База знаний студента. Реферат, курсовая, контрольная, диплом на заказ

курсовые,контрольные,дипломы,рефераты

Сингулярные интегралы — Математика

Федеральное агентство по образованию

Государственное муниципальное образовательное учреждение

высшего профессионального образования

Вятский государственный гуманитарный университет

(ВятГГУ)

Математический факультет

Кафедра математического анализа и методики преподавания математики

Выпускная квалификационная работа

Сингулярные интегралы.

Выполнила:

студентка V курса

математического факультета

Сколова Ирина Юрьевна

____________________

Научный руководитель:

старший преподаватель кафедры математического анализа и МПМ

Гукасов Артур Константинович

____________________

Рецензент:

кандидат физико-математических наук, доцент

Подгорная Ирина Иссаковна

____________________

Допущена к защите в ГАК

Зав. кафедрой       ___________________   Крутихина М. В.

«     »  _______________

Декан факультета ___________________   Варанкина В. И.

«     »  _______________

Киров 2005

Оглавление

Введение………………………………………………………………………...с. 3

§1. Понятие сингулярного интеграла…………………………………………с. 6

§2. Представление функции сингулярным интегралом в заданной точке…с. 11

§3. Приложения в теории рядов Фурье.............................................................с. 18

§4. Сингулярный интеграл Пуассона................................................................с. 23

Литература……………………………………………………………………...с. 27


Введение

Цель работы – познакомиться с понятием сингулярного интеграла, рассмотреть представление функции сингулярным интегралом в заданной точке и приложения в теории рядов Фурье. 

Основной вопрос теории сингулярных интегралов состоит в установлении связи предельных значений интеграла  при  со значением функции f (t) в точке x. Важным также является вопрос о представлении суммируемой функции сингулярным интегралом в точках, где эта функция служит производной своего неопределенного интеграла, или в точках Лебега. Теория сингулярных интегралов имеет многочисленные приложения. Например, вопрос о сходимости ряда Фурье разрешается с помощью сингулярного интеграла.

Во всем дальнейшем интеграл будем понимать в смысле интеграла Лебега. Напомним, что функция называется суммируемой, если существует конечный интеграл от этой функции.

В работе нам будут необходимы следующие определения и теоремы.    

Определение. Если в точке x будет  и , то точка x называется точкой Лебега функции f (t).

Теорема (Н. Н. Лузин). Пусть f (x) измеримая и почти везде конечная функция, заданная на [a, b]. Каково бы ни было δ>0, существует такая непрерывная функция , что .

Если, в частности, , то и .

Теорему Н. Н. Лузина можно сформулировать и так: измеримая и почти везде конечная функция становится непрерывной, если пренебречь множеством сколь угодно малой меры.    

Определение. Пусть дано измеримое множество E. Взяв произвольную точку x и число h>0, положим E(, h)=E∙[-h, +h]. Это тоже измеримое множество.

Предел отношения  при h→0 называется плотностью множества E в точке  и обозначается через .

Определение. Пусть функция f (x) задана на сегменте [a, b] и . Если существует такое измеримое множество E, лежащее на [a, b] и имеющее точку  точкой плотности, что f (x) вдоль E непрерывна в точке , то говорят, что f (x) аппроксимативно непрерывна в точке .        

Определение. Измеримая функция f (x) называется функцией с суммируемым квадратом, или функцией, суммируемой с квадратом, если

                            .

Множество всех функций с суммируемым квадратом обозначается символом .

Определение. Пусть на сегменте [a, b] задана конечная функция f (x). Если всякому ε>0 отвечает такое δ>0, что для любой конечной системы взаимно не пересекающихся интервалов , для которой  оказывается

,                                                 (3)

то говорят, что функция f (x) абсолютно непрерывна.

Не изменяя смысла определения, можно условие (3) заменить более тяжелым условием .

Определение. Две функции f (x) и g(x), заданные на сегменте [a, b], называются взаимно ортогональными, если .

