курсовые,контрольные,дипломы,рефераты
Введение
«…Математика – это цепь понятий: выпадает одно звёнышко – и непонятно будет дальнейшее». Н.К. Крупская.[1]
Одними из самых сложных знаний, умений и навыков, включенных в содержание общественного опыта, которым овладевают подрастающие поколения, являются математические. Они носят отвлеченный характер, оперирование ими требует выполнения системы сложных умственных действий. В повседневной жизни, в быту и в играх ребенок достаточно рано начинает встречаться с такими ситуациями, которые требуют применения, хотя и элементарного, но все же математического решения (приготовить угощение для друзей, накрыть стол для кукол, разделить конфеты поровну и т. д.), знания таких отношений, как много, мало, больше, меньше, поровну, умения определить количество предметов в множестве, выбрать соответствующее количество элементов из множества и т. д. Сначала с помощью взрослых, а затем самостоятельно дети разрешают возникающие проблемы. Таким образом, уже в дошкольном возрасте дети знакомятся с математическим содержанием и овладевают элементарными вычислительными умениями, а формирование у них элементарных математических представлений является одним из важных направлений работы дошкольных учреждений.
Современные психолого-педагогические исследования доказывают, что усвоение дошкольниками системы математических представлений оказывает качественное влияние на весь ход их психического развития, обеспечивает готовность к обучению в школе (Г.А. Корнеева, А.М. Леушина, 3.А. Михайлова, Н.И. Непомнящая, Р.Л. Непомнящая, Ф. Пали, Ж. Пали, Т.Д. Рихтерман, Е.В. Сербина, Е.В. Соловьева, А.А. Столяр, Т.В. Тарунтаева, Е.В. Щербакова и др.).
При отсутствии специально организованного обучения математическое развитие в дошкольном возрасте проходит медленно и не достигает того уровня, который требуется для обеспечения дальнейшего развития познавательной деятельности ребенка, для успешного обучения в школе.
Содержание математических представлений, формируемых у детей дошкольного возраста, очень разнообразно. Особое место в нем занимают количественные представления.
Данная тема является на сегодняшний день довольно актуальной, так как формирование количественных представлений у детей дошкольного возраста является для многих воспитателей трудным разделом в работе, требующей большой настойчивости, четкой системы и последовательности.
1.Характеристика этапов развития счетной деятельности у дошкольников
Счет – это деятельность с конечными множествами. Счет включает в себя структурные компоненты:
· цель (выразить количество предметов числом),
· средства достижения (процесс счета, состоящий из ряда действий,
отражающих степень освоения деятельности),
· результат (итоговое число): сложность представляется для детей в достижении
результата счета, то есть итог, обобщение. Выработка умения отвечать на вопрос «сколько?» словами много, мало, один два, столько же, поровну, больше, чем… ускоряет процесс осмысления детьми знания итогового числа при счете.
Из теории арифметики известно, что счет – это установление взаимно однозначного соответствия элементов между двумя сравниваемыми множествами.
В работе по развитию количественных представлений необходимо учитывать работу различных анализаторов ребенка. Все ощущения, передаваемые в кору головного мозга, служат основой формирования представлений о неопределенной множественности разных явлений. На разных этапах восприятия множества и его элементов анализаторы играю различную роль. Кинестетический анализатор играет ведущею роль, как самой счетной деятельности, так и представлений о множестве. Счет вне движения невозможен. Например, мы считаем, не прибегая к движению рук, но мы считаем глазами, переносят свой взор с одного предмета на другого. В период раннего детства усиливается роль зрительного анализатора, когда внимание ребенка привлечено к границам множества, когда в первую очередь фиксируются они. В результате заучивания слов-числительных, даже произносимые по порядку, являются не чем иным, как речедвигательным стереотипом, а не пониманием значение числа. А ритмическое называние слов считалок или слов-числительных помогает более четко дифференцировать отдельные элементы множества, воспринимаемые на слух и воспроизводимые в движении.
2.Сравнительный анализ программных задач альтернативных программ по разделам «Количество и счёт»
Возрастная группа |
«Программа воспитания и обучения в детском саду» |
«Детство» |
«Радуга» |
2 младшая |
Различать «много» и «один», понимать вопрос «сколько?», при ответе пользоваться словами один, много, ни одного | Различать один/много, много/мало, один/мало. Иметь первичное представление о соответствии 2 (3,4) предметов по количеству (столько же). | Дети должны распознавать количество в пределах 5 на глаз, без пересчета, понимать слова мало/много, пустой/полный, различать 1-2 предмета. |
Средняя группа |
Учить количественному счету в пределах 5, называть числа по порядку, указывая на предметы, расположенные в ряд, относить последнее число ко всем пересчитанным предметам (например 1,2,3 – всего 3 кружка). Отвечать на вопросы: Сколько всего? Который (какой) по счету? Учить сравнивать 2 группы предметов и формировать на основе счета представления о равенстве (неравенстве). | Обозначать количество числом и цифрой в пределах 5-10. иметь представление о количественном и порядковом назначении числа. Обобщать группы предметов, звуков, движений по числу; связи между числом, цифрой, количеством: чем больше, тем большим числом они обозначаются. |
Считать наизусть до 10. Пересчитывать и отсчитывать в пределах 10. Отмеривать произвольной меркой заданное количество. Различать цифры. |
Старшая группа |
Знакомство с образованием чисел 5-10. Учить количественному и порядковому счету в пределах 10. правильно пользоваться колич. и поряд. Числительными, отвечать на вопросы: Сколько? Который? (Какой по счету?). Учить сравнивать рядом стоящие числа в пределах 10. получать равенство из неравенства и наоборот, добавляя к меньшему количеству один предмет или убирая из большего количества один предмет. Учить понимать отношение рядом стоящих числе: пять меньше шести на один. Учить составлять равные группы по заданному числу (по 8, по 9, по 10 предметов и др.) Познакомить детей с составом числа из единиц в пределах 5 (на конкретном материале): 5 – это 1,1,1,1 и еще 1. |
