x768

@100

158

TCO'95

OSD, DDC

10 55 96

17"

.26/.25

30-85

50-120

1600x1200

@65

1024x768

@100

135

TCO'95

OSD, DDC, MM

10 70 50

17"

.25/

30-95

50-160

1600x1200

@75

1024x768

@100

160

TCO'95

OSD, DDC

10 60 90

19"

/.26

30-95

50-150

1600x1200

@75

1280x1024

@85

135

TCO'95

OSD, DDC

10 80 95

21"

/.25

30-95

50-160

1600x1200

@75

1600x1200

@75

202.5

TCO'95

OSD, DDC

10 80 15

21"

/.26

30-115

50-160

1600x1200

@90

1600x1200

@85

250

TCO'95

OSD, DDC

Сокращения:

Analog                       управление осуществляется потенциометрами

Digital                        управление осуществляется кнопками

OSD                           On Screen Display, экранное меню настройки монитора

DDC                           Display Data Channel, интерфейс обмена данными с монитором

MM                            Multimedia, встроенные колонки и микрофон

DDF                           Dual Dinamic Focus, система двойной динамической фокусировки, обеспечивает резкость по краям изображения

AEADF                     Advanced Elliptical Aperture with Dinamic Focus, система динамической фокусировки, обеспечивает резкость по всему полю изображения

MALS                        Multi Astigmatism Lens System, система прецизионной фокусировки по всей поверхности экрана

n/a (н/д)                      не доступно (сведения не доступны или не указаны)

not tested                   тестирование не проводилось

В связи с неточностью, возможностью ошибки, недобросовестностью производителей дающих информацию и т.п. таблица может содержать неверные сведения. Например очень большая проблема выяснить полосу пропускания видеоусилителя (bandwidth) монитора, а у мониторов SONY она просто напросто не указана.

Результаты тестирования наиболее популярных видеоакселераторов

В качестве стенда взята следующая система:

–     

–     

–     

–     

В качестве объектов испытаний были взяты видеоплаты:

Из класса высокопроизводительных 3D и 2D акселераторов в ценовой категории $130-200:

–     

–     

–     

–     

–     

–     

–     

–     

–     

–     

–     

–     

–     

–     

Из класса видеоадаптеров с приемлемой производительностью в ценовой категории $35-70:

–     

–     

–     

–     

–     

В качестве инструментария тестирования были взяты:

–     

–     

–     

–     

–     

Результаты

Виды тестов

Типы видеоадаптеров и условия тестирования

Canopus Pure 3D

Diamond Monster 3D

Canopus
Total 3D V128

Diamond Viper v330

50 MHz

60 MHz

50 MHz

57 MHz

PCI

AGP v.1.023

Драйверы Win98beta3

Драйверы v.1.023

Final Reality v.1.01

25 Pixel

160,22

140,1

159,63

159,78

269,19

264,43

275,9

285,5

Robots

32,86

34,9

34,01

34,12

32,78

33,94

34,72

35,5

Fill Rate

12,6

12,64

17,82

17,83

63,52

61,43

61,01

60,56

City Scene

40,34

45,4

44,97

45,06

38,3

43,49

44,07

45,5

3D Perfomance

3,07

3,16

3,21

3,21

3,49

3,59

3,61

3,65

Radial Blur

33,25

33,17

33,73

33,76

33,73

33,5

34,09

33,24

Chaos Zoomer

49,95

49,45

50,32

50,16

50,48

50,44

50,92

49,9

2D Processing

3,51!

3,51!

3,56!

3,55!