Определение. Функция f (x), заданная на [a, b], называется нормальной, если .

Определение. Система функций , , , …, заданных на сегменте [a, b], называется ортонормальной системой, если каждая функция системы нормирована, а любые две функции системы взаимно ортогональны.

Определение. Пусть  есть ортонормальная система и f (x) некоторая функция из . Числа  называются коэффициентами Фурье функции f (x) в системе .

Ряд  называется рядом Фурье функции f (x) в системе .


§1. Понятие сингулярного интеграла

Чтобы познакомиться с идеей, лежащей в основе понятия сингулярного интеграла, начнем с примера.

Рассмотрим функцию

                            .                                            (1) 

Если n и x фиксированы, а t меняется от 0 до 1, то эта функция есть непрерывная функция от t. Значит, для всякой суммируемой f (t) () можно образовать величину

                            .                                             (2)

         Докажем, что во всякой точке x (0<x<1), в которой функция f(t) непрерывна, будет

                                               .                                               (3)

         Для этого прежде всего отметим, что при

.                 (4)

         Поэтому, чтобы установить (3), достаточно показать, что при  стремится к нулю разность

         .

         Возьмем произвольное  и найдем такое , что при  будет . Считая, что , представим  в форме

.

Интеграл  оценивается следующим образом:

.

         В интеграле  будет , поэтому

,

где  не зависит от n. Аналогично  и, следовательно,                                                 ,

так что при достаточно больших n будет , т. е.  стремится к 0 с возрастанием n, что и требовалось доказать.

         Соотношение (3) обеспечивают следующие свойства функции : при больших значениях n те значения , которые отвечают сколько-нибудь заметно удаленным от x значениям t, очень малы, так что величина интеграла (2) определяется в основном значениями подынтегральной функции в непосредственной близости точки x. Но около точки x функция f (t) почти равна f (x) (т. к. она непрерывна при t=x). Значит, если n велико, то интеграл (2) мало изменяется при замене f (t) на f (x), т. е. он почти равен интегралу

                           

и, в силу (4), почти равен f (x).

         Функция , обладающая подобными свойствами, носит название ядра.

         Определение. Пусть функция  (n=1, 2, …), заданная в квадрате (, ), суммируема по t при каждом фиксированном x. Она называется ядром, если  при условии, что .

        

Определение. Интеграл вида , где  есть ядро, называется сингулярным интегралом.

         В теории сингулярных интегралов очень важен вопрос установления связи предельных значений интеграла  при  со значением функции

f (t) в точке x. Так как изменение значения функции f (t) в одной точке никак не отражается на величине , то необходимо потребовать, чтобы значение f (x) функции f (t) в точке x было как-то связано с ее значениями в близких точках. Простейшая форма такой связи есть непрерывность функции f (t) в точке t=x. Другими формами связи могут служить аппроксимативная непрерывность, требование, чтобы x была точкой Лебега функции f (t), и т. п.

         Теорема 1 (А. Лебег). Пусть на [a,  b] задана последовательность измеримых функций , ,  , … Если существует такая постоянная K, что при всех n и  t будет

                                     ,                                                            (5)

и если при всяком c () будет

                                      ,                                                 (6)

то, какова бы ни была суммируемая на [a, b]  функция f (t), справедливо равенство

                                     .                                           (7)

Доказательство. Если  есть сегмент, содержащийся в [a, b], то из (6) следует, что

                                      .                                                  (8)

         Рассмотрим непрерывную функцию f (t), и для наперед заданного  разложим [a, b] точками  на столь малые части, чтобы в каждой из них колебание f (t) было меньше, чем ε.

Тогда .        (9)

Но , так что первая сумма из (9) не больше, чем (b-a). Вторая же сумма (9), в силу (8), стремится к нулю с возрастанием n и для  окажется меньшей, чем ε. Для этих n будет

                   ,

так что (7) доказано для непрерывной функции f(t).

         Пусть f (t) измеримая ограниченная функция .

