курсовые,контрольные,дипломы,рефераты
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ
ГОУ ВПО ИЖЕВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ
КАФЕДРА ”ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ”
Отчёт по курсу «МИСЗИ»
студента 5 курса специальности 230105
(заочное отделение)
Задание « Шифрование DES »
Группа 10-19-4з
Выполнил Стерхов Д. В.
Принял Старыгин А. В.
Ижевск 2007
DES представляет собой блочный шифр, он шифрует 64 - битовыми блоками. С одного конца алгоритма вводится 64 - битовый блок открытого текста, а с другого конца выходит 64 - битовый блок шифротекста. DES является симметричным алгоритмом: для шифрования и дешифрования используется одинаковые алгоритмы и ключ(за исключением различий в использовании ключа).
Длина ключа равна 56 битам. Ключ обычно представляется 64 - битовым числом, но каждый восьмой бит используется для проверки чётности и игнорируется. Биты чётности являются наименьшими значащими битами байтов ключа. Ключ, который может быть любым 56 - битовым числом, можно изменить в любой момент времени. Ряд чисел считаются слабыми ключами, но их можно легко избежать. Безопасность полностью определяется ключом.
На простейшем уровне алгоритм не представляет ничего большего, чем комбинация двух основных методов шифрования: смещения и диффузии. Фундаментальным строительным блоком DES является применение к тексту единичной комбинации этих методов(подстановка, а за ней перестановка), зависящей от ключа. Такой блок называется этапом. DES состоит из 16 этапов, одинаковая комбинация методов применяется к открытому тексту 16 раз.
Процесс шифрования данных поясняется рисунком 1. Сначала 64 бита входной последовательности перестанавливаются в соответствии с таблицей 1. Таким образом, бит 58 входной последовательности становится битом 1, бит 50 – 2 и т.д.
58 | 50 | 42 | 34 | 26 | 18 | 10 | 2 | 60 | 52 | 44 | 36 | 28 | 20 | 12 | 4 |
62 | 54 | 46 | 38 | 30 | 22 | 14 | 6 | 64 | 56 | 48 | 40 | 32 | 24 | 16 | 8 |
57 | 49 | 41 | 33 | 25 | 17 | 9 | 1 | 59 | 51 | 43 | 35 | 27 | 19 | 11 | 3 |
61 | 53 | 45 | 37 | 29 | 21 | 13 | 5 | 63 | 55 | 47 | 39 | 31 | 23 | 15 | 7 |
Полученная последовательность бит разделяется на две последовательности: L(0) (биты 58, 50, 42, ..., 8) и R(0) (биты 57, 49, 41, ..., 7), каждая из которых содержит 32 бита. Затем выполняется итеративный процесс шифрования, который описывается следующими формулами:
L(i)=R(i-1), i=1,2,...,16.
R(i)=L(i-1) + F(R(i-1),K(i)), i=1,2,...,16.
Функция F называется функцией шифрования. Ее аргументами являются последовательность R, полученная на предыдущем шаге, и 48-битовый ключ K(i), который является результатом функции преобразования 64-битового ключа шифра. Подробно функция шифрования и алгоритм получения ключей K(i) описаны ниже.
На последнем шаге итерации будут получены последовательности L(16) и R(16), которые конкатенируются в 64-х битовую последовательность R(16)L(16). Видно, что в полученной последовательности 64 бита, перестанавливаются в соответствии с таблицей 2. Как легко видеть данная перестановка является обратной по отношению к начальной (см. таблицу 1).
40 | 8 | 48 | 16 | 56 | 24 | 64 | 32 | 39 | 7 | 47 | 15 | 55 | 23 | 63 | 31 |
38 | 6 | 46 | 14 | 54 | 22 | 62 | 30 | 37 | 5 | 45 | 13 | 53 | 21 | 61 | 29 |
36 | 4 | 44 | 12 | 52 | 20 | 60 | 28 | 35 | 3 | 43 | 11 | 51 | 19 | 59 | 27 |
34 | 2 | 42 | 10 | 50 | 18 | 58 | 26 | 33 | 1 | 41 | 9 | 49 | 17 | 57 | 25 |
Процесс расшифрования данных является инверсным по отношению к процессу шифрования. Все действия должны быть выполнены в обратном порядке. Это означает, что расшифровываемые данные сначала переставляются в соответствии с таблицей 1, а затем над последовательностью бит R(16)L(16) выполняется те же действия, что и в процессе зашифрования, но в обратном порядке. Итеративный процесс расшифрования описан следующими формулами:
R(i-1)=L(i), i =16, 15, ..., 1
L(i-1)=R(i)+F(L(i),K(i)), i=16, 15, ..., 1.
На последнем шаге итерации будут получены последовательности L(0) и R(0), которые конкатенируются в 64 битовую последовательность L(0)R(0). В полученной последовательности 64 бита перестанавливаются в соответствии с таблицей 2. Результат преобразования - исходная последовательность бит (расшифрованное 64-битовое значение).
Функция шифрования F(R,K) схематически показана на рисунке 2. Для вычисления значения функции F используется функция E (расширение 32 бит до 48), функции S(1), S(2),...,S(8) преобразование 6-битового числа в 4-битовое) и функция P (перестановка бит в 32-битовой последовательности). Приведем определения этих функций. Аргументами функции шифрования являются R (32 бита) и K (48 бит). Результат функции E(R) есть 48-битовое число, которое складывается по модулю 2 с числом K. Таким образом, получается 48-битовая последовательность, которая рассматривается, как конкатенация 8 строк длиной по 6 бит (т.е. B(1)B(2)B(3)B(4)B(5)B(6)B(7)B(8)). Результат функции S(i)B(i) - 4 битовая последовательность, которую будем обозначать L(i). В результате конкатенации всех 8 полученных последовательностей L(i) имеем 32-битовую последовательность L=L(1)L(2)L(3)L(4)L(5)L(6)L(7)L(8). Наконец, для получения результат функции шифрования надо переставить биты последовательности L. Для этого применяется функция перестановки P(L).
Функция расширения Е, выполняющая расширение 32 бит до 48, определяется таблицей. В соответствии с этой таблицей первые три бита Е(R) - это биты 32,1 и 2, а последние - 31,32,1.
32 | 1 | 2 | 3 | 4 | 5 | 4 | 5 | 6 | 7 | 8 | 9 |
8 | 9 | 10 | 11 | 12 | 13 | 12 | 13 | 14 | 15 | 16 | 17 |
13 | 17 | 18 | 19 | 20 | 21 | 20 | 21 | 22 | 23 | 24 | 25 |
24 | 25 | 26 | 27 | 28 | 29 | 28 | 29 | 30 | 31 | 32 | 1 |
Функция S(i), которая преобразует 6-битовые числа в 4-битовые. Эта операция расширяет правую половину данных, R(i) от 32 до 48 битов. Так как при этом не просто повторяются определённые биты, но и изменяется их порядок, эта операция называется перестановкой с расширением. У неё две задачи: привести размер правой половины в соответствии с ключом для операции XOR и получить более длинный результат, который можно будет сжать в ходе операции подстановки. Однако главный криптографический смысл совсем в другом. За счёт влияния одного бита на две подстановки быстрее возрастает зависимость битов результата от битов исходных данных. Это называется лавинным эффектом. DES спроектирован так, чтобы как можно быстрее добиться зависимости каждого бита шифротекста от каждого бита открытого текста и каждого бита ключа.