3,56

3,54

3,59

3,51

2D Bus Transfer

29,55

29,42

29,61

29,58

29,29

29,57

28,12

28,11

3D Bus Transfer

23,31

23,31

23,57

23,47

12,6

12,78

12,52

12,52

Итог по Final Reality v.1.01

2,93

2,97

3,02

3,02

3,13

3,18

3,21

3,21

XDEMO 1.02 (fps)

50,9

56,7

49,3

49,3

49

51,6

51,71

60

PC PLayer Direct3D (fps)

32,4

32,3

30

30

41,3

42,4

42,5

57

3D WinBench 97

184

190

261

261

262

270

WinBench97 (Business Benchmarks)

Database Graphics

-

-

-

-

13,2

12,7

12,8

12,7

Graphics Winmarks

-

-

-

-

134

128

132

132

Publishing Graphics

-

-

-

-

13,5

12,9

13,3

13,3

WP/SS Graphics

-

-

-

-

13,6

13,2

13,4

13,4

Виды тестов

Типы видеоадаптеров и условия тестирования

ASUS AGP-264GT3

ATi Xpert@

Work AGP

ASUS AGP-V3000 3DexPlorer

ASUS AGP-V2740

Драйверы Win98beta3

Драйверы v.2.278

Драйверы 2.312turbo

Final Reality v.1.01

25 Pixel

166,29

260,65

263

211,46

279,9

303,85

Robots

20,75

30,61

31,6

30,36

34,6

40,08

Fill Rate

45,5

32,96

32,9

39,73

60,87

87,92

City Scene

21,9

41,93

43,7

41,9

44,47

51,27

3D Perfomance

2,82

3,39

3,44

3,39

3,62

3,63

Radial Blur

34,33

34,25

34,2

33,36

34,1

34,2

Chaos Zoomer

50,8

51,31

50,8

50,34

50,87

52,28

2D Processing

3,61

3,62

3,6

3,53

3,59

3,64

2D Bus Transfer

155,7

99,23

99,24

100,17

30,29

108,2

3D Bus Transfer

24,22

18,92

19,16

15,96

13,01

7,9

Итог по Final Reality v.1.01

3,25

3,36

3,38

3,32

3,22

3,48

XDEMO 1.02 (fps)

36,21

41,8

41

48,6

59,94

53,85

PC PLayer Direct3D (fps)

29

36,1

37

62

56,4

57,6

3D WinBench 97

143

142

150

141

260

273

WinBench97 (Business Benchmarks)

Database Graphics

12

12

13

13

12,4

12,7

Graphics Winmarks

121

122

123

127

129

137

Publishing Graphics

12,4

12,2

12,8

13

13,2

10,8

WP/SS Graphics

11,9

11,7

12,2

12

12,9

12,7

Виды тестов

Типы видеоадаптеров и условия тестирования

Matrox Millenium 1995 г.в.

Matrox Millenium II AGP

#9 Revolution 3D PCI

Diamond FireGL 1000Pro

3DLabs Permedia-2

Final Reality v.1.01**

25 Pixel

13,6

17,7

108,6

256,88

260,2

Robots

0,82

26

10,96

33,42

33,5

Fill Rate

0,72

19,8

23,27

27,26

28,2

City Scene

1,21

35,6

15,01

44,14

42,8

3D Perfomance

0,45

1,7

2,17

3,05

3,07

Radial Blur

34,21

34,3

34,04

34,06

34,1

Chaos Zoomer

51,31

51,33

51,13

50,75

51,2

2D Processing

3,61

3,62

3,6

3,59

3,6

2D Bus Transfer

90

107,7

111,8

34,6

33,8

3D Bus Transfer

9,07

31,52

38,84

17,57

18,7

Итог по Final Reality v.1.01

1,94

2,5

2,79

2,94

2,98

XDEMO 1.02 (fps)

12,5

29,9

22

35

33,5

PC PLayer Direct3D (fps)

17,7

43,6***

17,9

37,4

35,7

3D WinBench 97

45

78

129

238

239

WinBench97 (Business Benchmarks)

Database Graphics

13

13,4

12,6

12,6

12,6

Graphics Winmarks

129

134

135

129

129

Publishing Graphics

12,7

13,3

13,5

13,3

13,4

WP/SS Graphics

13

13,7

13,8

12,8

12,8

** на протяжении всего теста текстуры прорисовывались неполностью

*** не осуществлялась прорисовка текстур

Виды тестов

Типы видеоадаптеров и условия тестирования

Eagle S3 Virge

Diamond Stealth64 DRAM (S3 864)