Количественное и порядковое значение числа, получаемого в результате сосчитывания элементов частей (долей), измерения длины, массы и объема, календарного и числового времени. Цифры от 0 до 9. Связи и зависимости между числами, отношения числе (меньше, больше на 1,2). Состав числе из единиц. Различение и использование в играх монет. |
I. 1. Счет наизусть до 20. I. 2.Обратный счет в пределах 10. I. 3. Пересчет в пределах 10 (закрепление). I. 4. Отсчет в пределах 10. (закрепление) I. 5. Порядковый счет в пределах 10. I. 6. Сравнение по количеству (дискретные объекты). Использование понятий: равно/не равно, больше/меньше. II. Понимание и использование соответствующих знаков. II. 7. Сравнение по количеству (непрерывные величины). Практические способы сравнения (приложение, переливание и т.д.); сравнение с помощью условной мерки (опосредованно). II. 8. представление о преобразованиях, измеряющих и сохраняющих количество. I. 9. Представление о действии сложения «+» 10. Представление о действии вычитании «-» III. Отрицательные числа. 11. Представление о действии деления. Равные и неравные части. Деление на две равные части пополам. Половина. Деление на 3,4,6,8 равных частей. III. Дробные числа. III. 12. Представление о действии умножения. 13. Запись цифрами чисел 10-20. |
Подготови-тельная к школе группа |
Совершенствовать навыки счета с пределах 10, учить называть числа в прямом и обратном порядке. Познакомить детей с цифрами 0-9. закреплять понимание отношений между числами натурального ряда (7 больше 6 на 1, а 6 меньше 7 на 1), умение увеличивать и уменьшать каждое из чисел на 1 в пределах 10. Учить называть последующее и предыдущее число к названному или обозначенному цифрой, определять пропущенное число. Познакомить с составом чисел второго пятка из единиц. Учить раскладывать число на два меньших в пределах 10 на наглядной основе и составлять из двух меньших большее. Познакомить с монетами достоинством 1, 5,10 копеек. Учить на наглядной основе составлять и решать простые задачи на сложение (когда к большему прибавляется меньшее) и на вычитание (когда вычитаемое меньше остатка). При решении задач учить пользоваться знаками действий с цифрами: плюс +, минус -, равно =. |
Количественные представления в натуральном ряду чисел в прямом и обратном порядке. Место числа среди других числе ряда. Состав чисел из двух (нескольких) меньших чисел. Использование цифр, монет; знание строения циферблата часов. Сложение и вычитание чисел (приемы пересчитывания и отсчитывания по одному) при решении арифметических задач, примеров. Умение находить следующее, предыдущее число для каждого числа от 0 до 10. Неизменяемость числа, величины при условии различий в суммировании: 4 = 3+1, 4=2+2, деления на равные группы: 6=3 и 3, 6=2+2+2. Изменение числа и величины в зависимости от увеличения и уменьшения. Выполнение действий по знаковым обозначениям, определение последовательности действий в компьютерных играх, учебных программах. «Чтение» схемы, способа и пути выполнения действий. Отражение в речи связей и зависимостей последовательных действий. Оперирование знаками +, -,= при вычислениях. Целью данной программы является не только развитие познавательных способностей, но и творческих. Имеет классическое математическое содержание: доматематические (сравненение, уравнение, комплектование) и математические виды деятельности (счет, измерение, вычисление). |
1. Формировать представление о числе как о точке числовой прямой. 2. Формировать навыки счета. I Счет наизусть с пределах 20. II-III Счет наизусть в пределах 100. I-III Обратный счет; отсчет; пересчет; порядковый счет в этих пределах; «соседи» числа. Сравнение по количеству: понимание и правильное употребление понятий больше, меньше, равно. II-III Употребление соответствующих знаков. Решение неравенств на числовой прямой. I-III Состав чисел первого десятка. Чтение и запись двузначных чисел. II-III Разложение их на разрядные слагаемые. Обучение математике происходит в атмосфере доброжелательности, поддержки ребенка, даже если он совершил ошибку, поощряется стремление высказать свое мнение; дети не только познают математику, но осваивают навыки учебной деятельности: определяют задачу, направление поисков, оценивают результаты. |
Наше МДОУ д/с «Родничок» работает по «Программе воспитания и обучения в детском саду» под редакцией М.А.Васильевой, В.В. Гербовой и др. Данная программа, по моему мнению, прекрасно подходит для работы с детьми дошкольного возраста. Задачи четко распределены на каждую возрастную группу, даются некоторые примеры постановок вопросов. Идет постепенное усложнение, не перезагружая детей – дошкольников. Я считаю, что именно программа М.А.Васильевой более удобна педагогам и более доступна детям дошкольных образовательных учреждений. |
3. Анализ программных задач по обучению счёту в средней, старшей группах
математический счет обучение дошкольник
Возрастная группа |
Содержание программного материала |
Характер усложнения программных задач от группы к группе |
Средняя группа |
Дать детям представление о том, что множество может состоять из разных по качеству предметов (разного цвета, формы, размера); учить сравнивать эти предметы, определяя их равенство или неравенство на основе составления пар (не прибегая к счету). Вводить в речь детей выражения: «Здесь много кружков, одни – красного цвета, а другие – синего; красных кружков больше, чем синих, а синих меньше, чем красных». Учить считать до 5, пользуясь правильными приемами счета: называть числительные по порядку; соотносить каждое числительное по всем пересчитанным предметам, например: «Один, два, три – всего три кружка». Учить сравнивать две группы предметов, именуемые числами 1-2, 2-2, 2-3, 3-3, 3-4, 4-4, 4-5, 5-5. формировать представление о равенстве (неравенстве) групп предметов на основе счета: «Здесь один, два зайчика, а здесь одна, две, три елочки. Елочек больше, чем зайчиков; 3 больше, чем 2, а 2 меньше, чем 3». Учить уравнивать неравные группы двумя способами, добавляя к меньшей группе один (недостающий) предмет или убирая из большей группы один (лишний) предмет. Учить отсчитывать предметы из большего количества: приносить, выкладывать определенное количество предметов по образцу или заданному числу. Учить считать предметы на ощупь, на слух, считать движения. Учить на основе счета устанавливать равенство (неравенство) групп предметов в ситуациях, когда предметы в группах расположены на разном расстоянии друг от друга, когда они отличаются по размерам. |