14 | 4 | 13 | 1 | 2 | 15 | 11 | 8 | 3 | 10 | 6 | 12 | 5 | 9 | 0 | 7 |
0 | 15 | 7 | 4 | 14 | 2 | 13 | 1 | 10 | 6 | 12 | 11 | 9 | 5 | 3 | 8 |
4 | 1 | 14 | 8 | 13 | 6 | 2 | 11 | 15 | 12 | 9 | 7 | 3 | 10 | 5 | 0 |
15 | 12 | 8 | 2 | 4 | 9 | 1 | 7 | 5 | 11 | 3 | 14 | 10 | 0 | 6 | 13 |
15 | 1 | 8 | 14 | 6 | 11 | 3 | 4 | 9 | 7 | 2 | 13 | 12 | 0 | 5 | 10 |
3 | 13 | 4 | 7 | 15 | 2 | 8 | 14 | 12 | 0 | 1 | 10 | 6 | 9 | 11 | 5 |
0 | 14 | 7 | 11 | 10 | 4 | 13 | 1 | 5 | 8 | 12 | 6 | 9 | 3 | 2 | 15 |
13 | 8 | 10 | 1 | 3 | 15 | 4 | 2 | 11 | 6 | 7 | 12 | 0 | 5 | 14 | 9 |
10 | 0 | 9 | 14 | 6 | 3 | 15 | 5 | 1 | 13 | 12 | 7 | 11 | 4 | 2 | 8 |
13 | 7 | 0 | 9 | 3 | 4 | 6 | 10 | 2 | 8 | 5 | 14 | 12 | 11 | 15 | 1 |
13 | 6 | 4 | 9 | 8 | 15 | 3 | 0 | 11 | 1 | 2 | 12 | 5 | 10 | 14 | 7 |
1 | 10 | 13 | 0 | 6 | 9 | 8 | 7 | 4 | 15 | 14 | 3 | 11 | 5 | 2 | 12 |
7 | 13 | 14 | 3 | 0 | 6 | 9 | 10 | 1 | 2 | 8 | 5 | 11 | 12 | 4 | 15 |
13 | 8 | 11 | 5 | 6 | 15 | 0 | 3 | 4 | 7 | 2 | 12 | 1 | 10 | 14 | 9 |
10 | 6 | 9 | 0 | 12 | 11 | 7 | 13 | 15 | 1 | 3 | 14 | 5 | 2 | 8 | 4 |
3 | 15 | 0 | 6 | 10 | 1 | 13 | 8 | 9 | 4 | 5 | 11 | 12 | 7 | 2 | 14 |
2 | 12 | 4 | 1 | 7 | 10 | 11 | 6 | 8 | 5 | 3 | 15 | 13 | 0 | 14 | 9 |
14 | 11 | 2 | 12 | 4 | 7 | 13 | 1 | 5 | 0 | 15 | 10 | 3 | 9 | 8 | 6 |
4 | 2 | 1 | 11 | 10 | 13 | 7 | 8 | 15 | 9 | 12 | 5 | 6 | 3 | 0 | 14 |
11 | 8 | 12 | 7 | 1 | 14 | 2 | 13 | 6 | 15 | 0 | 9 | 10 | 4 | 5 | 3 |
12 | 1 | 10 | 15 | 9 | 2 | 6 | 8 | 0 | 13 | 3 | 4 | 14 | 7 | 5 | 11 |
10 | 15 | 4 | 2 | 7 | 12 | 9 | 5 | 6 | 1 | 13 | 14 | 0 | 11 | 3 | 8 |
9 | 14 | 15 | 5 | 2 | 8 | 12 | 3 | 7 | 0 | 4 | 10 | 1 | 13 | 11 | 6 |
4 | 3 | 2 | 12 | 9 | 5 | 15 | 10 | 11 | 14 | 1 | 7 | 6 | 0 | 8 | 13 |
4 | 11 | 2 | 14 | 15 | 0 | 8 | 13 | 3 | 12 | 9 | 7 | 5 | 10 | 6 | 1 |
13 | 0 | 11 | 7 | 4 | 9 | 1 | 10 | 14 | 3 | 5 | 12 | 2 | 15 | 8 | 6 |
1 | 4 | 11 | 13 | 12 | 3 | 7 | 14 | 10 | 15 | 6 | 8 | 0 | 5 | 9 | 2 |
6 | 11 | 13 | 8 | 1 | 4 | 10 | 7 | 9 | 5 | 0 | 15 | 14 | 2 | 3 | 12 |
13 | 2 | 8 | 4 | 6 | 15 | 11 | 1 | 10 | 9 | 3 | 14 | 5 | 0 | 12 | 7 |
1 | 15 | 13 | 8 | 10 | 3 | 7 | 4 | 12 | 5 | 6 | 11 | 0 | 14 | 9 | 2 |
7 | 11 | 4 | 1 | 9 | 12 | 14 | 2 | 0 | 6 | 10 | 13 | 15 | 3 | 5 | 8 |
2 | 1 | 14 | 7 | 4 | 10 | 8 | 13 | 15 | 12 | 9 | 0 | 3 | 5 | 6 | 11 |
· первый и последний биты входной последовательности B, определяют номер строки k.
· второй, третий, четвертый и пятый биты последовательности B задают номер колонки l
· результат преобразования выбирается из строки k и колонки l.
Предположим, что B=011011. Тогда S(1)(B)=0101. Действительно, k=1, l=13. В колонке 13 строки 1 задано значение 5, которое и является значением функции S(1)(011011).
Функция перестановки бит P(L), также используемая для определения функции шифрования, задается значениями, приведенными в таблице 5. В последовательности L 32 перестанавливается так, чтобы бит 16 стал первым битом, бит 7 - вторым и т.д.
16 | 7 | 20 | 21 | 29 | 12 | 28 | 17 | 1 | 15 | 23 | 26 | 5 | 18 | 31 | 10 |
2 | 8 | 24 | 14 | 32 | 27 | 3 | 9 | 19 | 13 | 30 | 6 | 22 | 11 | 4 | 25 |
Чтобы завершить описание алгоритма шифрования данных, осталось привести алгоритм получение ключей K(i), i=1,2,...,16, размерностью в 48 бит. Ключи K(i) определяются по 64-битовому ключу шифра как это показано.