Trident 3D 9750 AGP

Trident 3D 9850 AGP

DX PCI

GX-2 AGP

Final Reality v.1.01

25 Pixel

97,7

125,75

N/A

119,43

210,96

Robots

1,02

10,9

N/A

7,57

19,13

Fill Rate

6,83

7,77

N/A

5,56

5,89

City Scene

4,53

10,56

N/A

9,37

22,37

3D Perfomance

1,04

1,66

N/A

1,69

2,53

Radial Blur

34,17

34,18

N/A

33,48

33,6

Chaos Zoomer

52,04

52,05

N/A

50,72

50,89

2D Processing

3,63

3,63

N/A

3,55

3,56

2D Bus Transfer

67,37

109,49

N/A

31,06

94,94

3D Bus Transfer

21,9

43,9

N/A

30,23

96,84

Итог по Final Reality v.1.01

1,97

2,54

N/A

2,21

3,15**

XDEMO 1.02 (fps)

7,3

13,3

2,8**

11,23

14,2

PC PLayer Direct3D (fps)

27***

36,3***

6,7**

23,1

9,9**

3D WinBench 97

68,2

82,6

51

73,4

151**

WinBench97 (Business Benchmarks)

Database Graphics

9,5

10,7

5

8,57

9,5

Graphics Winmarks

95

102

42,7

88,5

95,2

Publishing Graphics

11

11

5,2

9,37

10,5

WP/SS Graphics

8,7

9,7

3,8

8,73

9,8

** на протяжении всего теста текстуры прорисовывались неполностью

*** не осуществлялась прорисовка текстур

Выводы. Адаптеры стоимостью свыше  $100

Видеоакселератор Canopus Pure 3D показал повышение производительности при увеличении частоты с 50 до 60 МГц:

–     

–     

–      — на 1.4 %,

–      — на 11.4 %

Это дает основания полагать, что увеличение частоты дает определенный эффект у данной карточки.

Видеоакселератор Diamond Monster 3D практически никакого прироста производительности при увеличении частоты не показал. Это дает основания полагать, что несколько другая организация Canopus Pure 3D (где 6Mb памяти) делает Pure 3D более эффективной.

Результаты сравнения Pure 3D и Monster 3D довольно разноречивы: если по результатам Final Reality Monster 3D обогнал Pure 3D, то по итогам XDEMO наоборот, Monster отстал, что также подтвердили результаты по PC Player Direct 3D.

По чисто визуальным наблюдениям плата Pure 3D выглядит лучше, нежели Monster 3D, и по качеству изображения, и по возможностям и настройкам. Также, следует отметить возможность работы Pure 3D под Windows NT, т.е. наличие драйверов для полноценной работы, а не только через GLide.

Небольшое замечание: наличие 6 мегабайт памяти у Pure 3D не обеспечивают работу в режиме 800х600 с Z-bufferingом т.к. «лишние» 2 Мб (по сравнению с Diamond Monster 3D, например) используются для текстурной памяти, а не для буфера кадра.

Новая плата от фирмы Canopus Total 3D V128 пусть и незначительно, все же проиграла плате Diamond Viper V330 практически по всем показателям. Тут уже сложный вопрос, поскольку обе платы на одном и том же чипсете Nvidia Riva128, но Viper V330 не имеет возможности ввода–вывода изображения на TV, а Total 3D V128 имеет. Возможно, что где-то, как говорится, «излишняя» логика уже сыграла притормаживающую роль. Тем не менее, учитывая незначительность проигрыша платы Total 3D V128 и ее богатые возможности по работе с аналоговым вводом–выводом, эта плата от Canopus'а представляет некоторый интерес, но, к сожалению, высокая цена платы ставит ее в разряд мало покупаемых.