Продолжается работа по формам, цвету, размерам предметов. Обогащается словарь новыми терминами: много, один. Вводится счет до 5, сравнение двух равных и неравных групп предметов. Уравнивать их путем добавления/ удаления предмета. Продолжается работа по ориентировке в окружающей обстановке, но уже на новом материале. Вводится счет с помощью различных анализаторов. |
Старшая группа |
Учить составлять множества (группы предметов) из разных по качеству элементов (разного цвета, размера, формы, материла), устанавливать отношения между целым множеством и его отдельными частями; понимать, что множество больше каждой своей части, а часть меньше целого множества; сравнивать разные части множества на основе счета и соотнесения элементов (предметов) один к одному. Определять большую (меньшую) часть множества или их равенство. Учить считать до 10; последовательно знакомить с образованием каждого числа в пределах 5-10 (на наглядной основе). Учить порядковому счету в пределах 10, различать вопросы «Сколько?», «Который?» («Какой?») и правильно отвечать на них. Учить отсчитывать предметы из большего количества по образцу и заданному числу (в пределах 10). Упражнять в счете звуков, в счете на ощупь, в счете и воспроизведении заданного количества движений по образцу и названному числу (в пределах 10). Учить сравнивать рядом стоящие числа в пределах 10 на основе сравнения конкретных множеств, получать равенство из неравенства (неравенство из равенства), добавляя к меньшему количеству один предмет или убирая из большего количества один предмет («7 меньше 8, если к 7 прибавить один предмет, будет 8, поровну (и наоборот). Продолжать формировать представление о равенстве; учить определять равное количество разных предметов в группах, правильно обобщать числовые значения на основе счета и сравнения групп (здесь 5 петушков, 5 матрешек всех игрушек по 5). Уточнять понимание независимости числа от величины предметов, расстояния между предметами, формы, их расположения и направления счета (справа налево, слева направо, с любого предмета). Познакомить с количественным составом числа из единиц в пределах 5 на конкретном материале: 5 – это 1, еще 1, еще 1, еще1, еще 1. Формировать понятие о том, что предмет (лист бумаги, лента, круг, квадрат и др.) можно разделить на несколько равных частей (на две, на четыре). Учить называть части, сравнивая целое и части, понимать, что целое больше каждой своей части, а часть меньше целого. |
Вводится счет до 10. Знакомят с цифрами от 5 до 10. На основе действий с множествами и измерения с помощью условной меры продолжается формирование представлений о числах до десяти. Образование каждого из новых чисел от 5 до 10 дается по методике, используемой в средней группе. Происходит также знакомство с количественным составом числа из единиц, вводится деление на равные части, сравнивается целое и части. Усложнение задач проходит постепенно, когда дети усвоили предыдущий материал, затем на основе усвоенного материала, дается часть нового. |
4. Методика обучению счету
Усвоение счетной деятельности и в процесс ее развития целого ряда понятий совершается не само собой, а в результате организованного взрослым обучения. В каждой возрастной группе детского сада обозначены задачи по развитию у детей элементарных математических представлений, в частности по развитию счетной деятельности, в соответствии с «Программой воспитания и обучения в детском саду».
Дается также счет по осязанию, счет на слух и счет различных движений в пределах 5. Вводится знакомство с символикой - цифрами в пределах 5. В процессе обучения счету необходимо одновременно и знакомить с цифрами - соответствующими обозначениями чисел.
По мере ознакомления детей с первыми тремя числами их учат порядковому счету в пределах 5 и умению отличать его от количественного счета, правильно отвечать на вопросы: «Сколько всего?», «Который по счету?». Порядковый счет дается вместе с количественным в целях отличия их. На первом занятии необходимо раскрыть значение порядковых числительных. Раскрыть порядковое значение числа позволяет сопоставление его с количественным значением. Количественный счет: «Сколько?» - «один, два, три». Порядковый счет: «Который?», «Какой по счету?» - «первый, второй, третий».
Одной из важных задач в этой группе является обучение детей умению отсчитывать предметы. Обучать отсчитыванию целесообразно в привычной для детей обстановке, где меньше отвлекающих моментов. При этом необходимо показать детям способ отсчета, указать, когда следует произносить числительное, отбирая предметы.
Например, отобрав кубик и поставив его на другой край стола, ребенок говорит: «Один», отобрав молча другой и поставив его к первому, говорит: «Два» и т. д. числительное произносить тогда, когда практическое действие отбора уже завершено. Этому способу важно обучить детей, так как, многие называют числительное, когда берут предмет, и называют следующее числительное, когда ставят его к первому, то есть считают свои движения, а не предметы. Следует учить отсчитывать, выкладывать, приносить определенное число предметов сначала по образцу, а затем по названному числу. Считать и отсчитывать по образцу детям легче, чем по названному числу. Воспитатель должен это знать и усложнять задания постепенно: сначала предлагать работать по наглядному образцу (дается образец-карточка с кружками и предлагается детям найти столько же игрушек, поставить каждую игрушку на кружок карточки, затем по названному числу (числовой карточке или цифре) найти трех уточек, поставить столько машин, сколько цифр на доске).
Еще более сложным заданием будет отсчитывание предметов из большего количества. В начале обучения детям предлагают три предмета, которые необходимо расположить по порядку, далее количество предметов увеличить до пяти и более.[8] Хорошую упражняемость в различении количественных отношений обеспечивает выполнение детьми поручений педагога. Например: принести много зайцев и одного мишку; найти, где лежит мало карандашей и много тетрадей; принести один стул и несколько кукол. [9]
Программа старшей группы направлена на расширение, углубление и обобщение у детей элементарных математических представлений, дальнейшее развитие деятельности счета. Детей учат считать в пределах 10, продолжают знакомить с цифрами первого десятка. На основе действий с множествами и измерения с помощью условной меры продолжается формирование представлений о числах до десяти.
