База знаний студента. Реферат, курсовая, контрольная, диплом на заказ

курсовые,контрольные,дипломы,рефераты

Статистические методы обработки выборочных данных наблюдений или экспериментов — Экономика

ФЕДЕРАЛЬНОЕ АГЕНСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСТЕТ ПУТЕЙ СООБЩЕНИЯ (МИИТ)

Институт транспортной техники и организации производства

(ИТТОП)

Кафедра: «Локомотивы и локомотивное хозяйство»

Курсовой проект

на тему:

«Статистические методы обработки выборочных данных наблюдений или экспериментов»

Выполнил: студент Краснов М.А.

группы ТЛТ-451

Принял: Пузанков А.Д.

Москва 2009


СОДЕРЖАНИЕ

1.  ПЕРВИЧНЫЙ АНАЛИЗ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ

2.  ПОСТРОЕНИЕ ЭМПИРИЧЕСКОЙ ПЛОТНОСТИ РАСПРЕДЕЛЕНИЯ СЛУЧАЙНОЙ АНАЛИЗИРУЕМОЙ ВЕЛИЧИНЫ И РАСЧЕТ ЕЕ ХАРАКТЕРИСТИК

3.  ОПРЕДЕЛЕНИЕ ВИДА ЗАКОНА РАСПРЕДЕЛЕНИЯ СЛУЧАЙНОЙ ВЕЛИЧИНЫ И РАСЧЕТ ЕГО ПАРАМЕТРОВ ПРИ ПОМОЩИ МЕТОДА МОМЕНТОВ

4.  ОПРЕДЕЛЕНИЕ ВИДА ТЕОРЕТИЧЕСКОГО ЗАКОНА РАСПРЕДЕЛЕНИЯ СЛУЧАЙНОЙ ВЕЛИЧИНЫ ГРАФИЧЕСКИМ МЕТОДОМ


1.  Первичный анализ экспериментальных данных

Запишем полученные значения в вариационный ряд в возрастающем порядке:

Таблица 1.

16,4 21,6 35,46 38,76 39,84 40,65 44,25 46,73 47,62 50,25
50,25 51,02 51,8 55,22 55,25 55,55 61,73 63,3 64,93 67,56
68,5 68,5 71,94 73 73,53 73,53 74,07 77,52 78,12 78,74
78,74 80,64 85,47 86,2 87,72 90,1 92,6 94,34 95,24 96,15
99,01 99,01 106,4 108,6 116,28 133,3 135,13 137 144,93 149,25
153,84 161,3 166,7 172,4 172,4 175,44 178,6 178,6 185,18 192,3
208,33 212,76 227,27 232,56 238,1 243,9 256,41 277,8 277,8 285,7
285,71 285,71 322,6 322,6 344,83 370,4 370,4 370,4 384,6 420,6
526,3 555,55 588,23 943,4

xmax = 943,4; xmin = 16,4

Результат последних двух измерений вызывает сомнения. Поэтому выполняем проверку:

Величину выборочного среднего  находим из соотношения:

 (1)

Корень квадратный из дисперсии, взятый с положительным знаком, называется среднеквадратическим отклонением и рассчитывается по формуле:

 (2)

Упрощённая проверка сомнительного результата на брак выполняется из условия:

Таким образом, по упрощенной проверке результат сомнительного измерения браком являются последнее одно значение, отбрасываем их и пересчитываем  и :

Проверяем по упрощённой проверки:

Таким образом, по упрощенной проверке результат сомнительного измерения браком являются последние два значения, отбрасываем их и пересчитываем  и :

Таким образом, по упрощенной проверке результат сомнительного измерения браком являются последнее одно значение, отбрасываем их и пересчитываем  и :

Таким образом, по упрощенной проверке результат сомнительного измерения не является браком.

Так же выполним подобную проверку с помощью критерия Ирвина:

Таким образом, по расчётам обеих проверок результат последнего сомнительного измерения не является браком.