Дополнение: 15 апреля 1998 года вышли новые драйвера для этой видеокарты под Windows 95, где введена поддержка Open GL и PAL в утилите V–Shot. Однако поддержка PAL в V–SHot по качеству оставляет желать лучшего, а качество капчинга в Cinema KX и до того было не очень высоким (во всяком случае, утилита Live3000 от ASUSTeK для карты V3000 делает его гораздо качественнее).

Одни из самых высоких результатов поделили между собой платы на базе AGP: ASUS V3000 и Diamond Viper V330. Обе — на чипсете Riva128. Карта Viper V330 показала немного более высокие результаты, но она не оборудована никакими средствами TV–in/out, поэтому, смело можно отдавать предпочтение ASUS 3DexPlorer V3000 AGP. На самом деле плата Diamon Viper v330 выпускается в варианте с TV–in/out, но, к сожалению только с поддержко USA NTSC, и поэтому к нам не поставляется.

Тестирование видеокарт Viper V330 происходило на 2–х версиях драйверов: на встроенных в Windows 98 beta3 и v.1.023 от Diamond Multimedia. Обещанного фирмой Diamond мощного прироста производительности у платы Viper V330 при установке последних «Turbo» драйверов версии 1.023 не произошло. Увеличение про­из­во­ди­тельности составило в среднем только 1%.

Тестирование платы V264GT3 происходило на 3–х версиях драйверов: встроенных в Windows 98 beta3, v.2.278 и v.2.312 turbo (beta). И вот интересные результаты у карты ASUS V264GT3 на чипсете ATI 3D Rage Pro AGP 2x, выполненной на базе AGP. По всем показателям она явно и сильно проигрывает своим конкурентам на чипсете Riva128, однако ж, по трансферу по шине она явно во много раз опередила их, чем и вызван был наиболее высокий общий результат по Final Reality. По тесту 3D Winbench эта карта очень сильно проиграла конкурентам на чипсете Riva 128.

Видеоплата Canopus Pure3D заслуживает всяческого внимания, видеоплату Canopus Total 3D V128 стоит приобретать только в случае необходимости работы с «живым» видео, иначе дешевле купить Viper V330 от Diamond'а, который превосходит по тестам Total 3D, видеоплату ASUS V264GT3 следует приобретать также, если необходима работа с «живым» видео (что очень прекрасно на этой карте организовано), много работы с 2D–графикой, особенно с большими текстурами (использование AGP будет эффективно). Видеокарту Diamond Monster 3D можно приобретать, если не будет хватать средств на немногим более дорогую плату Pure3D.

Сразу видно, что драйвера от ATI Technologies, даже не самые последние, дали существенный прирост производительности по сравнению с драйверами, по умолчанию поставляемыми с Windows 98 beta3, и это особенно ощутимо в 3D — около 20% по тестам Final Reality и 15% по XDEMO.

А вот столь разрекламированного ATI Technologies прироста производительности от установки драйверов 2.312 Turbo не произошло. По сравнению с предыдущей версией 2.278 прирост составил в среднем 1.5%, что далеко от обещанных 40%.

Действительно, как выяснилось, работа видеоплаты через те или иные драйвера да­ет сильные отличия в производительности, с новыми драйверами про­из­во­ди­тельность видеоплаты ASUS AGP–V264GT3 несколько приблизилась к лидерам на чипсете Riva128 (хотя еще далеко, особенно по тестам 3D–WinBench), что дает этой плате небольшие преимущества, учитывая ее аналоговый ввод–вывод и прекрасное программное обеспечение от ATI Technologies.

Видеоплата на том же чипсете Rage Pro AGP 2x, но производства самой ATI Technologies — Xpert@Work на базе AGP показала практически те же результаты, что и ASUS V264GT3, однако удивительно «убежала» вперед по тесту PC Player 3D. Недостатком этой платы можно считать нечеткое держание частоты развертки (она плавает, что приводит к регулярным подергиванием экрана).