         Возьмем ε>0 и, пользуясь теоремой Н. Н. Лузина, найдем такую непрерывную функцию g(t), что , .

         Тогда .

         Но .

Интеграл  по уже доказанному стремится к нулю и для достаточно больших n становится меньше ε. Значит, для этих n будет

                                      ,

что доказывает (7) для случая ограниченной измеримой функции.

Пусть f (t) произвольная суммируемая функция.

Возьмем ε>0 и, пользуясь абсолютной непрерывностью интеграла, найдем такое δ>0, чтобы для любого измеримого множества  с мерой me<δ было .

         Сделав это, найдем такую измеримую ограниченную функцию g(t), чтобы было . Это возможно по

Теореме. Пусть на множестве Е задана измеримая, почти везде конечная функция f (x). Каково бы ни было ε>0, существует измеримая ограниченная функция g(x) такая, что . 

Можно считать, что на множестве  функция g(t) равна нулю.

Тогда .

         Но .

Интеграл же  при достаточно больших n будет меньше ε, и при этих n окажется , что и доказывает теорему.

Пример. Пусть . Тогда  и . Следовательно выполнены оба условия теоремы Лебега. Аналогично рассматривается случай . Таким образом доказана

         Теорема 2 (Риман-Лебег). Для любой суммируемой на [a, b] функции

 f (t) будет .

В частности, коэффициенты Фурье ,  произвольной суммируемой функции стремятся к нулю при . 

         Если соотношение (7) имеет место для всякой суммируемой на [a, b] функции f (t), то мы будем говорить, что последовательность  слабо сходится к нулю.


§2. Представление функции сингулярным интегралом в заданной точке

         Во всем дальнейшем будем считать, что ядро  при фиксированных n и x ограничено. Тогда сингулярный интеграл  имеет смысл при любой суммируемой функции f (t).

         Теорема 1 (А. Лебег). Если при фиксированном x(a<x<b) и любом δ>0 ядро  слабо сходится к нулю в каждом из промежутков [a, x-δ],

[x+δ, b] и , где H(x) не зависит от n, то, какова бы ни была суммируемая функция f (t), непрерывная в точке x, справедливо равенство

                                      .

Доказательство. Так как  есть ядро, то ,                 

и достаточно обнаружить, что

                            .

         С этой целью, взяв ε>0, найдем такое δ>0, что при  будет

                                      .

Это возможно в силу непрерывности функции f в точке x.

Тогда при любом n .

Но каждый из интегралов ,  при  стремится к нулю, т. к.  слабо сходится к нулю в каждом из промежутков [a, x-δ], [x+δ, b]. Поэтому для  каждый из них будет по абсолютной величине меньше ε/3.

И для этих n окажется , что и требовалось доказать.

         Эта теорема относится к представлению суммируемой функции в точках непрерывности, но суммируемая функция, вообще говоря, не имеет ни одной точки непрерывности, что понижает интерес этой теоремы.

         Больший интерес представляет вопрос о представлении суммируемой функции в тех точках, где эта функция служит производной своего неопределенного интеграла, или в точках Лебега, так как и те и другие точки заполняют почти весь сегмент задания функции. Перейдем к рассмотрению этого вопроса.

         Лемма (И. П. Натансон). Пусть на сегменте [a, b] дана суммируемая функция f (t), обладающая тем свойством, что

                           .                                               (1)

         Какова бы ни была неотрицательная убывающая функция g(t), заданная и суммируемая на [a, b],  интеграл

                                                                                              (2)

существует (может быть как несобственный при t=a) и справедливо неравенство

                                      .                                               (3)

         В пояснение условий леммы заметим, что не исключается случай, когда . Если же , то функция g(t) ограничена, и интеграл (2) существует как обычный интеграл Лебега.

         Переходя к доказательству леммы, заметим, что не ограничивая общности, можно принять, что g(b)=0. Действительно, если бы это не было так, то можно было ввести вместо g(t) функцию g*(t), определив ее равенствами

                                                   g(t), если ,

                                      g*(t)=

                                                   0, если t=b.