Из этого следует, что нужно произвести повторный расчёт, но уже без данного измерения:

2. Построение эмпирической плотности распределения случайной анализируемой величины и расчёт её характеристик

Определяем размах имеющихся данных, т.е. разности между наибольшим и наименьшим выборочным значениями (R = Xmax – Xmin):

Выбор числа интервалов группировки k при числе наблюдений n<100 – ориентировочное значение интервалов можно рассчитать с использованием формулы Хайнхольда и Гаеде:

Тогда ширина интервала:


Результат подсчёта частот и характеристик эмпирического распределения

Таблица 2.

Границы интервала

группировки

Ср.знач.

интерв.

Распределение

данных

fi

U U*f U^2*f
16,4…61,31 38,86 //////////////// 16 -1 -16 16
61,31…106,22 83,77 ////////////////////////// 26 0 0 0
106,22…151,13 128,68 //////// 8 1 8 8
151,13…196,04 173,59 ////////// 10 2 20 40
196,04…240,96 218,50 ///// 5 3 15 45
240,96…285,87 263,41 ///// 5 4 20 80
285,87…330,78 308,32 //// 4 5 20 100
330,78…375,69 353,23 //// 4 6 24 144
375,69…420,60 398,14 // 2 7 14 98
ИТОГО 80 105 531

Принимаем «ложный нуль» x0=83,77 и обозначаем нулем тот интервал, которому соответствует максимальная частота (f=26). Далее, для интервалов, следующих к наименьшему наблюдаемому значению вписываем -1, -2 … и 1, 2, … для интервалов, следующих к наибольшему значению наблюдаемой величины.

Выборочное среднее х и среднеквадратическое отклонение Sx рассчитываем, используя следующие выражения:

 (3)


Для построения гистограммы, приведённой на рис.1, по оси абсцисс в выбранном масштабе отмечаем границы интервалов. Левая ось размечается масштабом частот, а на правую, в случае необходимости, можно нанести шкалу относительных частот. На чистом поле гистограммы указываются значения: числа данных; среднего арифметического; среднеквадратического отклонения.

Рис.1

Помимо гистограммы эмпирические данные измерений случайной величины могут быть представлены в виде кумулятивной кривой функции распределения вероятностей. Для этого данные, представленные в табл.1., должны быть дополнены частостями (см. табл.2.).

Частость находим из соотношения:

Таблица частот f и частостей ω.

Таблица 3.

Границы интервала

группировки

Частота,fi

Частость,

ω i

Накопленная

частость, ω н

16,4…61,31 16 0,20 0,20
61,31…106,22 26 0,33 0,53
106,22…151,13 8 0,10 0,63
151,13…196,04 10 0,13 0,75
196,04…240,96 5 0,06 0,81
240,96…285,87 5 0,06 0,88
285,87…330,78 4 0,05 0,93
330,78…375,69 4 0,05 0,98
375,69…420,60 2 0,03 1,00
ИТОГО 80 1

Рис. 2


3. Определение вида закона распределения случайной величины и расчёт его параметров при помощи метода моментов

Экспоненциальный (нормальный) закон распределения

Параметр закона распределения:

Таблица 4

xi

103 км

fi

шт

λ*xi

e-λ*xi

φ(xi)

10-6

fi’

шт

1 38,86 16 0,270 0,763 0,531 19,08 0,50
2 83,77 26 0,583 0,558 0,388 13,96 10,39
3 128,68 8 0,895 0,408 0,284 10,21 0,48
4 173,59 10 1,208 0,299 0,208 7,47 0,86
5 218,50 5 1,520 0,219 0,152 5,47 0,04
6 263,41 5 1,833 0,160 0,111 4,00 0,25
7 308,32 4 2,145 0,117 0,081 2,93 0,39
8 353,23 4 2,458 0,086 0,060 2,14 1,62
9 398,14 2 2,770 0,063 0,044 1,57 0,12
ИТОГО: 80 14,64

Рис. 4


Нормальный закон распределения двухпараметрический, число степеней свободы υ = 7 и  = 14,067.

