курсовые,контрольные,дипломы,рефераты
РЕФЕРАТ
ТЕМА: МНОГОЧЛЕНЫ
Подготовила:
ученица 7 В класса школы № 58
Черняева Ирина
“Люди, незнакомые с алгеброй, не могут представить себе тех удивительных вещей, которых можно достигнуть при помощи названной науки" Готфрид Лейбниц (учёный, математик).
Труды ал - Хорезми (VIII - IX века), Абу Камила (IX - X века), ал - Караджи (X - XI века), ал-Беруни (X - XI века), Омар Хайяма (XI - XII века), ал-Каши (XIV - XV века) и других ученых стран ислама значительно способствовали развитию алгебры, в частности теории уравнений. Однако в этих трудах отсутствовали символы и знаки. Как содержание задачи и название величин, так и все действия, решение и ответ записывались полностью словами.
Омар Хайям - (полное имя) Гияс ад-дин Фатх ибн Ибрахим Омар Хайям Нишапури - Ghiyath al-Din Abu'l-Fath Umar ibn Ibrahim Al-Nisaburi al-Khayyami (английский перевод)
Родиной Омара Хайяма был Хорасан (г. Нишапур) - область, расположенная к востоку и юго-востоку от Каспийского моря. На богатом историческом материале исследователи доказали заслуги Омара Хайяма как ученого, который сделал ряд важнейших открытий в области астрономии, математики и физики.
Список математических трактатов Омара Хайяма:
Трудности арифметики (Мушкилат ал-хисаб) - Местонахождение рукописи не найдено;
Алгебраический трактат без названия - Тегеран;
Трактат о доказательствах задач алгебры и алмукабалы (Рисала фи-л-барахин 'ала маса'ил алджабр ва-л-мукабала) - Париж, Лейден, Лондон, Нью-Йорк, Рим;
Комментарии к трудностям во введениях книги Евклида (Шарх ма ашкала мин мусадарат китаб Уклидис) - Лейден.
Известные нам математические результаты Хайяма относятся к трем направлениям: к алгебре, к теории параллельных, к теории отношений и учению о числе. Во всех этих направлениях Хайям имел в странах ислама выдающихся предшественников и преемников. Во многом он отправлялся от классиков греческой и эллинистической науки - Аристотеля, Евклида, и других, но вместе с тем он выступает как яркий представитель новой математики с ее мощной и определяющей вычислительно-алгоритмической компонентой.
Здесь мы дадим краткую характеристику математического творчества Хайяма, отсылая за подробностями к нашим комментариям к переводам его трактатов.
Алгебраический трактат Хайяма можно разбить по порядку на пять разделов:
1) введение;
2) решение уравнений 1-й и 2-й степени;
3) решение уравнений 3-й степени;
4) сведение к предыдущим видам уравнений, содержащих величину, обратную неизвестной;
5) дополнение (в тексте трактата такого деления на разделы не имеется).
Хайям говорит: "Алгебраические решения производятся при помощи уравнения, т.е. как это хорошо известно, приравнивание одних степеней другим". Словом, алгебра определяется как наука об уравнениях и именно о тех уравнениях, которые в настоящее время называются алгебраическими. Мы впервые здесь находим и термин "алгебраисты" - ал-джабриййуна.
Такой же, риторической алгебра оставалась долгое время и в Европе.
Еще в XVI веке уравнение, которое ныне записывается в виде:
х3+ах=Ь9
записывалось так: "Куб р некоторое количество вещей равно числу".
Здесь буква р стоит вместо нашего знака +;
"некоторое количество" - вместо а;
"вещь" - вместо х,
"число" - вместо Ь.
В 1572 году видный итальянский математик Р. Бомбелли записывал алгебраические выражения так, как показано ниже:
i I Р 2 X " P 2
21 P 41 P 4 g1P 41 P 4
4lp 8 з p 24 2 p 32 I p 16
I " P 2 W
5 I p io 4 p 40 3 p 80 2 p 80 i p 32,Что означает (X + 2) 2 = X2 + 4 X 4 - 4, (x2+ 4x + 4) 2= x4 - b8x3 + 24x2 + 32x + i6.
Такие громоздкие записи затрудняли алгебраические действия, тормозили развитие науки. Между тем не только необходимость, но и возможность введения и употребления кратких записей и буквенной символики стали особенно очевидными после изобретения книгопечатания в XV веке.
Алгебру Диофанта, индийских и западноевропейских математиков до XV - XVI веков, в которой употреблялись отдельные буквы, обозначения и сокращения слов, иногда называют синкопирующей (от греческого "синкопе" - сокращение).
В конце XVI века Виет, основываясь на частично разработанной до него символике, стал обозначать буквами не только неизвестные, но и коэффициенты при них, ввел общую буквенную символику. Однако записи уравнений Виета содержали еще много слов вместо символов. Например, вместо знака равенства он писал слово "равно" и т.п.
Алгебраическая символика совершенствовалась и продолжала развиваться в трудах Рене Декарта, Исаака Ньютона, Леонарда Эйлера и других ученых XVII - XVIII веков.
Алгебраическая символика значительно облегчила изучение математики и способствовала ее полному расцвету.
Математические исследования Декарта тесно связаны с его работами по философии и физике. В "Геометрии" (1637) Декарт впервые ввёл понятия переменной величины и функции.