О видеоплатах от Matrox Graphics можно сделать несколько выводов:

–     

–     

–     

О видеокарте от фирмы «Nimber Nine» — #9 Revolution 3D. По цене это самая дорогая видеоплата из всех тестируемых. Также о ней много было рекламы о ее мощи, однако ж, тесты показали очень и очень скромные результаты по заявленной 3D графике (по 2D графике она — на уровне остальных), даже подчас хуже, чем у ви­део­плат на чипе ATI 3D Rage Pro. Вот уж если давать совет чего НЕ надо покупать никогда, так это об этой плате!

Кстати, по 2D #9 Revolution обогнала даже Matrox Millenium II AGP! Т.е., опять же заявленное фирмой Matrox Graphics неоспоримое преимущество Millenium II по 2D графике оказалось также ложным.

Выводы по плате Diamond Fire GL 1000 Pro. Показала себя надежной по работе, драйвера встали без проблем, но по всем тестам она проиграла платам на чипсете Riva128, также на ряде тестов не было полной прорисовки текстур (особенно в Final Reality). Таким образом, сразу ощущалась направленность этой платы только на профессиональную работу в 2D и 3D графике (идеально подходит для САПР). Использовались драйвера как от Diamond, так и от 3DLabs, результаты получились очень схожи. Учитывая относительно небольшую цену этой карты, ее можно рекомендовать для любителей OpenGL. Плата имеет также выход на 3D–очки.

А вот карта, также на чипсете Permedia–2, но неизвестного «автора» (просто написано на ней, что сделана в Тайване), по цене немного ниже предыдущей модели с 4–мя мегобайтами памяти, показала практически одинаковые результаты, что и Fire GL 1000 Pro. При наличии полной поддержки в драйверах от производителя чипсета – 3DLabs можно рекомендовать даже эту карту наравне с предыдущей моделью.

Самой последней по времени тестирования была только что вышедшая и появившаяся после 10 апреля в Москве видеоплата от ASUSTeK V2740 на базе чипсета i740 (AGP вариант). Она имеет 8 мегабайт нерасширяемой памяти. Эта плата показала наилучшие результаты из всех. Кроме того, качество изображения у нее сравнимо с Matrox Millenium (на высоких разрешениях). Хотя это не является революцией в 3D, как заявляла Intel, нахваливая свой чипсет 740, но для цены в $128.00 она дает наивысший показатель цена–производительность. Как всегда, в первых версиях драйверов Open GL отсутствует как класс.

Выводы. Адаптеры стоимостью от $35 до $70.

Первыми тестировались платы на чипсетах S3 Virge. Ну если скромная плата Eagle S3 Virge DX PCI и по цене $35 дала такие же скромные результаты (учесть также надо и то, что у нее было всего 2 мегобайта памяти), то плата Eagle S3 Virge GX–2 AGP по цене свыше $70 показала себя отнюдь «не на эту цену».

Также, плата S3 Virge GX–2 трудно переключала частоты развертки, при установке высоких разрешений (1024х768) на экране картинка была замутнена (использовался монитор Nokia 447Xav 17"), чего не было ни у одной из выше­пере­численных видеокарт.

Карта Aristo Trident 9750 AGP на чипе Trident 3D image вообще показала наихудший показатель цена–качество, поскольку она стоит более $80, а по производительности уступает предыдущей рассмотренной карте. Также существует размытость экрана при высоких разрешениях.

А вот с результатами Aristo Trident 9850 AGP все сложнее. Она показала результаты довольно высокие по величине, таким образом по быстродействию может состязаться с такими «волками» как ATI Xpert@Work и даже #9 Revolution 3D, и дешевле их раза в 2–3, но по качеству эта карта (или этот чипсет) уступает всем платам, кроме Virge. Все тесты показали ужасное качество прорисовок текстур, везде было весьма ощутимо визуальное отставание по прорисовкам вообще. Хотя размытости экрана, как у предыдущей модели, не было.

Если 3–4 года назад видеоплата Diamond Stealth 64 DRAM считалась «элитной», по цене была доступна немногим, то теперь ее результаты тестирования однозначно показывают, что она не конкурент даже дешёвым, но современным видеокартам.