Так как χ2 > χ0,052, то гипотеза о принадлежности эмпирической выборки значений, экспоненциальному закону распределения отвергается

Распределение Вейбулла - Гнеденко

Величина выборочного коэффициента вариации:

По данным приложения таблица П1,2:

Таблица 5

Xi

103 км

fi

шт

xi/a a* φ(xi)

φ(xi)

10-6

fi’

шт

1 38,86 16 0,246 0,6944 4,4017 15,81 0,00
2 83,77 26 0,531 0,7197 4,5618 16,39 5,63
3 128,68 8 0,816 0,6085 3,8567 13,86 2,48
4 173,59 10 1,100 0,4637 2,9393 10,56 0,03
5 218,50 5 1,385 0,3293 2,0870 7,50 0,83
6 263,41 5 1,670 0,2213 1,4029 5,04 0,00
7 308,32 4 1,954 0,1422 0,9014 3,24 0,18
8 353,23 4 2,239 0,0879 0,5570 2,00 2,00
9 398,14 2 2,524 0,0525 0,3325 1,19 0,54
ИТОГО: 80 75,60 11,69

Рис. 5

Нормальный закон распределения двухпараметрический, число степеней свободы υ = 6 и  = 12,592.

Так как χ2 > χ0,052, то эмпирическая выборка значений пренадлежит закону распределения Вейбулла - Гнеденко

Нормальный (Гауссовский) закон распределения

Таблица 6

Xi

103 км

fi ti

φ(ti)

10-2

φ(xi)

fi’

щт

1 38,86 16 -1,025 0,231 0,101 8,09 7,72
2 83,77 26 -0,586 0,328 0,144 11,52 18,18
3 128,68 8 -0,147 0,386 0,169 13,53 2,26
4 173,59 10 0,292 0,374 0,164 13,11 0,74
5 218,50 5 0,731 0,298 0,131 10,48 2,86
6 263,41 5 1,169 0,197 0,086 6,91 0,53
7 308,32 4 1,608 0,107 0,047 3,75 0,02
8 353,23 4 2,047 0,048 0,021 1,68 3,18
9 398,14 2 2,486 0,018 0,008 0,62 3,04
ИТОГО: 80 69,71 38,54

Рис. 6

Нормальный закон распределения двухпараметрический, число степеней свободы υ = 6 и  = 12.592.

Так как χ2 > χ0,052, то гипотеза о принадлежности эмпирической выборки значений, нормальному (Гауссовскому) закону распределения отвергается

Логарифмически - нормальный закон распределения

Значения средне-выборочное и средне-квадратичное:

Таблица 7

Xi

103 км

fi ti φ(ti) φ(xi)

fi’

щт

1 38,86 16 -1,481 0,133 4,808 17,28 0,094
2 83,77 26 -0,404 0,367 6,155 22,12 0,682
3 128,68 8 0,198 0,391 4,263 15,32 3,494
4 173,59 10 0,618 0,329 2,663 9,57 0,019
5 218,50 5 0,941 0,256 1,645 5,91 0,140
6 263,41 5 1,203 0,193 1,030 3,70 0,455
7 308,32 4 1,423 0,144 0,659 2,37 1,126
8 353,23 4 1,614 0,108 0,430 1,55 3,892
9 398,14 2 1,782 0,081 0,287 1,03 0,908
ИТОГО: 80 10,81

Рис. 7

Нормальный закон распределения двухпараметрический, число степеней свободы υ = 6 и  = 12.592.

Так как χ2 < χ0,052, то эмпирическая выборка значений принадлежит логарифмически-нормальному закону распределения

4. Определение вида теоретического закона распределения случайной величины графическими методами

 

Расчёт координат эмпирических точек заданной выборки


Таблица 8.

№ п/п

Среднее значение

интервала xi , 103 км

fi , шт

Σ fi

F(x)= Σ fi/n+1

1 38,86 16 16 0,198
2 83,77 26 42 0,519
3 128,68 8 50 0,617
4 173,59 10 60 0,741
5 218,50 5 65 0,802
6 263,41 5 70 0,864
7 308,32 4 74 0,914
8 353,23 4 78 0,963
9 398,14 2 80 0,988

Используя полученные в табл.4. данные, строим вероятностную сетку и выполняем проверку согласованности.