57 | 49 | 41 | 33 | 25 | 17 | 9 | 1 | 58 | 50 | 42 | 34 | 26 | 18 |
10 | 2 | 59 | 51 | 43 | 35 | 27 | 19 | 11 | 3 | 60 | 52 | 44 | 36 |
63 | 55 | 47 | 39 | 31 | 23 | 15 | 7 | 62 | 54 | 46 | 38 | 30 | 22 |
14 | 6 | 61 | 53 | 45 | 37 | 29 | 21 | 13 | 5 | 28 | 20 | 12 | 4 |
Как видно из таблицы, для генерации последовательностей C(0) и D(0) не используются биты 8,16,25,32,40,48,56 и 64 ключа шифра. Эти биты не влияют на шифрование и могут служить для других целей (например, для контроля по четности). Таким образом, в действительности ключ шифра является 56-битовым. После определения C(0) и D(0) рекурсивно определяются C(i) и D(i), i=1,2,...,16. Для этого применяются операции сдвига влево на один или два бита в зависимости от номера шага итерации, как это показано в таблицей 7. Операции сдвига выполняются для последовательностей C(i) и D(i) независимо. Например, последовательность C(3) получается, посредством сдвига влево на две позиции последовательности C(2), а последовательность D(3) - посредством сдвига влево на две позиции последовательности D(2). Следует иметь в виду, что выполняется циклический сдвиг влево. Например, единичный сдвиг влево последовательности C(i) приведет к тому, что первый бит C(i) станет последним и последовательность бит будет следующая: 2,3,..., 28,1.
Этап | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
Число | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 1 |
14 | 17 | 11 | 24 | 1 | 5 | 3 | 28 | 15 | 6 | 21 | 10 |
23 | 19 | 12 | 4 | 26 | 8 | 16 | 7 | 27 | 20 | 13 | 2 |
41 | 52 | 31 | 37 | 47 | 55 | 30 | 40 | 51 | 45 | 33 | 48 |
44 | 49 | 39 | 56 | 34 | 53 | 46 | 42 | 50 | 36 | 29 | 32 |
Как следует из таблицы первый бит K(i) - это бит 14 последовательности C(i)D(i), второй - бит 17, последний - бит 32.
Шифруемое сообщение – шифровка = 11111000 11101000 11110100 11110000 11101110 11100010 11101010 11100000
Ключ шифрования 12345678 = 00110001 00110010 00110011 00110100 00110101 00110110 00110111 00111000
Входная последовательность
1111100011101000111101001111000011101110111000101110101011100000 - согласно таблице начальной перестановки перестанавливаем биты в сообщении.
58 | 50 | 42 | 34 | 26 | 18 | 10 | 2 | 60 | 52 | 44 | 36 | 28 | 20 | 12 | 4 |
62 | 54 | 46 | 38 | 30 | 22 | 14 | 6 | 64 | 56 | 48 | 40 | 32 | 24 | 16 | 8 |
57 | 49 | 41 | 33 | 25 | 17 | 9 | 1 | 59 | 51 | 43 | 35 | 27 | 19 | 11 | 3 |
61 | 53 | 45 | 37 | 29 | 21 | 13 | 5 | 63 | 55 | 47 | 39 | 31 | 23 | 15 | 7 |
Полученная последовательность 1111111100001101000101000000000011111111111111110101001101110000
Делим полученную последовательность согласно таблицам.
Последовательности получаются путём деления блока в 64 бита на 2 равных части.
L(0) перестановка
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 |
L(0) последовательность полученная 11111111000011010001010000000000
R(0) перестановка
33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 |
49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 |
R(0) последовательность полученная 11111111111111110101001101110000
Входная последовательность
0011000100110010001100110011010000110101001101100011011100111000
57 | 49 | 41 | 33 | 25 | 17 | 9 | 1 | 58 | 50 | 42 | 34 | 26 | 18 |
10 | 2 | 59 | 51 | 43 | 35 | 27 | 19 | 11 | 3 | 60 | 52 | 44 | 36 |
63 | 55 | 47 | 39 | 31 | 23 | 15 | 7 | 62 | 54 | 46 | 38 | 30 | 22 |
14 | 6 | 61 | 53 | 45 | 37 | 29 | 21 | 13 | 5 | 28 | 20 | 12 | 4 |
Полученная последовательность 00000000000000001111111111110110011001111000100000001111
Полученную последовательность(ключа) делим на две согласно таблицам.
C(0)
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 |
Последовательность C(0) = 0000000000000000111111111111
D(0)
29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 |
43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 |
Последовательность D(0) = 0110011001111000100000001111
По таблице сдвигаем биты в последовательностях
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 1 |
C(0) = 0000000000000000111111111111
C(1) | 0000000000000001111111111110 |
C(2) | 0000000000000011111111111100 |
C(3) | 0000000000001111111111110000 |
C(4) | 0000000000111111111111000000 |
C(5) | 0000000011111111111100000000 |
C(6) | 0000001111111111110000000000 |
C(7) | 0000111111111111000000000000 |
C(8) | 0011111111111100000000000000 |
C(9) | 0111111111111000000000000000 |
C(10) | 1111111111100000000000000001 |
C(11) | 1111111110000000000000000111 |
C(12) | 1111111000000000000000011111 |
C(13) | 1111100000000000000001111111 |
C(14) | 1110000000000000000111111111 |
C(15) | 1000000000000000011111111111 |
C(16) | 0000000000000000111111111111 |
По той же таблице сдвигаем биты в последовательностях
D(0) = 0110011001111000100000001111
D(1) | 1100110011110001000000011110 |
D(2) | 1001100111100010000000111101 |
D(3) | 0110011110001000000011110110 |
D(4) | 1001111000100000001111011001 |
D(5) | 0111100010000000111101100110 |
D(6) | 1110001000000011110110011001 |
D(7) | 1000100000001111011001100111 |
D(8) | 0010000000111101100110011110 |
D(9) | 0100000001111011001100111100 |
D(10) | 0000000111101100110011110001 |
D(11) | 0000011110110011001111000100 |
D(12) | 0001111011001100111100010000 |
D(13) | 0111101100110011110001000000 |
D(14) | 1110110011001111000100000001 |
D(15) | 1011001100111100010000000111 |
D(16) | 0110011001111000100000001111 |
14 | 17 | 11 | 24 | 1 | 5 | 3 | 28 | 15 | 6 | 21 | 10 |
23 | 19 | 12 | 4 | 26 | 8 | 16 | 7 | 27 | 20 | 13 | 2 |
41 | 52 | 31 | 37 | 47 | 55 | 30 | 40 | 51 | 45 | 33 | 48 |
44 | 49 | 39 | 56 | 34 | 53 | 46 | 42 | 50 | 36 | 29 | 32 |
Для получения последовательности K(i) произведём конкатенацию последовательностей C(i) и D(i). В полученной последовательности C(i)D(i) переставим биты согласно таблице.
