курсовые,контрольные,дипломы,рефераты
1.Краткая теория .
2. Методические рекомендации по выполнению заданий.
3.Примеры выполнения заданий.
4.Варианты заданий.
5.Список литературы.
1. КРАТКАЯ ТЕОРИЯ .Пусть дана система линейных уравнений
(1)
Коэффициенты a11,12,..., a1n, ... , an1 , b2 , ... , bn считаются заданными .
Вектор -строка í x1 , x2 , ... , xn ý - называется решением системы (1), если при подстановке этих чисел вместо переменных все уравнения системы (1) обращаются в верное равенство.
Определитель n-го порядка D = ç A ê = ç a ij ç , составленный из коэффициентов при неизвестных , называется определителем системы (1). В зависимости от определителя системы (1) различают следующие случаи.
a). Если D ¹ 0 , то система (1) имеет единственное решение, которое может быть найдено по формулам Крамера : x1=, где
определитель n-го порядка D i ( i=1,2,...,n) получается из определителя системы путем замены i-го столбца свободными членами b1 , b2 ,..., bn.
б). Если D = 0 , то система (1) либо имеет бесконечное множество решений , либо несовместна ,т.е. решений нет.
2. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ1. Рассмотрим систему 3-х линейных уравнений с тремя неизвестными.
(2).
1. В данной системе составим определитель и вычислим.
2. Составить и вычислить следующие определители :
.
3. Воспользоваться формулами Крамера.
3. ПРИМЕРЫ.1. .
.
Проверка:
Ответ: ( 3 ; -1 ).
2.
Проверка:
Ответ: x=0,5 ; y=2 ; z=1,5 .
4. ВАРИАНТЫ ЗАДАНИЙ. ВАРИАНТ 1.Решить системы:
ВАРИАНТ 2.Решить системы:
ВАРИАНТ 3.Решить системы:
ВАРИАНТ 4.Решить системы:
ВАРИАНТ 5.Решить системы:
ВАРИАНТ 6.Решить системы:
ВАРИАНТ 7.Решить системы:
ВАРИАНТ 8.Решить системы:
Литература1. Г.И. КРУЧКОВИЧ. “Сборник задач по курсу высшей математике”, М. “Высшая школа”, 1973 год.
2. В.С. ШИПАЧЕВ. “Высшая математика”, М. “Высшая школа”, 1985 год.
Copyright (c) 2024 Stud-Baza.ru Рефераты, контрольные, курсовые, дипломные работы.