Выбор масштаба построения вероятностной сетки:

·  ширина графика (ось абсцисс) А = 140 мм ;

·  высота графика (ось ординат) Н = 180 мм .

Нормальный закон распределения

Масштаб значений оси абсцисс устанавливается на основе выражения:

Таблица 9

P = F(x) 0,5 0,6 0,7 0,8 0,8413 0,85 0,903

y = Q-1(P)

0 0,25 0,52 0,85 1 1,05 1,3
Ky (P), мм 0 7,5 15,6 25,5 30 31,5 39
P = F(x) 0,96 0,971 0,98 0,991 0,9953 0,997 0,9987

y = Q-1(P)

1,75 1,9 2,05 2,35 2,6 2,75 3
Ky(P), мм 52,5 57 61,5 70,5 78 82,5 90

Лгарифмически - нормальный закон распределения

Масштаб значений оси абсцисс устанавливается на основе выражения:


Таблица 10

Границы интервала

xi

103 км

1 418,78…475,69 38,86 456,01 0,198
2 475,69…499,40 83,77 489,15 0,519
3 499,40…514,62 128,68 507,68 0,617
4 514,62…525,85 173,59 520,60 0,741
5 525,85…534,75 218,50 530,52 0,802
6 534,75…542,12 263,41 538,59 0,864
7 542,12…548,42 308,32 545,38 0,914
8 548,42…553,91 353,23 551,25 0,963
9 553,91…558,78 398,14 556,42 0,988


Экспоненциальный (нормальный) закон распределения

Таблица 11

P = F(x) 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7
Ky (P), мм 0,0 3,2 6,7 10,7 15,3 20,8 27,5 36,1
P = F(x) 0,8 0,9 0,95 0,97 0,98 0,99 0,995 0,9975
Ky(P), мм 48,3 69,1 89,9 105,2 117,4 138,2 158,9 179,7

Распределение Вейбулла – Гнеденко

Таблица 12

P = F(x) 0,03 0,04 0,06 0,1 0,2 0,3 0,4

y = Q-1(P)

-3,5 -3,2 -2,8 -2,25 -1,5 -1,03 -0,7
Ky (P), мм -118,8 -108,6 -95,0 -76,4 -50,9 -35,0 -23,8
P = F(x) 0,5 0,632 0,78 0,9 0,97 0,955 0,999

y = Q-1(P)

-0,36 0,00 0,41 0,83 1,25 1,66 1,93
Ky(P), мм -12,2 0,00 13,9 28,2 42,4 56,3 65,5

ФЕДЕРАЛЬНОЕ АГЕНСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСТЕТ ПУТЕЙ СООБЩЕНИЯ (МИИТ) Институт транспортной техники и организации производства (ИТТОП) Кафедра: «Локомотивы и локомотивное хозяйство»

 

 

 

Внимание! Представленная Курсовая работа находится в открытом доступе в сети Интернет, и уже неоднократно сдавалась, возможно, даже в твоем учебном заведении.
Советуем не рисковать. Узнай, сколько стоит абсолютно уникальная Курсовая работа по твоей теме:

Новости образования и науки

Заказать уникальную работу

Похожие работы:

Сущность и процедура банкротства
Сущность и роль финансового планирования на предприятии
Сущность и содержание предпринимательской деятельности
Сущность и формы кредита
Сущность и функции предприятия
Стратегия ценообразования на примере предприятия ООО &quot;Гуслицкий знахарь&quot;
Статистические показатели трудовых ресурсов
Строительство сетей и сооружений системы водоснабжения города и промышленного предприятия
Структура доходів населення, перерозподіл доходів в суспільстві
Статистический анализ трудовых ресурсов райпо

Свои сданные студенческие работы

присылайте нам на e-mail

Client@Stud-Baza.ru