K(0) = 010100010010110010001100101001110100001111000000
K(1) | 010100000010110010101100010101110010101011000010 |
K(2) | 010100001010110010100100010100001010001101000111 |
K(3) | 110100001010110000100110111101101000010010001100 |
K(4) | 111000001010011000100110010010000011011111001011 |
K(5) | 111000001001011000100110001111101111000000101001 |
K(6) | 111000001001001001110010011000100101110101100010 |
K(7) | 101001001101001001110010100011001010100100111010 |
K(8) | 101001100101001101010010111001010101111001010000 |
K(9) | 001001100101001101010011110010111001101001000000 |
K(10) | 001011110101000101010001110100001100011100111100 |
K(11) | 000011110100000111011001000110010001111010001100 |
K(12) | 000111110100000110011001110110000111000010110001 |
K(13) | 000111110000100110001001001000110110101000101101 |
K(14) | 000110110010100010001101101100100011100110010010 |
K(15) | 000110010010110010001100101001010000001100110111 |
K(16) | 010100010010110010001100101001110100001111000000 |
По таблице преобразовать последовательности R(i)
32 | 1 | 2 | 3 | 4 | 5 | 4 | 5 | 6 | 7 | 8 | 9 |
8 | 9 | 10 | 11 | 12 | 13 | 12 | 13 | 14 | 15 | 16 | 17 |
13 | 17 | 18 | 19 | 20 | 21 | 20 | 21 | 22 | 23 | 24 | 25 |
24 | 25 | 26 | 27 | 28 | 29 | 28 | 29 | 30 | 31 | 32 | 1 |
R(0) = 11111111111111110101001101110000
E(R(0)) = 011111111111111111111110101010100110101110100001
R(0)K(1) xor = 001011111101001101010010111111010100000101100011
S(1) = 2 = 0010 S(2) = 14 = 1110 S(3) = 9 = 1001 S(4) = 2 = 0010
S(5) = 3 = 0011 S(6) = 3 = 0011 S(7) = 11 = 1011 S(8) = 1 = 0001
Выходная (S1..S8) = 00101110100100100011001110110001
16 | 7 | 20 | 21 | 29 | 12 | 28 | 17 | 1 | 15 | 23 | 26 | 5 | 18 | 31 | 10 |
2 | 8 | 24 | 14 | 32 | 27 | 3 | 9 | 19 | 13 | 30 | 6 | 22 | 11 | 4 | 25 |
Результат = 01100110011010000010111110010001
L(0) = 11111111000011010001010000000000
R(0) = 01100110011010000010111110010001
XOR R(1)=10011001011001010011101110010001
L(1) = R(0)
В итоге этих действий появляется новая правая половина, а старая правая половина становится новой левой. Эти действия повторяются 16 раз, образуя 16 этапов DES.
L(1) = 11111111111111110101001101110000
R(1) = 10011001011001010011101110010001
E(R1) = 110011110010101100001010100111110111110010100011
R(1) XOR K(2) = 100111111000011110101110110011111101111111100100
S(1..8) = 00101001100011011111100011000100
P = 10110001000111000101001111100001
R(1) XOR L(1) = 01001110111000110000000010010001 = R(2)
L(2) = R(1) = 10011001011001010011101110010001
E(R2) = 101001011101011100000110100000000001010010100010
R(2) XOR K(3) = 011101010111101100100000011101101001000000101110
S(1..8) = 00111010001110101000100101000010
P = 01010101010110100010001001000110
R(2) XOR L(2) = 11001100001111110001100111010111 = R(3)
L(3) = R(2) = 01001110111000110000000010010001
E(R3) = 111001011000000111111110100011110011111010101111
R(3) XOR K(4) = 000001010010011111011000110001110000100101100100
S(1..8) = 00000111000110110110011111010100
P = 11000110011101000110000011111001
R(3) XOR L(3) = 10001000100101110110000001101000 = R(4)
L(4) = R(3) = 11001100001111110001100111010111
E(R4) = 010001010001010010101110101100000000001101010001
R(4) XOR K(5) = 101001011000001010001000100011101111001101111000
S(1..8) = 01001100001100001000101000011100
P = 00011111001010001000000000110100
R(4) XOR L(4) = 11010011000101111001100111100011 = R(5)
L(5) = R(4) = 10001000100101110110000001101000
E(R5) = 111010100110100010101111110011110011111100000111
R(5) XOR K(6) = 000010101111101011011101101011010110001001100101
S(1..8) = 01000010100111101110010001001110
P = 01001101010101101001000111101000
R(5) XOR L(5) = 11000101110000011111000110000000 = R(6)
L(6) = R(5) = 11010011000101111001100111100011
E(R6) = 011000001011111000000011111110100011110000000001
R(6) XOR K(7) = 110001000110110001110001011101101001010100111011
S(1..8) = 01011110010010011000100110010101
P = 11010011000010011010100001110011
R(6) XOR L(6) = 00000000000111100011000110010000 = R(7)
L(7) = R(6) = 11000101110000011111000110000000
E(R7) = 000000000000000011111100000110100011110010100000
R(7) XOR K(8) = 101001100101001110101110111111110110001011110000
S(1..8) = 01001010010111110011101010010000
P = 11110110011010011001000011000001
R(7) XOR L(7) = 00110011101010000110000101000001 = R(8)
L(8) = R(7) = 00000000000111100011000110010000
E(R8) = 100110100111110101010000001100000010101000000010
R(8) XOR K(9) = 101111000010111000000011111110111011000001000010
S(1..8) = 01110001010110001110000010110010
P = 00000111000001111100011011000011
R(8) XOR L(8) = 00000111000110011111011101010011 = R(9)
L(9) = R(8) = 00110011101010000110000101000001
E(R9) = 100000001110100011110011111110101110101010100110
R(9) XOR K(10) = 101011111011100110100010001010100010110110011010
S(1..8) = 10010101100101101010111010000000
P = 00010101111000000101000110011011
R(9) XOR L(9) = 00100110010010000011000011011010 = R(10)
L(10) = R(9) = 00000111000110011111011101010011
E(R10) = 000100001100001001010000000110100001011011110100
R(10) XOR K(11) = 000111111000001110001001000000110000100001111000
S(1..8) = 01001001010101100010011101101111
P = 00001100011110111111110010101000
R(10) XOR L(10) = 00001011011000100000101111111011 = R(11)
L(11) = R(10) = 00100110010010000011000011011010
E(R11) = 100001010110101100000100000001010111111111110110
R(11) XOR K(12) = 100110100010101010011101110111010000111101000111
S(1..8) = 10001110111111101001000000111000
P = 01101111110010010001010101010100