Образование каждого из новых чисел от 5 до 10 дается по методике, используемой в средней группе, на основе сравнения двух групп предметов путем попарного соотнесения элементов одной группы с элементами другой детям показывают принцип образования числа. Например, на счетной линейке раскладываются две группы предметов в ряд: на верхней полоске пять ромашек, на нижней - пять васильков. Сравнивая эти две группы предметов, дети убеждаются, что их поровну. Затем им предлагают пересчитать предметы на верхней и нижней полосках. Добавляется еще одна ромашка. Дети выясняют, что ромашек стало больше, а васильков меньше. Воспитатель обращает внимание на то, что образовалось новое число - шесть. Оно больше пяти. Число шесть получилось, когда к пяти добавили один. [10] На основе этих знаний и умений у детей развивают глазомер.
В ходе упражнений по количественному сравнению групп предметов педагог показывает детям разные способы обозначения какого-либо количества. Для этого справа от группы предметов выкладывают такое же количество палочек, вывешивают счетную карточку, числовую фигуру и т. д. затем показывается графический способ обозначения числа - цифра. В дальнейшем необходимо предоставить детям возможность выбрать нужную цифру, воспроизвести, нарисовать количество предметов, указанное цифрой. [11] Параллельно с показом образования числа детей продолжают знакомить с цифрами. Соотнося определенную цифру с числом, образованным тем или иным количеством предметов, воспитатель рассматривает изображенные цифры, анализируя его, сопоставляет с уже знакомыми цифрами, дети производят образные сравнения (единица, как солдатик, восемь похожа на снеговика и т. д.). [12]
Особого внимания заслуживает число 10, так как оно записывается двумя цифрами: 0 и 1. Поэтому, прежде необходимо познакомить детей с нулем. Понятие о нуле дети получают, выполняя задание отсчитывать предметы по одному. Например, у детей 9 игрушек, они по одной убирают и пересчитывают, остается 8, 7, 6, 5, 4, 3, 2, 1. Воспитатель просит убрать и последнюю игрушку. Объясняет детям, что не осталось ни одной игрушки. Или по-другому как говорят математики ноль игрушек. Ноль игрушек обозначается цифрой 0. Воспитатель предлагает отыскать место нуля в числовом ряду. Дети самостоятельно или с помощью педагога решают, что ноль должен стоять перед единицей, так как он меньше единицы на один. Возвращаем игрушки по одной пока не получится опять 9. Воспитатель добавляет еще одну игрушку, получает число10 и показывает, что оно записывается двумя цифрами: 0 и 1.[13]
В течение всего учебного года дети упражняются в счете в пределах десяти. Они пересчитывают предметы, игрушки, отсчитывают из большего количества предметов меньшее, отсчитывают предметы по заданному числу, по цифре, по образцу. Образец может быть дан в виде числовой карточки с определенным количеством игрушек, предметов, геометрических фигур, в виде звуков, движений. При выполнении этих упражнений важно научить детей внимательно слушать задания воспитателя, запоминать их, а затем выполнять.
Важной задачей в старшей группе остается установление связей между смежными числами, понимание их отношений в пределах 10. Какое число следует за каким, какое из смежных чисел больше или меньше и как их сделать равными. Для этого все изучаемые детьми числа сравниваются на конкретном материале. Например, два мяча меньше, чем три квадрата. Знания закрепляются на разных группах предметах, чтобы дети убедились в постоянстве отношений между числами. 10
Продолжая работу, начатую в средней группе, педагог должен уточнить представления детей о том, что число не зависит от величины предметов, от расстояния между ними, от направления счета. Решение этой программной задачи позволит сформировать у детей представление об отвлеченности числа, покажет независимость числа от направления счета. Детей необходимо учить считать, начиная с любого указанного предмета в любом направлении, при этом, не пропуская предметы и не пересчитывая их дважды.
Детей учат различать порядковый и количественный счет. Считая предметы по порядку, необходимо условиться с какой стороны надо считать. Так как именно от этого зависит результат счета. Например, если дети пересчитывают 10 игрушек слева направо, то матрешка будет третья, а если считать справа налево, то матрешка будет восьмая. Порядковый счет используется при определении того, которым, каким по счету стоит предмет. Детей знакомят с количественным составом числа из единиц в пределах 10, например, число 3: «Одна кукла, да еще одна матрешка, да еще одна рыбка. Всего три предмета». Обязательно на занятиях следует использовать разнообразный наглядный материал. На протяжении всего учебного года повторяется эта задача. [15]
В старшей группе у детей формируется понятия о том, что некоторые предметы можно разделить на несколько частей: на две, на четыре. Например, яблоко. Здесь обязательно нужно обратить внимание детей на то, что части меньше целого, показать это на наглядном примере. Начинать деление предметов на равные части путем сгибания листа бумаги пополам (на 2 части), еще раз пополам (на 4 части). Когда ребята хорошо усвоят деление предметов путем сгибания, используются другие приемы: разрезание ножом, ножницами или разрывание.
В подготовительной к школе группе в начале года необходимо проверить, все ли дети, и в первую очередь те, которые впервые пришли в детский сад, умеют считать предметы, сопоставлять количество разных предметов и определять, каких больше (меньше) или их поровну, каким способом при этом пользуются.
Примерные задания и вопросы: «Сколько здесь больших матрешек? Отсчитай сколько же маленьких матрешек. Узнай, каких квадратов больше: синих или красных. (На столе беспорядочно лежат 5 больших синих квадратов и 6 маленьких красных.) Узнай, каких кубиков больше: желтых или зеленых». (На столе стоят 2 ряда кубиков; 6 желтых стоят с большими интервалами один от другого, а 7 синих – вплотную друг к другу.) Проверка подскажет, в какой мере дети овладели счетом и на какие вопросы следует обратить особое внимание. Аналогичную проверку можно повторить спустя 2-3 месяца, для того чтобы выявить продвижение детей в овладении знаниями.
На первых занятиях целесообразно напомнить детям, как образуются числа второго пятка. На одном занятии последовательно рассматривают образование двух чисел и производят сравнение их друг с другом (6 - из 5 и 1; 6 без 1 равно 5; 7 - из 6 и 1; 7 без 1 равно 6 и т. д.). Это помогает детям усвоить общий принцип образования последующего числа добавлением единицы к предыдущему, а также получения предыдущего числа удалением единицы из последующего (6-1= 5).