Переменная величина у Декарта выступала в двойной форме: как отрезок переменной длины и постоянного направления - текущая координата точки, описывающей своим движением кривую, и как непрерывная числовая переменная, пробегающая совокупность чисел, выражающих этот отрезок. Двоякий образ переменной обусловил взаимопроникновение геометрии и алгебры. У Декарта действительное число трактовалось как отношение любого отрезка к единичному, хотя сформулировал такое определение лишь И. Ньютон; отрицательные числа получили у Декарта реальное истолкование в виде направленных ординат. Декарт значительно улучшил систему обозначений, введя общепринятые знаки для переменных величин (x, у, z) и коэффициентов (a, b, с), а также обозначения степеней (х4, a5). Запись формул у Декарта почти ничем не отличается от современной.
До середины XIX века центральной задачей алгебры было нахождение формулы для корней уравнения P (x) = 0, где P - многочлен произвольной степени. Эта задача была полностью решена в работах молодых математиков первой трети XIX века - Э. Галуа (1811-1832), Н. Абеля (1802-1829) и П. Руффини (1765-1822).
Еще в XVI веке итальянскими математиками были найдены формулы для решения уравнений третьей и четвертой степени. Абель и Руффини доказали, что, начиная с пятой степени, общей формулы, использующей, кроме сложения и умножения, лишь извлечение корней, не существует, а Галуа открыл закономерности поведения корней, приложимые к каждому конкретному уравнению.
Параллельно с этим К. Гаусс доказал основную теорему алгебры, утверждающую, что всякий многочлен (коэффициенты многочлена могут быть не только вещественными, но и комплексными числами) имеет хотя бы один корень (возможно, являющийся не вещественным, а комплексным числом). После этого вопрос о вычислении корней многочлена переместился из алгебры в теорию функций и приближенных вычислений.
В XX веке роль многочленов стала меняться. Буквы, входящие в многочлен, все больше стали играть роль символов, не связанную с их конкретными значениями. Самые разные области математики и ее приложений стали использовать символьное исчисление многочленов, не зависящее от теории функций (математическая логика, топология, теория информации, дискретная и компьютерная математика и т.д.).
Приведем пример. В XX веке важнейшей задачей человечества стала задача передачи информации (радио, телефон, передача видеосигналов и т.д.).
Математически сообщение может быть записано в виде последовательности символов (точки и тире в старинной азбуке Морзе, нули и единицы и т.п.), передаваемой по так называемому каналу связи (например, в виде радиосигналов).
Одночленом от некоторой буквы x называется алгебраическое выражение a. xn
где
a - некоторое число,
x - буква,
n - целое неотрицательное число.
Одночлены называются подобными, если показатели степени у буквы одинаковы. Подобные одночлены можно складывать по правилу:
a. xn + bn. xn = (a + b). xn
Это действие называется приведением подобных членов.
Многочленом называется алгебраическая сумма одночленов.
Любой многочлен от одной буквы x (ее часто называют переменной) после приведения подобных членов может быть записан по убывающим степеням этой буквы в виде
F (x) = an. xn + an-1. xn-1 + …+ a1. x + ao
или по возрастающим степеням
F (x) = ao + a1. x + …+ an-1. xn-1 + an. xn
Такая запись многочлена называется канонической.
Иными словами, многочлен - это сумма целочисленных степеней некоторой величины, взятых с заданными коэффициентами.
Общепринятый сейчас способ вычисления многочленов восходит к Ньютону и называется схемой Горнера. Эта универсальная (то есть применимая к любому многочлену) схема предельно проста и изящна. Она получается из формулы указанной выше вынесением за скобки x всюду, где это возможно:
F (x) = (… ( ( (x + a1). x + a2). x + a3) …). x + an
Порядок действии при вычислении f (x) определяется скобками в этой формуле. Сначала сложение внутри самой внутренней пары скобок (его результат обозначим через p1, затем умножение и сложение внутри следующей пары скобок (результат p2) и т.д.
p1= x + a1;
p2= p1x + a2;
p3= p2x + a3;
………………. .
pn= pn - 1x + an, f (x) = pn
всего n-1 умножений и n сложений.
Схема Горнера настолько совершенна, что вопрос о возможности её улучшения не возникал два с половиной века и был задан "вслух" впервые лишь в 1954 году!
Можно сделать вывод, что применение алгебраических правил настолько универсальны, что могут применяться не только в точных науках, но и в повседневной нашей жизни. Как в указанных выше примерах:
передачи информации (радио, телефон, передача видеосигналов и т.д.).
Поэтому развитие науки, такой как алгебра, даёт нам огромную помощь в нашей жизни и продвижении вперёд вместе научно-техническим прогрессом. И хочется выразить огромную благодарность всем учёным, математикам, чей вклад был внесён в развитие этой науки.
РЕФЕРАТ ТЕМА: МНОГОЧЛЕНЫ Подготовила: ученица 7 В класса школы № 58 Черняева Ирина Многочлены “Люди, незнакомые с алгеброй, не могут представить себе тех удивительных вещей, которых можно достигнуть при по
Решение матричных уравнений. Базисный минор. Ранг. Действия над матрицами
Решение одного нелинейного уравнения
Решение произвольных систем линейных уравнений
Решение систем дифференциальных уравнений
Решение уравнений в конечных разностях
Решение уравнений с параметрами
Роды: прошлое и настоящее
Розкриття невизначеностей за правилом Лопіталя
Симметрия молекул и кристаллов
Системи випадкових величин
Copyright (c) 2025 Stud-Baza.ru Рефераты, контрольные, курсовые, дипломные работы.