R(11) XOR L(11) = 01001001100000010010010110001110 = R(12)
L(12) = R(11) = 00001011011000100000101111111011
E(R12) = 001001010011110000000010100100001011110001011100
R(12) XOR K(13) = 001110100011010110001011101100111101011001110001
S(1..8) = 10001000011111110111100000101111
P = 10111100110011110001110011100100
R(12) XOR L(12) = 10110111101011010001011100011111 = R(13)
L(13) = R(12) = 01001001100000010010010110001110
E(R13) = 110110101111110101011010100010101110100011111111
R(13) XOR K(14) = 110000011101010111010111001110001101000101101101
S(1..8) = 11111011111011000110100110111000
P = 01011010100011011111011111000111
R(13) XOR L(13) = 00010011000011001101001001001001 = R(14)
L(14) = R(13) = 10110111101011010001011100011111
E(R14) = 100010100110100001011001011010100100001001010010
R(14) XOR K(15) = 100100110100010011010101110011110100000101100101
S(1..8) = 11101100100000101111010010111110
P = 00101011110011101000011110111001
R(14) XOR L(14) = 10011100011000111001000010100110 = R(15)
L(15) = R(14) = 00010011000011001101001001001001
E(R15) = 010011111000001100000111110010100001010100001101
R(15) XOR K(16) = 000111101010111110001011011011010101011011001101
S(1..8) = 01000100011111111001110111110111
P = 10110111010100111011110001111101
R(15) XOR L(15) = 10100100010111110110111000110100 = R(16)
L(16) = R(15) = 10011100011000111001000010100110
40 | 8 | 48 | 16 | 56 | 24 | 64 | 32 | 39 | 7 | 47 | 15 | 55 | 23 | 63 | 31 |
38 | 6 | 46 | 14 | 54 | 22 | 62 | 30 | 37 | 5 | 45 | 13 | 53 | 21 | 61 | 29 |
36 | 4 | 44 | 12 | 52 | 20 | 60 | 28 | 35 | 3 | 43 | 11 | 51 | 19 | 59 | 27 |
34 | 2 | 42 | 10 | 50 | 18 | 58 | 26 | 33 | 1 | 41 | 9 | 49 | 17 | 57 | 25 |
Вход (L16R16) = 1001110001100011100100001010011010100100010111110110111000110100
Полученная = 00110000 00111001 11101011 01101000 01100110 10011011 00111000 11000101 =
48 57 235 104 102 155 56 197 = 0 9 л h f > 8 Е
Шифрование
Расшифровка
unit Unit1;
interface
uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls;
type
TForm1 = class(TForm)
Memo1: TMemo;
Memo2: TMemo;
Label1: TLabel;
Label2: TLabel;
Button1: TButton;
Button2: TButton;
Memo3: TMemo;
Label3: TLabel;
procedure Button1Click(Sender: TObject);
procedure Button2Click(Sender: TObject);
private
{ Private declarations }
public
{ Public declarations }
end;
var
Form1: TForm1;
c, d, k: array [0..16] of AnsiString;
r, l, rez, z: AnsiString;
w, desK, desR: byte;
implementation
{$R *.dfm}
procedure DecToBin(input: string; var output: ansistring);
var
a, b: double;
ost, q, w: byte;
st: AnsiString;
str: string[8];
begin
str:= ' ';
for w:= 1 to 8 do
begin
q:= Ord(input[w]);
b:= q;
While b <> 1 do
begin
a:= q / 2;
b:= Int(a);
if a = b then
ost:= 0
else ost:= 1;
q:= Round(b);
st:= st + IntToStr(ost);
if b = 1 then st:= st + '1';
end;
ost:= 1;
for q:= Length(st) downto 1 do // ïåðåâîðîò ñòðîêè
begin
str[ost]:= st[q];
Inc(ost);
end;
case Length(st) of
1: Insert('0000000', str, 1); // äîáàâëåíèå íåäîñòàþùèõ íîëåé
2: Insert('000000', str, 1);
3: Insert('00000', str, 1);
4: Insert('0000', str, 1);
5: Insert('000', str, 1);
6: Insert('00', str, 1);
7: Insert('0', str, 1);
end;
output:= output + str;// + ' ';
str:= ' ';
st:= '';
end;
end;
procedure BeginPerestanovka(input: ansistring; var output: ansistring);
begin
output:=
input[58] + input[50] + input[42] + input[34] + input[26] + input[18]
+ input[10] + input[2]
+ input[60] + input[52] + input[44] + input[36] + input[28] + input[20]
+ input[12] + input[4]
+ input[62] + input[54] + input[46] + input[38] + input[30] + input[22]
+ input[14] + input[6]
+ input[64] + input[56] + input[48] + input[40] + input[32] + input[24]
+ input[16] + input[8]
+ input[57] + input[49] + input[41] + input[33] + input[25] + input[17]
+ input[9] + input[1]
+ input[59] + input[51] + input[43] + input[35] + input[27] + input[19]
+ input[11] + input[3]
+ input[61] + input[53] + input[45] + input[37] + input[29] + input[21]
+ input[13] + input[5]
+ input[63] + input[55] + input[47] + input[39] + input[31] + input[23]
+ input[15] + input[7];
end;
procedure PerestanovkaKeyB(input: AnsiString; var output: AnsiString);
begin
output:= '';
output:=
input[57]+input[49]+input[41]+input[33]+input[25]+input[17]+input[9]
+input[1]+input[58]+input[50]+input[42]+input[34]+input[26]+input[18]
+input[10]+input[2]+input[59]+input[51]+input[43]+input[35]+input[27]
+input[19]+input[11]+input[3]+input[60]+input[52]+input[44]+input[36]
+input[63]+input[55]+input[47]+input[39]+input[31]+input[23]+input[15]
+input[7]+input[62]+input[54]+input[46]+input[38]+input[30]+input[22]
+input[14]+input[6]+input[61]+input[53]+input[45]+input[37]+input[29]
+input[21]+input[13]+input[5]+input[28]+input[20]+input[12]+input[4];
end;
procedure pocledovatelnostiK;
var
w: byte;
bufer: AnsiString;
begin
for w:= 0 to 16 do
begin
bufer:= Concat(c[w], d[w]);
k[w]:=
Concat(bufer[14], bufer[17], bufer[11], bufer[24], bufer[1], bufer[5],
bufer[3], bufer[28], bufer[15], bufer[6], bufer[21], bufer[10],
bufer[23], bufer[19], bufer[12], bufer[4], bufer[26], bufer[8],
bufer[16], bufer[7], bufer[27], bufer[20], bufer[13], bufer[2],
bufer[41], bufer[52], bufer[31], bufer[37], bufer[47], bufer[55],
bufer[30], bufer[40], bufer[51], bufer[45], bufer[33], bufer[48],
bufer[44], bufer[49], bufer[39], bufer[56], bufer[34], bufer[53],
bufer[46], bufer[42], bufer[50], bufer[36], bufer[29], bufer[32]);
end;
end;
procedure FuncE;
const
s1 : array[0..3, 0..15] of string[4] =