Каждое занятие, посвященное образованию последующих чисел, полезно начинать с повторения того, как были получены предыдущие числа. С этой целью можно использовать числовую лесенку. Двусторонние кружки синего и красного цвета раскладывают в 10 рядов: в каждом последующем ряду, считая слева (сверху), количество увеличивается на 1 («на 1 кружок больше»), причем дополнительный кружок повернут другой стороной. Числовая лесенка по мере получения последующих чисел постепенно надстраивается. В начале занятия, рассматривая лесенку, дети вспоминают, как были получены предыдущие числа.
К моменту перехода детей в школу у них должна быть воспитана привычка вести счет и раскладывать предметы слева направо, действуя правой рукой. Но, отвечая на вопрос «сколько?», дети могут считать предметы в любом направлении: слева направо и справа налево, а также сверху вниз и снизу вверх. Они убеждаются, что считать можно в любом направлении, но при этом важно не пропустить ни одного предмета и ни один предмет не сосчитать дважды. Особое внимание уделяют сопоставлению численностей множеств предметов разного размера (длинных и коротких, широких и узких, больших и маленьких), по-разному расположенных и занимающих разную площадь. Детей побуждают искать способы, как удобнее и быстрее можно сосчитать предметы в зависимости от характера их расположения.
У детей подготовительной к школе группы закрепляют знания о составе из единиц чисел первого пятка, они изучают состав из единиц чисел второго пятка, учатся устанавливать отношение между единицей и числом (6 - это 1, 1, 1, 1, 1 и еще 1). Используют приемы: составление группы из разных предметов или игрушек; составление группы из однородных предметов, отличающихся качественными признаками; составление группы из картинок, на которых изображены разные предметы, объединенные родовым понятием (1 стул, 1 табуретка, 1 кресло, 1 секретер, 1 шкаф, 1 буфет - всего 6 предметов мебели).
В работе с детьми 6-7 лет используют и новые приемы: зарисовка определенного числа разных игрушек или геометрических фигур. («Я нарисовал всего 5 фигур: 1 круг, 1 фигуру овальной формы, 1 квадрат, 1 прямоугольник, 1 треугольник».) Распределение предметов по группам по одному из признаков, выделение каждой группы как единицы счета и определение общего количества групп. («Всего 4 группы флажков: 1 группа голубых флажков, еще 1 - розовых, еще 1 - желтых и еще 1 - синих».) Рассказывая каждый раз о том, сколько каких предметов и как они расположены, дети убеждаются, что количество предметов не зависит от места, которое они занимают, от их размеров и других качественных признаков.
От сравнения численностей 2 групп предметов, отличающихся каким-либо одним признаком, например размером, переходят к сравнению численностей групп предметов, отличающихся 2, 3 признаками, например размером, формой, расположением и т. д. Дети упражняются в последовательном выделении признаков предметов («Что это? Для чего нужно? Какой формы? Какого размера? Какого цвета? Сколько?»), в сравнении предметов и объединении их в группы на основе одного из выделенных признаков, в образовании групп. В результате у детей развивается способность к наблюдению, четкость мышления, смекалка. Они учатся выделять признаки, общие для всей группы предметов или лишь для части предметов данной группы, т. е. выделять подгруппы предметов по тому или иному признаку, устанавливать количественные соотношения между ними. Например: «Сколько всего игрушек? Сколько матрешек? Сколько машин? Сколько деревянных игрушек? Сколько металлических? Сколько больших игрушек? Сколько маленьких?». В заключение воспитатель предлагает придумать вопросы со словом сколько, основываясь на умении выделять признаки объектов и объединять их по общему для данной подгруппы или группы в целом признаку.
Сравнивая совокупности предметов, используют приемы сопоставления совокупностей предметов (выявляя отношения равенства и неравенства), дети осваивают способы практического сопоставления их элементов: наложение, приложение, раскладывание предметов 2 совокупностей парами, использование эквивалентов для сравнения 2 совокупностей, наконец, соединение предметов 2 совокупностей стрелочками. Например, педагог рисует на доске 6 кружков, а справа - 5 овалов и спрашивает: «Каких фигур больше (меньше) и почему? Как проверить? А если не считать?» Кому-либо из детей предлагает каждый кружок соединить стрелочкой с овалом. Выясняет, что 1 кружок оказался лишним, значит, их больше, чем других фигур, 1 овала не хватило, значит, их меньше, чем кружков. «Что надо сделать, чтобы фигур стало поровну?» и т. д. Детям предлагают самим нарисовать указанное число фигур 2 видов и разными способами сравнить их количество. Широко используют приемы, позволяющие подчеркнуть значение способов практического сопоставления элементов совокупностей для выявления количественных отношений. Например, воспитатель ставит 7 елочек. Дети их считают. Педагог предлагает им закрыть глаза. Под каждой елочкой ставит 1 грибок, а затем просит детей открыть глаза и, не считая грибки, сказать, сколько их. Ребята объясняют, как они догадались, что грибков 7. Позднее, когда средством установления количественных отношений («поровну», «больше», «меньше») все более становится счет и сравнение чисел, способы практического сопоставления используют как средство проверки, доказательства установленных отношений. Дети должны понять, что любых предметов может быть поровну: и по 3, и по 4, и по 5, и по 6. Полезны упражнения, требующие опосредствованного уравнивания числа элементов 2-3 совокупностей, когда детям предлагают сразу принести недостающее количество предметов, например, столько флажков и барабанов, чтобы всем пионерам хватило, столько лент, чтобы можно, было завязать банты всем мишкам. Для усвоения количественных отношений также используют упражнения и в нарушении равенства, например: «Сделай так, чтобы треугольников стало больше, чем квадратов. Докажи, что их стало больше. Что нужно сделать, чтобы кукол стало меньше, чем мишек? Сколько их будет? Почему?»