         Доказав теорему для g*(t), мы затем смогли бы всюду заменить g*(t) на g(t), т. к. такая замена не отражается на величине интересующих нас интегралов. Итак, считаем, что g(b)=0.

         Пусть a<α<b. На сегменте [α, b] функция g(t) ограничена, и интеграл

                                                                                              (4)

заведомо существует. Если положить , то интеграл (4) можно записать в форме интеграла Стилтьеса

                                      ,

откуда, после интегрирования по частям, находим

                   .

         Но, в силу (1), мы имеем, что для любого h из интервала [0, t-a] выполняется неравенство  и следовательно

 ,                                         (5)

а так как g(t) убывает, то

                            .                                                    (6)

Значит . С другой стороны, функция g(t) возрастает. Отсюда и из (5) следует, что

                            .

Преобразуем стоящий справа интеграл по формуле интегрирования по частям:

                   .

Отсюда, учитывая (6), следует, что

                            .

         Сопоставляя все сказанное, получаем:

                            .                                     (7)

         Хотя это неравенство установлено при предположении, что g(b)=0, но оно останется верным и без этого предположения. Значит, можно заменить здесь предел b на β, где α<β<b. Но тогда, устремляя α и β к a, получим                                                     ,

чем доказывается существование интеграла (2). Если в (7) перейти к пределу при , то получим (3). Лемма доказана. (В оценке (3) множителя M уменьшить нельзя, так как при f (t)=1 в (3) достигается равенство.)

         Теорема 2 (П. И. Романовский). Пусть ядро  положительно и обладает следующим свойством: при фиксированных n и x ядро , как функция одного лишь t, возрастает в сегменте [a, x] и убывает в сегменте

[x, b].

         Тогда для любой суммируемой функции f (t), которая в точке x является производной своего неопределенного интеграла, будет                                                            .

         Доказательство. Так как  есть ядро, то  и достаточно проверить, что .

         Разбивая последний интеграл на два, распространенные на сегменте

[a, x] и [x, b], рассмотрим второй из них, так как первый изучается аналогично.

         Возьмем ε>0 и найдем такое δ>0, что при  будет

                            ,

что возможно, так как f (t) в точке t=x есть производная своего неопределенного интеграла. То есть  и .

         Тогда по предыдущей лемме

         .

         Так как  есть ядро, то .

         Величина, имеющая конечный предел, ограничена. Значит, существует постоянная K(x) такая, что .

         Таким образом,

                            .

         С другой стороны, если , то

                   .

         Значит функции  на сегменте [x+δ, b] равномерно ограничены и выполнено условие (5) теоремы Лебега из §1. Но второе ее условие, т. е. условие (6), также выполнено для этих функций, т. к.  является ядром. Следовательно  на сегменте [x+δ, b] слабо сходится к нулю, и для достаточно больших n будет .

         При этих n окажется

                            ,

так что

                            .

Теорема доказана.

         В качестве примера ее приложения рассмотрим интеграл Вейерштрасса .

         Функция  есть ядро, т. к. при α<x<β

                   .

         Эта функция положительна, и она возрастает при  и убывает при . Значит, для всякой  будет  в каждой точке x, где f (t) есть производная своего неопределенного интеграла.

         Определение. Функция Ψ(t, x) называется горбатой мажорантой функции , если  и если Ψ(t, x) при фиксированном x возрастает на сегменте [a, x] и убывает на сегменте [x, b].

         Теорема 3 (Д. К. Фаддеев). Если ядро  при каждом n имеет такую горбатую мажоранту , что

                            ,

где K(x) зависит лишь от x, то для любой , имеющей точку t=x точкой Лебега, будет справедливо равенство

                                      .

Доказательство. Достаточно доказать, что

.

Возьмем ε>0 и найдем такое δ>0, что при  будет

                            .