(('1110','0100','1101','0001','0010','1111','1011','1000','0011','1010','0110','1100','0101','1001','0000','0111'),
('0000','1111','0111','0100','1110','0010','1101','0001','1010','0110','1100','1011','1001','0101','0011','1000'),
('0100','0001','1110','1000','1001','0110','0010','1011','1111','1100','1001','0111','0011','1010','0101','0000'),
('1111','1100','1000','0010','0100','1001','0001','0111','0101','1011','0011','1110','1010','0000','1001','1101'));
s2 : array[0..3, 0..15] of string[4] =
(('1111','0001','1000','1110','0110','1011','0011','0100','1001','0111','0010','1101','1100','0000','0101','1010'),
('0011','1101','0100','0111','1111','0010','1000','1110','1100','0000','0001','1010','0110','1001','1011','0101'),
('0000','1110','0111','1011','1010','0100','1101','0001','0101','1000','1100','0110','1001','0011','0010','1111'),
('1101','1000','1010','0001','0011','1111','0100','0010','1011','0110','0111','1100','0000','0101','1110','1001'));
s3 : array [0..3, 0..15] of string[4] =
(('1010','0000','1001','1110','0110','0011','1111','0101','0001','1101','1100','0111','1011','0100','0010','1000'),
('1101','0111','0000','1001','0011','0100','0110','1010','0010','1000','0101','1110','1100','1011','1111','0001'),
('1101','0110','0100','1001','1000','1111','0011','0000','1011','0001','0010','1100','0101','1010','1110','0111'),
('0001','1010','1101','0000','0110','1001','1000','0111','0100','1111','1110','0011','1011','0101','0010','1100'));
s4 : array [0..3, 0..15] of string[4] =
(('0111','1101','1110','0011','0000','0110','1001','1010','0001','0010','1000','0101','1011','1100','0100','1111'),
('1101','1000','1011','0101','0110','1111','0000','0011','0100','0111','0010','1100','0001','1010','1110','1001'),
('1010','0110','1001','0000','1100','1011','0111','1101','1111','0001','0011','1110','0101','0010','1000','0100'),
('0011','1111','0000','0110','1010','0001','1101','1000','1001','0100','0101','1011','1100','0111','0010','1110'));
s5 : array [0..3, 0..15] of string[4] =
(('0010','1100','0100','0001','0111','1010','1011','0110','1000','0101','0011','1111','1101','0000','1110','1001'),
('1110','1011','0010','1100','0100','0111','1101','0001','0101','0000','1111','1010','0011','1001','1000','0110'),
('0100','0010','0001','1011','1010','1101','0111','1000','1111','1001','1100','0101','0110','0011','0000','1110'),
('1011','1000','1100','0111','0001','1110','0010','1101','0110','1111','0000','1001','1010','0100','0101','0011'));
s6 : array [0..3, 0..15] of string[4] =
(('1100','0001','1010','1111','1001','0010','0110','1000','0000','1101','0011','0100','1110','0111','0101','1011'),
('1010','1111','0100','0010','0111','1100','1001','0101','0110','0001','1101','1110','0000','1011','0011','1000'),
('1001','1110','1111','0101','0010','1000','1100','0011','0111','0000','0100','1010','0001','1101','1011','0110'),
('0100','0011','0010','1100','1001','0101','1111','1010','1011','1110','0001','0111','0110','0000','1000','1101'));
s7 : array [0..3, 0..15] of string[4] =
(('0100','1011','0010','1110','1111','0000','1000','1101','0011','1100','1001','0111','0101','1010','0110','0001'),
('1101','0000','1011','0111','0100','1001','0001','1010','1110','0011','0101','1100','0011','1111','1000','0110'),
('0001','0100','1011','1101','1100','0011','0111','1110','1010','1111','0110','1000','0000','0101','1001','0010'),
('0110','1011','1101','1000','0001','0100','1010','0111','1001','0101','0000','1111','1110','0010','0011','1100'));
s8 : array [0..3, 0..15] of string[4] =
(('1101','0010','1000','0100','0110','1111','1011','0001','1010','1001','0011','1110','0101','0000','1100','0111'),
('0001','1111','1101','1000','1010','0011','0111','0100','1100','0101','0110','1011','0000','1110','1001','0011'),
('0111','1011','0100','0001','1001','1100','1110','0010','0000','0110','1010','1101','1111','0011','0101','1000'),
('0010','0001','1110','0111','0100','1010','1000','1101','1111','1100','1001','0000','0011','0101','0110','1011'));
var
_1, _2: AnsiString;
p: string[6];
v, b, x, a, j: byte;
u: string[2];
o: string[4];
function s(var a, b: byte): byte;
begin
if u = '00' then a:= 0
else if u = '01' then a:= 1
else if u = '10' then a:= 2
else if u = '11' then a:= 3;
if o = '0000' then b:= 0
else if o = '0001' then b:= 1
else if o = '0010' then b:= 2
else if o = '0011' then b:= 3
else if o = '0100' then b:= 4
else if o = '0101' then b:= 5
else if o = '0110' then b:= 6
else if o = '0111' then b:= 7
else if o = '1000' then b:= 8
else if o = '1001' then b:= 9
else if o = '1010' then b:= 10
else if o = '1011' then b:= 11
else if o = '1100' then b:= 12
else if o = '1101' then b:= 13
else if o = '1110' then b:= 14
else if o = '1111' then b:= 15;
end;
begin
for a:= 1 to 16 do
begin
z:= Concat(r[32],r[1],r[2],r[3],r[4],r[5],r[4],r[5],r[6],r[7],r[8],r[9],
r[8],r[9],r[10],r[11],r[12],r[13],r[12],r[13],r[14],r[15],r[16],r[17],
r[16],r[17],r[18],r[19],r[20],r[21],r[20],r[21],r[21],r[23],r[24],r[25],
r[24],r[25],r[26],r[27],r[28],r[29],r[28],r[29],r[30],r[31],r[32],r[1]);
_1:= k[a];
r:= z;
for j:= 1 to 48 do // xor
begin
v:= StrToInt(r[j]);
b:= StrToInt(_1[j]);
x:= v xor b;
_2:= Concat(_2, IntToStr(x));
end;
p:= Copy(_2, 1, 6); u:= p[1] + p[6]; o:= Copy(p, 2, 5); s(v, b);
rez:= rez + s1[v, b];
p:= Copy(_2, 7, 12); u:= p[1] + p[6]; o:= Copy(p, 2, 5); s(v, b);
rez:= rez + s2[v, b];
p:= Copy(_2, 13, 18); u:= p[1] + p[6]; o:= Copy(p, 2, 5); s(v, b);
rez:= rez + s3[v, b];