Изучение количественных отношений, определение большего и меньшего числа сочетают с тренировкой в счете с участием различных анализаторов: в счете звуков, движений, в счете предметов путем ощупывания. Упражнения по-разному комбинируют. Например, дети отсчитывают столько же игрушек, сколько звуков они услышали, находят карточку, на которой столько же кружков, сколько раз они подняли руки, или приседают столько раз, сколько кружков на карточке. Они считают на ощупь пуговицы, нашитые на карточку, и столько же раз хлопают в ладоши или на 1 раз больше (меньше). Например: «Отгадайте, сколько пуговиц на карточке у Сережи, если он хлопнул в ладоши на 1 раз больше (меньше). Сосчитайте, сколько флажков. Подумайте, сколько раз надо поднять руку, чтобы движений сделать на 1 больше (меньше), чем стоит флажков». Упражнения в установлении равенства и неравенства численностей множеств с включением разных анализаторов имеют место почти на каждом занятии.
В подготовке детей к деятельности вычисления большое значение имеет развитие памяти на числа. Воспитатель размещает на столе несколько групп предметов, по очереди вызывает кого-либо из детей сосчитать предметы той или иной группы, предлагает запомнить число предметов. Затем закрывает все салфеткой и проверяет, запомнил ли каждый, сколько было тех или иных предметов. Можно не вызывать персонально кого-либо из детей к столу, а предложить всем сосчитать игрушки про себя постепенно усложняя задания.
Дальнейшему развитию понятия о числе служат упражнения в делении предметов на равные части. Дети учатся видеть части в целом предмете, выявляют отношение целого и части. Делению предметов на равные части отводят б-7 (занятий, а затем до конца года к этому периодически возвращаются.
На первом занятии создают ситуации, при которых возникает необходимость разделить предмет на 2 равные части, например, разделить угощение между 2 куклами или 2 детьми (гостями), помочь 2 жадным медвежатам разделить сыр и т. п. Воспитатель показывает, как надо делить предметы на 2 равные части, т. е. пополам, подчеркивает, что он точно складывает и разрезает предмет посередине, потом сравнивает полученные части, накладывая одну на другую или прикладывая одну к другой. Дети считают части, убеждаются, что они равные. Воспитатель говорит, что любую из 2 равных частей обычно называют половиной. Следующий предмет воспитатель намеренно делит на 2 неравные части и спрашивает: «Можно ли такую часть назвать половиной? Почему нет?» Дети видят, что предметы могут быть разделены как на равные, так и на неравные части. Половиной 1 из 2 частей можно назвать лишь тогда, когда части равны. Постепенно дети убеждаются в том, как важно точно складывать, разрезать предметы, чтобы получились равные части. Выполнив действие, они проверяют (наложением и приложением), равные ли получились части, считают их и, соединив вместе, получают целый предмет, обводят его контур и части рукой, сравнивают размер целого и части.
На втором занятии воспитатель расширяет круг предметов, которые дети делят пополам. Можно использовать крупу, воду. Их распределяют поровну в 2 прозрачных стакана одинаковых размеров. На третьем занятии показывают способы деления предметов на 4 равные части, т. е. пополам и еще раз пополам. Устанавливают отношения между целым и частью: часть меньше целого, целое больше части. Если в подготовительную к школе группу поступило много новых детей целесообразно начать с деления предметов на части путем складывания. Дети получают по 2 предмета одинаковых размеров, в чем они убеждаются, накладывая 1 предмет на другой. Они делят 1 предмет на 2 равные части, другой - на 4. Соединив части вместе, они получают целый предмет, пересчитывают части, показывают 1 из 2 частей, 2 из 2 частей, соответственно 1 (2, 3, 4) из 4 равных частей. Сравнивают размер 1 части и целого. Для обобщения знаний можно использовать схемы деления того или иного предмета на равные части (яблока, круга, квадрата и пр.). Рассматривая с детьми схему, воспитатель спрашивает: «На сколько равных частей сначала разделили яблоко? Сколько получилось таких частей? На сколько равных частей потом разделили яблоко? Сколько получилось частей? Что больше и что меньше: половина или целое яблоко? 2 половины или целое яблоко? 1 из 4 частей (1/4) или половина (1/2)?» и т. д.
На последующих занятиях проводят упражнения в делении геометрических фигур на 2, 4, 8 частей и в составлении целых фигур из частей, например: «Как надо сложить и разрезать квадрат, чтобы получились 2 равных прямоугольника?
В подготовительной к школе группе порядковому счету должно быть уделено большое внимание. У детей расширяют представление о том, в каких случаях люди пользуются порядковым счетом, когда они прибегают к нумерации и с какой целью (нумеруют дома, квартиры, детские сады, места в театре, в кино, транспорте и т. п.).
Для лучшего осознания детьми значения порядкового счета его постоянно сопоставляют с количественным счетом, чередуя вопросы сколько? какой по счету? Продолжают учить детей различать вопросы какой по счету? который? какой? Последний направлен на выделение качественных признаков объектов. Какие задачи решают дети в процессе упражнений в порядковом счёте? Определяют место предмета среди других. («Сколько всего флажков? Какой по порядку синий флажок? Какого цвета восьмой флажок?») Находят предмет по его порядковому номеру, при этом выполняют различные задания. («На место четвертой матрешки поставьте неваляшку. Замените шестой синий кружок красным. Поверните третий квадрат другой стороной вверх. Дайте флажки второму, четвертому и шестому мальчикам».) Располагают предметы в указанном порядке и одновременно определяют пространственные отношения между ними: впереди, после, за, между: «Расставьте игрушки так, чтобы первой была матрешка, второй - неваляшка, третьим - мишка. Поставьте куклу между вторым и третьим номерами...» Задают вопросы: «Какая по счету кукла? А мишка? Сколько всего игрушек? Кто стоит перед неваляшкой? Которая по счету неваляшка?» Целесообразны игры с мячом. Дети выстраиваются шеренгой и пересчитываются. Тот, кому ведущий бросил мяч, называет свой порядковый номер. Порядковый номер может называть ведущий. Например, он говорит: «Шестой!» Ребенок, стоящий на шестом месте, делает шаг вперед, произносит: «Я шестой!» - и ловит мяч.
Детей 6-7 лет знакомят не только со связями, но и с отношениями между смежными числами (на сколько одно из смежных чисел больше или меньше другого).