Дополнение

Windows 98 beta3 использовалась по причине некорректной работы ныне существующего релиза OSR2.х с AGP. Проблема в наличие конфликта по адресам между видеоплатой и мостом 440LX – AGP. Причем, никакими настройками вручную это исправить не удаётся. Как следствие — некорректная работа AGP, что и было выявлено на AGP–тесте от Final Reality. Windows 98 работает с AGP правильно, конфликтов нет, да и периферии знает побольше.

Замечание

Платы Diamond Monster и 3D Canopus Pure 3D работали в паре с акселератором Canopus Total 3D 128V.

Тестирование AGP–видеокарт

Введение

Видеокарты для AGP–слота сейчас переживают расцевет, однако по сравнению с их аналогами для шины PCI производительность возрасла не слишком заметно. Связано это с отсутствием поддержки со стороны программного обеспечения. Вошедшие в обзор карточки появились совсем недавно, и драйверы для них ещё достаточно «сыры». Однако, ожидаемые окончательные варианты драйверов должны существенно увеличить их производительность.

До недавнего дня наилучшим вариантом видеосистемы можно было считать комбинацию Matrox Millennium’а в качестве основной карты и Diamond Monster 3D как трёхмерного ускорителя. Именно с этой комбинацией и стоит сравнивать результаты тестирования. Matrox Millennium на протяжении нескольких лет был наилучшим выбором для 2D графики как для Windows95, так и для NT. Diamond Monster 3D — прекрасно реализует все трёхмерные функции теста 3D Winbench, за исключением «For Vertex and Color Key Transparency» и «Fog Vertex and Alpha Transparency». Главным его недостатком является невозможность работы в окне. Ещё одно ограничение — объём памяти: 2Мб для буфера изображения и Z-буфера и 2Мб под текстуры. Из–за этого максимальное разрешение в котором может работать Diamond Monster 3D — 640х480. Новые видеокарты, вошедшие в данный обзор могут работать с большими раз­ре­ше­ния­ми.

Спецификации и возможности

Matrox Millennium & Diamond Monster 3D

Asus 3DexPlorer 3000

ATI Xpert@Play / Xpert@Work

Diamond Fire GL 1000 Pro

Diamond Viper V330

NVidia RIVA 128 Reference Board

Number Nine Revolution 3D

Графический чипсет

Matrox MGA 2064W, 3Dfx Voodoo

NVidia RIVA 128

ATI Rage Pro

3D Labs Permedia 2

NVidia RIVA 128

NVidia RIVA 128

Number Nine Ticket To Ride

Объём установленной памяти

4 MB WRAM, 4MB EDO RAM

4 MB SGRAM

4/6/8 MB SGRAM

8 MB SGRAM

4 MB SGRAM

4 MB SGRAM

8 MB WRAM

Максимальный поддерживаемый объйм памяти

8 MB, 16 MB

4 MB

8 MB

16 MB (?)

4 MB

4 MB

16 MB

Частота RAMDAC

230 MHz, external

230 MHz, internal

230 MHz, internal

230 MHz, internal

230 MHz, internal

230 MHz, internal

230 MHz, external

Наивысшая частота обновления [Hz] при:

1024x768

120

120

50

120

120

120

142

1152x864

120

100

120

120

100

100

126

1280x1024

100

100

100

100

100

100

107

1600x1200

85

75

85

85

75

75

85

Специальные возможности

 

 

SVideo out (Xpert@Play only)

VR Glasses output

SVideo in/out, AC3/PCM

SVideo in/out

 

Наивысшее разрешение в 3D (16 bit цвет, Z-буфер)

640x480 (3Dfx)

960x720

1600x1200

1280x1024

960x720

960x720

1280x1024

Поддерживаемые 3D–функции (3D Winbench)