p:= Copy(_2, 19, 24); u:= p[1] + p[6]; o:= Copy(p, 2, 5); s(v, b);
rez:= rez + s4[v, b];
p:= Copy(_2, 25, 30); u:= p[1] + p[6]; o:= Copy(p, 2, 5); s(v, b);
rez:= rez + s5[v, b];
p:= Copy(_2, 31, 36); u:= p[1] + p[6]; o:= Copy(p, 2, 5); s(v, b);
rez:= rez + s6[v, b];
p:= Copy(_2, 37, 42); u:= p[1] + p[6]; o:= Copy(p, 2, 5); s(v, b);
rez:= rez + s7[v, b];
p:= Copy(_2, 43, 48); u:= p[1] + p[6]; o:= Copy(p, 2, 5); s(v, b);
rez:= rez + s8[v, b];
// Ð ïåðåñòàíîâêà
_2:= rez;
rez:= Concat(_2[16], _2[7], _2[20], _2[21], _2[29], _2[12], _2[28], _2[17],
_2[1], _2[15], _2[23], _2[26], _2[5], _2[18], _2[31], _2[10],
_2[2], _2[8], _2[24], _2[14], _2[32], _2[27], _2[3], _2[9],
_2[19], _2[13], _2[30], _2[6], _2[22], _2[11], _2[4], _2[25]);
for w:= 1 to 32 do
begin
v:= StrToInt(r[w]);
b:= StrToInt(l[w]);
x:= v xor b;
_2:= Concat(_2, IntToStr(x));
end;
l:= r;
r:= _2;
end;
_2:= Concat(l, r);
rez:= Concat(
_2[40], _2[8], _2[48], _2[16], _2[56], _2[24], _2[64], _2[32],
_2[39], _2[7], _2[47], _2[15], _2[55], _2[23], _2[63], _2[31],
_2[38], _2[6], _2[46], _2[14], _2[54], _2[22], _2[62], _2[30],
_2[37], _2[5], _2[45], _2[13], _2[53], _2[21], _2[61], _2[29],
_2[36], _2[4], _2[44], _2[12], _2[52], _2[20], _2[60], _2[28],
_2[35], _2[3], _2[43], _2[11], _2[51], _2[19], _2[59], _2[27],
_2[34], _2[2], _2[42], _2[10], _2[50], _2[18], _2[58], _2[26],
_2[33], _2[1], _2[41], _2[9], _2[49], _2[17], _2[57], _2[25]);
end;
procedure FuncER;
const
s1 : array[0..3, 0..15] of string[4] =
(('1110','0100','1101','0001','0010','1111','1011','1000','0011','1010','0110','1100','0101','1001','0000','0111'),
('0000','1111','0111','0100','1110','0010','1101','0001','1010','0110','1100','1011','1001','0101','0011','1000'),
('0100','0001','1110','1000','1001','0110','0010','1011','1111','1100','1001','0111','0011','1010','0101','0000'),
('1111','1100','1000','0010','0100','1001','0001','0111','0101','1011','0011','1110','1010','0000','1001','1101'));
s2 : array[0..3, 0..15] of string[4] =
(('1111','0001','1000','1110','0110','1011','0011','0100','1001','0111','0010','1101','1100','0000','0101','1010'),
('0011','1101','0100','0111','1111','0010','1000','1110','1100','0000','0001','1010','0110','1001','1011','0101'),
('0000','1110','0111','1011','1010','0100','1101','0001','0101','1000','1100','0110','1001','0011','0010','1111'),
('1101','1000','1010','0001','0011','1111','0100','0010','1011','0110','0111','1100','0000','0101','1110','1001'));
s3 : array [0..3, 0..15] of string[4] =
(('1010','0000','1001','1110','0110','0011','1111','0101','0001','1101','1100','0111','1011','0100','0010','1000'),
('1101','0111','0000','1001','0011','0100','0110','1010','0010','1000','0101','1110','1100','1011','1111','0001'),
('1101','0110','0100','1001','1000','1111','0011','0000','1011','0001','0010','1100','0101','1010','1110','0111'),
('0001','1010','1101','0000','0110','1001','1000','0111','0100','1111','1110','0011','1011','0101','0010','1100'));
s4 : array [0..3, 0..15] of string[4] =
(('0111','1101','1110','0011','0000','0110','1001','1010','0001','0010','1000','0101','1011','1100','0100','1111'),
('1101','1000','1011','0101','0110','1111','0000','0011','0100','0111','0010','1100','0001','1010','1110','1001'),
('1010','0110','1001','0000','1100','1011','0111','1101','1111','0001','0011','1110','0101','0010','1000','0100'),
('0011','1111','0000','0110','1010','0001','1101','1000','1001','0100','0101','1011','1100','0111','0010','1110'));
s5 : array [0..3, 0..15] of string[4] =
(('0010','1100','0100','0001','0111','1010','1011','0110','1000','0101','0011','1111','1101','0000','1110','1001'),
('1110','1011','0010','1100','0100','0111','1101','0001','0101','0000','1111','1010','0011','1001','1000','0110'),
('0100','0010','0001','1011','1010','1101','0111','1000','1111','1001','1100','0101','0110','0011','0000','1110'),
('1011','1000','1100','0111','0001','1110','0010','1101','0110','1111','0000','1001','1010','0100','0101','0011'));
s6 : array [0..3, 0..15] of string[4] =
(('1100','0001','1010','1111','1001','0010','0110','1000','0000','1101','0011','0100','1110','0111','0101','1011'),
('1010','1111','0100','0010','0111','1100','1001','0101','0110','0001','1101','1110','0000','1011','0011','1000'),
('1001','1110','1111','0101','0010','1000','1100','0011','0111','0000','0100','1010','0001','1101','1011','0110'),
('0100','0011','0010','1100','1001','0101','1111','1010','1011','1110','0001','0111','0110','0000','1000','1101'));
s7 : array [0..3, 0..15] of string[4] =
(('0100','1011','0010','1110','1111','0000','1000','1101','0011','1100','1001','0111','0101','1010','0110','0001'),
('1101','0000','1011','0111','0100','1001','0001','1010','1110','0011','0101','1100','0011','1111','1000','0110'),
('0001','0100','1011','1101','1100','0011','0111','1110','1010','1111','0110','1000','0000','0101','1001','0010'),
('0110','1011','1101','1000','0001','0100','1010','0111','1001','0101','0000','1111','1110','0010','0011','1100'));
s8 : array [0..3, 0..15] of string[4] =
(('1101','0010','1000','0100','0110','1111','1011','0001','1010','1001','0011','1110','0101','0000','1100','0111'),
('0001','1111','1101','1000','1010','0011','0111','0100','1100','0101','0110','1011','0000','1110','1001','0011'),
('0111','1011','0100','0001','1001','1100','1110','0010','0000','0110','1010','1101','1111','0011','0101','1000'),
('0010','0001','1110','0111','0100','1010','1000','1101','1111','1100','1001','0000','0011','0101','0110','1011'));
var
_1, _2: AnsiString;