         По лемме имеем

.

         С другой стороны, в сегменте [x+δ, b] последовательность  слабо сходится к нулю, т. к. при  будет

         .

Следовательно для достаточно больших n будет

.

         При этих n окажется ,

так что .         Теорема доказана.     


§3. Приложения в теории рядов Фурье

         Во введении мы уже определили понятие ряда Фурье функции f (x) по любой ортонормальной системе . В частности, если речь идет о тригонометрической системе

                            ,                                 (1)

то рядом Фурье функции f (x) служит ряд

                                      ,                                 (2)

где

                   , .                             (3)

         Во введении предполагали, что . Это предположение обеспечило существование коэффициентов Фурье  функции f (x) в любой ортонормальной системе. Но функции системы (1) ограничены. Поэтому коэффициенты (3), а с ними и ряд (2), можно образовать для любой суммируемой функции.

         Вопрос о сходимости ряда (2) приводится к исследованию некоторого сингулярного интеграла. Если , то, в силу (3), .

Выведем формулу для упрощения выражения в скобках. Для этого сложим равенства

                        (k=0, 1, …, n-1),

                            .

Это дает , откуда следует равенство

                                     ,                                    (4)

Пользуясь этой формулой, придадим сумме  вид

                            .                               (5)

         Этот интеграл есть сингулярный интеграл Дирихле.

         Рассмотрим вопрос о суммировании ряда (2) по способу Чезаро. Этот способ состоит в отыскании предела среднего арифметического первых n сумм :

                            .                               (6)

         В случае сходимости ряда (2) в точке x последовательность  сходится к сумме ряда, но эта последовательность может сходиться и тогда, когда ряд (2) расходится.

         Для исследования  преобразуем ее с помощью формулы (5)

                   .

Но .                                                           (7)

         Действительно, складывая равенства

            (k=0, 1, …, n-1),

находим , откуда и следует (7).

         С помощью (7) получаем .           (8)

         Интеграл (8) есть сингулярный интеграл Фейера. Покажем, что для него выполнены условия теоремы Фаддеева.

Для этого рассмотрим функцию f (t)=1. Вычисляя ее коэффициенты Фурье по формулам (3), получим  (k=1, 2, …).

Значит, для этой функции  (n=0, 1, 2, …), а следовательно и .

         Но выражая  интегралом Фейера, получим, что

                                      .                                               (9)

         Заметив это, рассмотрим точку . Пусть . Если , то , и, следовательно, , где A(x, α) не зависит от n.

Отсюда следует, что .

         Аналогично убедимся, что интеграл стремится к нулю по промежутку   [β, π]. Сопоставляя это с (9), находим, что

                            ,

так что функция  есть ядро.

         Для этого ядра можно построить горбатую мажоранту. Заметим, что . Отсюда . Но .

Следовательно  и

.                                           (10)

С другой стороны, когда , то , так что

                                      .                                           (11)

         Так как , , то  может оказаться и больше, чем . Но это несущественно. Если положим , , то разность между интегралом Фейера (8) и интегралом

                           

при возрастании n стремится к нулю (т. к., например, при  будет ), поэтому все рассуждения можно вести для интеграла .

Из (10) и (11) следует, что

.

Функция  есть горбатая мажоранта ядра Фейера.

Но , т. е. интегралы от мажоранты ограничены числом, не зависящим от n.

         Итак, интеграл Фейера удовлетворяет условиям теоремы

Д. К. Фаддеева. Отсюда следует

         Теорема 1 (Л. Фейер – А. Лебег). Почти везде на [-π, +π] будет

                                      .                                                         (12)

         Это соотношение выполняется во всех точках Лебега и тем более во всех точках непрерывности функции f (t), лежащих внутри [-π, +π].

         Тригонометрическая система полна. Это означает, что всякая функция , у которой все коэффициенты Фурье (3) равны нулю, эквивалентна нулю. Избавимся от ограничения, что f (x) суммируема с квадратом. Справедлива следующая

         Теорема 2. Если все коэффициенты Фурье (3) суммируемой функции

f (x) равны нулю, то f (x) эквивалентна нулю.