От упражнений в сравнении численностей множеств предметов, выраженных смежными числами, они переходят к сравнению чисел без опоры на наглядный материал. Такой переход намечается с первых занятий. Закрепляя знания об образовании чисел второго пятка, воспитатель спрашивает детей: «Какое число получится, если к 6 добавить 1?» Или: «Как получить 6 предметов, если есть 5 предметов?» и т. п.
Позднее дети сравнивают группы предметов разных размеров, занимающие больше или меньше места. Например, детям предлагают отсчитать, положить игрушки, хлопнуть в ладоши, поднять руку, подпрыгнуть и т. п. на 1 раз больше или меньше, чем поставлено игрушек, чем нарисовано кружков на карточке или чем то число, которое называет воспитатель: «Хлопни в ладоши на 1 раз больше (меньше), чем у меня здесь матрешек. Сколько раз ты хлопнул? Почему?» Другой вариант: «Сколько кружков на карточке? Сколько ты поставишь елочек, чтобы их было на 1 больше (меньше)? Почему?» Более сложное задание: «На верхнюю полоску карточки положите на 1 кружок больше, чем у меня. На нижнюю полоску положите на 1 кружок меньше, чем на верхней полоске. Сколько кружков на моей карточке? Сколько кружков у вас на нижней полоске? Почему у вас на нижней полоске столько же кружков, сколько у меня?». Каждый раз дети объясняют, как было получено то или иное число, сравнивают смежные числа, устанавливают разностные отношения между ними. («Надо поставить 7 елочек, потому что у вас на карточке 6 кружков, а вы просили поставить на 1 елочку больше, чем кружков. 7 больше 6 на 1, а 6 меньше 7 на 1».) В ответах детей обязательно должен находить отражение взаимно-обратный характер отношений между смежными числами. В итоге данных упражнений можно перейти к сравнению чисел и без опоры на наглядный материал. («Назови число, большее 7 на 1. На сколько 8 больше 7? Какое число меньше 7 на 1? Объясни, почему назвал 6».) Упражнениям на разностное сравнение чисел отводят не менее 2- 3 занятий. В дальнейшем к этому вопросу следует периодически возвращаться до конца учебного года.
Закрепить знания детей о порядке следования чисел позволяют упражнения в увеличении и уменьшении числа на 1. Воспитатель ставит 1 предмет (флажок, матрешку), спрашивает: «Какое число получится, если я добавлю 1 предмет? Почему?». В интересной форме закрепить знания прямой и обратной последовательности чисел позволяют упражнения с лесенкой. Дети шагают по ступенькам лесенки то вверх, то вниз, считая либо количество ступенек, которые они уже прошли, либо то число ступенек, которое им еще осталось пройти, т. е. ведут счет то в прямом, то в обратном порядке. Для упражнения детей в прямом и обратном счете используют числовую лесенку. Упражнения с числовой лесенкой позволяют закрепить знания о связях и отношениях не только между смежными числами, но и между остальными числами в ряду.
Проводят ряд упражнений с числовыми фигурами. Например, вдоль доски в ряд педагог расставляет числовые фигуры с количеством кружков от 1 до 10; 2 фигуры он помещает не на свои места, детям предлагает определить, какие фигуры «заблудились». Ряд числовых фигур может быть выстроен как в прямом, так и в обратном порядке.
Надо следить за тем, чтобы дети обязательно называли оба сравниваемых числа. Это важное условие осознания того, что каждое число (кроме 1) больше одного, но меньше другого, смежного с ним, т. е. понимания относительности значения каждого числа. Постепенно дети усваивают, что выражение «до» требует назвать число меньше данного, а выражение «после» - больше данного. В плане подготовки детей к деятельности вычисления необходимо познакомить их с составом числа из 2 меньших чисел. Детям показывают все варианты состава чисел в пределах пятка: число 2 - это 1 и 1, 3 - это 2 и 1, 1 и 2, 4 - это 3 и 1, 2 и 2, 1 и 3, 5 - это 4 и 1, 3 и 2, 2 и 3, 1 и 4. Воспитатель выкладывает на наборном полотне в ряд 3 кружка одного цвета, просит детей сказать, сколько всего кружков, и указывает, что в данном случае группа составлена из 3 кружков красного цвета: 1, 1 и еще 1. «Группу из 3 кружков можно составить и по-другому», - говорит воспитатель и поворачивает третий кружок обратной стороной. «Как теперь составлена группа?» - спрашивает педагог. Дети отвечают, что группа составлена из 2 кружков красного цвета и 1 кружка синего цвета, а всего - из 3 разноцветных кружков. Воспитатель делает вывод, что число 3 можно составить из чисел 2 и 1, а 2 и 1 вместе составляют 3. Затем поворачивает обратной стороной второй кружок, и дети рассказывают, что теперь группа составлена из 1 красного и 2 синих кружков. Обобщая в заключение ответы детей, воспитатель подчеркивает, что число 3 можно составить по-разному: из 2 и 1, из 1 и 2. Данное упражнение наглядно выявляет состав числа, отношение целого и части, поэтому с него целесообразно начинать знакомство детей с составом чисел.
Для закрепления знаний детей о составе числа из 2 меньших чисел используют разнообразные упражнения с предметами и моделями геометрических фигур. Детям предлагают рассказы-задачи, например: «На верхнем проводе сидели 3 ласточки, 1 ласточка пересела на нижний провод. Сколько всего ласточек? Как они теперь сидят? Как они еще могут сидеть?» (Ласточек на наборном полотне пересаживают с провода на провод.)
Знакомство с составом числа из 2 меньших чисел обеспечивает переход к обучению детей вычислению, то есть решению арифметических задач.
Заключение
Формирование элементарных математических представлений детей дошкольного возраста имеет очень различные направления. Одно из самых важных мест в нем занимают количественные представления.
В средней группе детского сада работа направлена на обучение счету до 5 на сравнении двух множеств, выраженных смежными числами. Важной задачей остается умение устанавливать равенство и неравенство групп предметов, когда предметы находятся на различном расстоянии друг от друга, когда они различны по величине и т. д.
Работа с детьми 5-6 лет направлена на дальнейшее развитие деятельности счета. Детей учат считать в пределах 10, продолжают знакомить с цифрами первого десятка. На основе действий с множествами и измерения с помощью условной меры продолжается формирование представлений о числах до десяти.