Fog Vertex

yes (3Dfx)

yes

yes

yes

yes

yes

yes

Fog Table

yes (3Dfx)

no

no

no

no

no

no

Specular Highlights

yes (3Dfx)

yes

yes

yes

yes

yes

yes

Color Key Transparency

yes (3Dfx)

yes

yes

yes

yes

yes

yes

Alpha Transparency

yes (3Dfx)

yes

yes

yes

yes

yes

yes

Linear Filtering

yes (3Dfx)

yes

yes

yes

yes

yes

yes

Linear Mipmapping

yes (3Dfx)

yes, неплохо

yes, почти хорошо

yes, не совсем хорошо

yes, неплохо

yes, не совсем хорошо

yes, неудовлетво­рительно

Dithering

yes (3Dfx)

yes

yes

yes, не совсем хорошо

yes

yes

yes, не совсем хорошо

Perspective Correction

yes (3Dfx)

yes

yes

yes

yes

yes

yes

Fog Vertex and Color Key

yes (3Dfx)

yes

yes

yes

yes

yes

yes

Fog Vertex and Alpha Transparency

yes (3Dfx)

yes

yes

yes

yes

yes

yes

Результаты

2D Windows 95, 16 Bit цвет

В тесте Business Winstone 97 явный лидер — Revolution 3D. Остальные карточки — на уровне Millennium’a.

Тест HighEnd Winstone не выявил явного лидера, однако старый Millennium — чуть–чуть да лучше.

2D Windows 95, 32 Bit цвет

В режиме true color лидерство Revolution 3D не вызывает сомнений. Вызывает удивление, что остальные карты обогнали Millennium, даже «игрушечная» Riva 128.

В HighEnd Winstone Revolution 3D также обогнала конкурентов. Остальные результаты ненамного отличаются от Millennium’а.

2D Windows NT, 16 Bit цвет

Новые драйверы Windows NT для Fire GL 1000 Pro работают прекрасно, делая его безоговорочным лидером.

И здесь Fire GL 1000 Pro — вне конкуренции, а Riva 128 просто не в состоянии состязаться с остальными.

2D Windows NT, 32 Bit color Depth

Fire GL показывает отличные результаты, конкурент для него — только Revolution 3D. NT и 32–х битный цвет явно не конёк Riva 128.

Здесь комментарии не требуются.

3D Windows 95

Здесь мы наблюдаем формирование нового лидера. Карточки на основе Riva 128 — явные победители.

С возрастанием объёма текстур они не помещаются в память карточки и подгружаются из оперативной памяти. Monster 3D достигает предела уже на 640x480 и «тормозит» из–за медленной шины PCI. Новый «король» 3D — Riva 128 лидер в этом тесте (и в остальных 3D–тестах тоже).

Riva 128 показывает наилучшие ре­зульта­ты, несмотря на то, что имеет все­го 4 MB па­мяти. Это происходит благодаря использованию основной оперативной памяти по технологии AGP's DIME.

Revolution 3D не использует AGP's DIME, из–за этого и такие плохие результаты. К сожалению Riva 128 не поддерживает 3D в разрешении 1024x768.

Наиболее интересный результат этого теста — превосходство Fire GL 1000 Pro над Monster 3D. Возможно это происходит из–за слишком простых тестов 3D Winbench. NVidia's Riva 128 — безусловный лидер.

OpenGL Windows NT

OpenGL — сильная сторона Fire GL 1000 Pro. Превосходство на остальными карточками — безоговорочное.

Тесты проводились на компьютере с материнской платой MSI MS6111, процессор — Pentium II 300 MHz. Для тестов NT использовался диск Seagate Cheetah ST34501W, подсоединённый к DPT PM2144UW, тесты Windows 95 запускались на Quantum Fireball ST 3.2 UDMA.

Содержание  TOC o "1-2" ............................................................................................................................................................................... GOTOBUTTON _Toc418331048   PAGEREF _Toc418331048

 

 

 

Внимание! Представленный Реферат находится в открытом доступе в сети Интернет, и уже неоднократно сдавался, возможно, даже в твоем учебном заведении.
Советуем не рисковать. Узнай, сколько стоит абсолютно уникальный Реферат по твоей теме:

Новости образования и науки

Заказать уникальную работу

Свои сданные студенческие работы

присылайте нам на e-mail

Client@Stud-Baza.ru