         В самом деле, в этом случае  и, следовательно, f (x)=0 во всех точках, где имеет место (12), т. е. почти везде.

         Теорема 1 позволяет делать некоторые высказывания и о поведении сумм . Для этого заметим, что

                   ,

так что .                                 

Отсюда .

        


§4. Сингулярный интеграл Пуассона

         Пусть точка x есть точка d суммируемой функции f (t), если в этой точке производная неопределенного интеграла функции f (t) равна f (x) (причем ).

Интеграл  (0<r<1) есть сингулярный интеграл Пуассона. Если x (-π<x<π) есть точка d суммируемой функции f (t), то  (П. Фату).

1) Докажем, что  - ядро. Т. к. ядро является 2π-периодической функцией, то интеграл от этой функции, рассматриваемый на периоде, не зависит от x. Рассмотрим  при x=0.

.

Для вычисления интеграла используем универсальную тригонометрическую подстановку и получим

.                                                        (1)

Обозначим , тогда , а .

Выражение (1) будет равно

 при 0<r<1.

Получили, что  и - ядро.

         2) Докажем, что .

, .

Тогда . Следовательно достаточно проверить, что .

Найдем такое, что на интервале [x-, x] ядро  возрастает, а на [x, x+] убывает. Это возможно, т. к. производная функции  меняет знак с плюса на минус при переходе через точку x: .

Возьмем ε>0 и найдем такое δ (0<δ<), что при  будет , что возможно, так как x есть точка d, т.е.  f (t) в точке t=x есть производная своего неопределенного интеграла.

        

Тогда по лемме И. П. Натансона

         , т. к.  есть ядро, и .

         Таким образом, на интервале [x, x+δ] справедливо неравенство . На [x-δ, x] интеграл рассматривается аналогично в силу симметричности ядра на интервале [x-δ, x+δ] относительно точки x.

Рассмотрим  за пределами [x-δ, x+δ], т.е. на

[-π,  x-δ,] и на [x+δ, π].

         В этих случаях выполняются неравенства

         , .

Тогда  и .

Следовательно , т. к. , и знаменатель дроби не равен нулю.

Аналогично .

То есть  на интервалах [-π,  x-δ,] и [x+δ, π].

При r, достаточно близких к 1, получим

   и .

При этих r окажется , 

так что  и .

         Таким образом, доказано, что  (0<r<1) есть сингулярный интеграл.


Литература

1.   Натансон И. П. Теория функций вещественной переменной. – М.: Наука, 1974.

2.   Кашин Б. С., Саакян А. А. Ортогональные ряды. –

3.   Колмогоров А. Н., Фомин С. В. Элементы теории функций и функционального анализа. – М.: Наука, 1968.

Федеральное агентство по образованию Государственное муниципальное образовательное учреждение высшего профессионального образования Вятский государственный гуманитарный университет (ВятГГУ) Математический факультет Кафедра математ

 

 

 

Внимание! Представленная Дипломная работа находится в открытом доступе в сети Интернет, и уже неоднократно сдавалась, возможно, даже в твоем учебном заведении.
Советуем не рисковать. Узнай, сколько стоит абсолютно уникальная Дипломная работа по твоей теме:

Новости образования и науки

Заказать уникальную работу

Похожие работы:

Систематичний відбір
Системы с постоянной четной частью
Системы, эквивалентные системам с известными качественными свойствами решений
Теореми Чеви і Менелая та їх застосування
Методы приближённого решения матричных игр
Метризуемость топологических пространств
Плоские кривые
Мультипликативные полугруппы неотрицательных действительных чисел
Показательно-степенные уравнения и неравенства
Положительные и ограниченные полукольца

Свои сданные студенческие работы

присылайте нам на e-mail

Client@Stud-Baza.ru