В подготовительной к школе группе происходит совершенствование навыков счета с пределах 10, дети учатся называть числа в прямом и обратном порядке, знакомятся с цифрами 0-9 и т.д; с составом чисел второго пятка из единиц, учатся раскладывать число на два меньших в пределах 10 на наглядной основе и составлять из двух меньших большее, знакомятся с монетами и учатся решать простые арифметические задачки; широко используют приемы, позволяющие подчеркнуть значение способов практического сопоставления элементов совокупностей для выявления количественных отношений; учатся видеть связи и отношения между смежными числами; совершенствуют навыки в делении геометрических фигур; постоянно сопоставляют количественный счет с порядковым и т.д.
Работа по развитию счетной деятельности у дошкольников является особенно трудоемкой и требует большого внимания. Она является основой для дальнейшего обучения в школе.
Литература
1. Альтхауз Д., Дум Э. Цвет – форма – количество. М.: Просвещение, 1984. – 64 с.
2. Бондаренко А.К. Дидактические игры в детском саду. М., Просвещение,1985.-175с.
3. Волина В.В. Праздник числа. Москва: АСТ – ПРЕСС, 1996. – 304 с.
4. Ерофеева Т.И., Павлова Л.Н., Новикова В.П. Математика для дошкольников. М. Просвещение ,1992.-192с.
5. Козинцева Е.А., И.В.Померанцева И.В., Т.А. Терпак. Формирование математических представлений. Конспекты занятий в старшей группе. Волгоград: Учитель, 2008. – 175 с.
6. Леушина А.М. Занятия по счету в детском саду. Учпедгиз, 1963, - 192 с.
7. Леушина Л.М. Формирование математических представлений у детей дошкольного возраста. М.: Просвещение, 1974. – 368 с.
8. Метлина Л.С. Математика в детском саду. М.: Просвещение, 1984. – 256 с.
9. Петерсон Л.Г., Е.Е. Кочемасова. Игралочка: Практический курс математики для дошкольников. Методические рекомендации. Москва: Баласс, 2001. – 176 с.
10. Сай М. К.,Удальцова Е.И. Математика в детском саду. 1990.-96с.
11. Сербина Е.В.Математика для малышей. М., Просвещение, 1992.- 80 с.
12. Тарунтаева Т.В. Развитие элементарных математических представлений у дошкольников. М.: Просвещение, 1980. – 64 с.
13. Давайте поиграем! Математические игры для детей 5-6 лет. Под ред. А.А.Столяра. М.: Просвещение, 1991. – 80 с.
14. Смоленцева А.А. Сюжетно-дидактические игры с математическим содержанием. М.: Просвещение, 1987. – 97 с.
15. Формирование элементарных математических представлений у дошкольников. Под ред. А.А.Столяра. М., Просвещение, 1988.-303с.
[1] Леушина А.М. Занятия по счету в детском саду. М.: Учпедгиз, 1963, - 192 с. (с.3).
[2] Леушина А.М. Занятия по счету в детском саду. Учпедгиз, 1963, - 192 с. (с.3 - 4)
[3] Сай М.К., Удальцова Е.И. Математика в детском саду. М, 1990.-96с. (с.8)
[4] Ерофеева Т. И., Павлова Л. Н., Новикова В. П. Математика для дошкольников. М. Просвещение ,1992.-192с. (с. 35). [4] Леушина Л.М. Формирование математических представлений у детей дошкольного возраста. М.: Просвещение, 1974. – 368 с. (69-74 с.)
[5] Леушина Л.М. Формирование математических представлений у детей дошкольного возраста. М.: Просвещение, 1974. – 368 с. (69-74 с.)
[6] Сай М.К., Удальцова Е.И. Математика в детском саду. Министерство Народного образования, 1990.-96с. (с.12)
[7] Ерофеева Т.И., Павлова Л.Н., Новикова В.П. Математика для дошкольников. М. Просвещение ,1992.-192с. (с. 154)
[8] Сай М. К., Удальцова Е.И. Математика в детском саду. Министерство Народного образования, 1990.-96с. (с.14)
[9] Ерофеева Т.И., Павлова Л.Н., Новикова В.П. Математика для дошкольников. М. Просвещение ,1992.-192с. (с.156).
[10] Сай М.К., Удальцова Е.И. Математика в детском саду. Министерство Народного образования, 1990.-96с. (с.20)
[11] Формирование элементарных математических представлений у дошкольников. Под ред. А.А.Столяра. М., Просвещение, 1988.-303с. (с.173).
[12] Сай М.К.,Удальцова Е.И. Математика в детском саду. Министерство Народного образования, 1990.-96с. (с.21)
[13] Ерофеева Т.И., Павлова Л.Н., Новикова В.П. Математика для дошкольников. М. Просвещение ,1992.-192с. (с.56).
[14] Сай М.К.,Удальцова Е.И. Математика в детском саду. Министерство Народного образования, 1990.-96с. (с.22)
[15] Сай М.К., Удальцова Е.И. Математика в детском саду. Министерство Народного образования, 1990.-96с. (с.23)
Введение «…Математика – это цепь понятий: выпадает одно звёнышко – и непонятно будет дальнейшее». Н.К. Крупская.[1] Одними из самых сложных знаний, умений и навыков, включенных в содержание общественного опыта, которым овладевают под
Развитие мышления младшего школьника с нарушенным слухом
Роль мультимедиа в повышении эффективности учебного процесса
Социальная педагогика
Развитие основных естественнонаучных умений по физике в основной школе
Виды туристической работы в средней школе с учетом географической направленности
Гуманизация и гуманитаризация образования
Дидактична розробка теми "Домашнє господарство як ланка економіки. Домашнє господарство у сучасній економіці, його ефективна діяльність"
Домашнее задание как средство формирования учебной мотивации у младших школьников
Значення тестування у середній загальноосвітній школі
Изучение условий формирования у школьников знаний о здоровом образе жизни
Copyright (c) 2024 Stud-Baza.ru Рефераты, контрольные, курсовые, дипломные работы.