p: string[6];
v, b, x, a, j: byte;
u: string[2];
o: string[4];
function s(var a, b: byte): byte;
begin
if u = '00' then a:= 0
else if u = '01' then a:= 1
else if u = '10' then a:= 2
else if u = '11' then a:= 3;
if o = '0000' then b:= 0
else if o = '0001' then b:= 1
else if o = '0010' then b:= 2
else if o = '0011' then b:= 3
else if o = '0100' then b:= 4
else if o = '0101' then b:= 5
else if o = '0110' then b:= 6
else if o = '0111' then b:= 7
else if o = '1000' then b:= 8
else if o = '1001' then b:= 9
else if o = '1010' then b:= 10
else if o = '1011' then b:= 11
else if o = '1100' then b:= 12
else if o = '1101' then b:= 13
else if o = '1110' then b:= 14
else if o = '1111' then b:= 15;
end;
begin
for a:= 16 downto 1 do
begin
z:= Concat(r[32],r[1],r[2],r[3],r[4],r[5],r[4],r[5],r[6],r[7],r[8],r[9],
r[8],r[9],r[10],r[11],r[12],r[13],r[12],r[13],r[14],r[15],r[16],r[17],
r[16],r[17],r[18],r[19],r[20],r[21],r[20],r[21],r[21],r[23],r[24],r[25],
r[24],r[25],r[26],r[27],r[28],r[29],r[28],r[29],r[30],r[31],r[32],r[1]);
_1:= k[a];
r:= z;
for j:= 1 to 48 do // xor
begin
v:= StrToInt(r[j]);
b:= StrToInt(_1[j]);
x:= v xor b;
_2:= Concat(_2, IntToStr(x));
end;
p:= Copy(_2, 1, 6); u:= p[1] + p[6]; o:= Copy(p, 2, 5); s(v, b);
rez:= rez + s1[v, b];
p:= Copy(_2, 7, 12); u:= p[1] + p[6]; o:= Copy(p, 2, 5); s(v, b);
rez:= rez + s2[v, b];
p:= Copy(_2, 13, 18); u:= p[1] + p[6]; o:= Copy(p, 2, 5); s(v, b);
rez:= rez + s3[v, b];
p:= Copy(_2, 19, 24); u:= p[1] + p[6]; o:= Copy(p, 2, 5); s(v, b);
rez:= rez + s4[v, b];
p:= Copy(_2, 25, 30); u:= p[1] + p[6]; o:= Copy(p, 2, 5); s(v, b);
rez:= rez + s5[v, b];
p:= Copy(_2, 31, 36); u:= p[1] + p[6]; o:= Copy(p, 2, 5); s(v, b);
rez:= rez + s6[v, b];
p:= Copy(_2, 37, 42); u:= p[1] + p[6]; o:= Copy(p, 2, 5); s(v, b);
rez:= rez + s7[v, b];
p:= Copy(_2, 43, 48); u:= p[1] + p[6]; o:= Copy(p, 2, 5); s(v, b);
rez:= rez + s8[v, b];
// Ð ïåðåñòàíîâêà
_2:= rez;
rez:= Concat(_2[16], _2[7], _2[20], _2[21], _2[29], _2[12], _2[28], _2[17],
_2[1], _2[15], _2[23], _2[26], _2[5], _2[18], _2[31], _2[10],
_2[2], _2[8], _2[24], _2[14], _2[32], _2[27], _2[3], _2[9],
_2[19], _2[13], _2[30], _2[6], _2[22], _2[11], _2[4], _2[25]);
for w:= 1 to 32 do
begin
v:= StrToInt(r[w]);
b:= StrToInt(l[w]);
x:= v xor b;
_2:= Concat(_2, IntToStr(x));
end;
l:= r;
r:= _2;
end;
_2:= Concat(l, r);
rez:= Concat(
_2[40], _2[8], _2[48], _2[16], _2[56], _2[24], _2[64], _2[32],
_2[39], _2[7], _2[47], _2[15], _2[55], _2[23], _2[63], _2[31],
_2[38], _2[6], _2[46], _2[14], _2[54], _2[22], _2[62], _2[30],
_2[37], _2[5], _2[45], _2[13], _2[53], _2[21], _2[61], _2[29],
_2[36], _2[4], _2[44], _2[12], _2[52], _2[20], _2[60], _2[28],
_2[35], _2[3], _2[43], _2[11], _2[51], _2[19], _2[59], _2[27],
_2[34], _2[2], _2[42], _2[10], _2[50], _2[18], _2[58], _2[26],
_2[33], _2[1], _2[41], _2[9], _2[49], _2[17], _2[57], _2[25]);
end;
procedure TForm1.Button1Click(Sender: TObject);
var
output, put, key, c0, d0, k0: AnsiString;
e1: string[1];
e2: string[2];
begin
DecToBin(Form1.Memo1.Text, output);
BeginPerestanovka(output, put);
l:= Copy(put, 1, 32);
r:= Copy(put, 33, 64);
DecToBin(Form1.Memo3.Text, key);
PerestanovkaKeyB(key, key);
c0:= Copy(key, 1, 28);
d0:= Copy(key, 29, 56);
c[0]:= c0;
d[0]:= d0;
for w:= 1 to 2 do
begin
e1:= c[w-1];
c[w]:= Copy(c[w-1], 2, 28) + e1;
e1:= d[w-1];
d[w]:= Copy(d[w-1], 2, 28) + e1;
end;
for w:= 3 to 8 do
begin
e2:= c[w-1];
c[w]:= Copy(c[w-1], 3, 28) + e2;
e2:= d[w-1];
d[w]:= Copy(d[w-1], 3, 28) + e2;
end;
e1:= c[8];
c[9]:= Copy(c[8], 2, 28) + e1;
e1:= d[8];
d[w]:= Copy(d[8], 2, 28) + e1;
for w:= 10 to 15 do
begin
e2:= c[w-1];
c[w]:= Copy(c[w-1], 3, 28) + e2;
e2:= d[w-1];
d[w]:= Copy(d[w-1], 3, 28) + e2;
end;
e1:= c[15];
c[16]:= Copy(c[15], 2, 28) + e1;
e1:= d[15];
d[16]:= Copy(d[15], 2, 28) + e1;
pocledovatelnostiK;
FuncE;
Form1.Memo2.Text:= rez;
end;
procedure TForm1.Button2Click(Sender: TObject);
var
output, put, key, c0, d0, k0: AnsiString;
e1: string[1];
e2: string[2];
begin
DecToBin(Form1.Memo2.Text, output);
BeginPerestanovka(output, put);
l:= Copy(put, 1, 32);
r:= Copy(put, 33, 64);
DecToBin(Form1.Memo3.Text, key);
PerestanovkaKeyB(key, key);
c0:= Copy(key, 1, 28);
d0:= Copy(key, 29, 56);
c[0]:= c0;
d[0]:= d0;
for w:= 1 to 2 do
begin
e1:= c[w-1];
c[w]:= Copy(c[w-1], 2, 28) + e1;
e1:= d[w-1];
d[w]:= Copy(d[w-1], 2, 28) + e1;
end;
for w:= 3 to 8 do
begin
e2:= c[w-1];
c[w]:= Copy(c[w-1], 3, 28) + e2;
e2:= d[w-1];
d[w]:= Copy(d[w-1], 3, 28) + e2;
end;
e1:= c[8];
c[9]:= Copy(c[8], 2, 28) + e1;
e1:= d[8];
d[w]:= Copy(d[8], 2, 28) + e1;
for w:= 10 to 15 do
begin
e2:= c[w-1];
c[w]:= Copy(c[w-1], 3, 28) + e2;
e2:= d[w-1];
d[w]:= Copy(d[w-1], 3, 28) + e2;
end;
e1:= c[15];
c[16]:= Copy(c[15], 2, 28) + e1;
e1:= d[15];
d[16]:= Copy(d[15], 2, 28) + e1;
pocledovatelnostiK;
FuncER;
Form1.Memo1.Text:= rez;
end;
end.
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОУ ВПО ИЖЕВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ КАФЕДРА ”ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ” Отчёт по курсу «МИСЗИ» студента 5 курса специальности 2
Штриховое кодирование: виды и области применения
ЭВМ и его программное обеспеченине
Эволюция вычислительных сетей
Экспертные системы
Экспертные системы и их использование
Электронная доставка документов
Электронная почта
Электронная цифровая подпись и её применение
Электронно-вычислительная машина
Электронно-вычислительные машины
Copyright (c) 2024 Stud-Baza.ru Рефераты, контрольные, курсовые, дипломные работы.